*** 1 Progress [(?,O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        eqNatList(Cons(x,xs),Cons(y,ys)) -> eqNatList[Match][Cons][Match][Cons][Ite](!EQ(x,y),y,ys,x,xs)
        eqNatList(Cons(x,xs),Nil()) -> False()
        eqNatList(Nil(),Cons(y,ys)) -> False()
        eqNatList(Nil(),Nil()) -> True()
        goal(a1,b1,a2,b2,a3,b3) -> nolexicord(a1,b1,a2,b2,a3,b3)
        nolexicord(Cons(x,xs),b1,a2,b2,a3,b3) -> nolexicord[Ite][False][Ite](eqNatList(Cons(x,xs),b1),Cons(x,xs),b1,a2,b2,a3,b3)
        nolexicord(Nil(),b1,a2,b2,a3,b3) -> Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil()))))))))))))))))))))))))))))))))))))))))))
        number42() -> Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil()))))))))))))))))))))))))))))))))))))))))))
      Weak DP Rules:
        
      Weak TRS Rules:
        !EQ(0(),0()) -> True()
        !EQ(0(),S(y)) -> False()
        !EQ(S(x),0()) -> False()
        !EQ(S(x),S(y)) -> !EQ(x,y)
        nolexicord[Ite][False][Ite](False(),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x,xs)) -> nolexicord(xs',xs',xs',xs',xs',xs)
        nolexicord[Ite][False][Ite](True(),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x,xs),Cons(x',xs')) -> nolexicord(xs',xs',xs',xs',xs',xs)
      Signature:
        {!EQ/2,eqNatList/2,goal/6,nolexicord/6,nolexicord[Ite][False][Ite]/7,number42/0} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,eqNatList[Match][Cons][Match][Cons][Ite]/5}
      Obligation:
        Innermost
        basic terms: {!EQ,eqNatList,goal,nolexicord,nolexicord[Ite][False][Ite],number42}/{0,Cons,False,Nil,S,True,eqNatList[Match][Cons][Match][Cons][Ite]}
    Applied Processor:
      DependencyPairs {dpKind_ = WIDP}
    Proof:
      We add the following weak innermost dependency pairs:
      
      Strict DPs
        eqNatList#(Cons(x,xs),Cons(y,ys)) -> c_1(!EQ#(x,y))
        eqNatList#(Cons(x,xs),Nil()) -> c_2()
        eqNatList#(Nil(),Cons(y,ys)) -> c_3()
        eqNatList#(Nil(),Nil()) -> c_4()
        goal#(a1,b1,a2,b2,a3,b3) -> c_5(nolexicord#(a1,b1,a2,b2,a3,b3))
        nolexicord#(Cons(x,xs),b1,a2,b2,a3,b3) -> c_6(nolexicord[Ite][False][Ite]#(eqNatList(Cons(x,xs),b1),Cons(x,xs),b1,a2,b2,a3,b3))
        nolexicord#(Nil(),b1,a2,b2,a3,b3) -> c_7()
        number42#() -> c_8()
      Weak DPs
        !EQ#(0(),0()) -> c_9()
        !EQ#(0(),S(y)) -> c_10()
        !EQ#(S(x),0()) -> c_11()
        !EQ#(S(x),S(y)) -> c_12(!EQ#(x,y))
        nolexicord[Ite][False][Ite]#(False(),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x,xs)) -> c_13(nolexicord#(xs',xs',xs',xs',xs',xs))
        nolexicord[Ite][False][Ite]#(True(),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x,xs),Cons(x',xs')) -> c_14(nolexicord#(xs',xs',xs',xs',xs',xs))
      
      and mark the set of starting terms.
*** 1.1 Progress [(?,O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        eqNatList#(Cons(x,xs),Cons(y,ys)) -> c_1(!EQ#(x,y))
        eqNatList#(Cons(x,xs),Nil()) -> c_2()
        eqNatList#(Nil(),Cons(y,ys)) -> c_3()
        eqNatList#(Nil(),Nil()) -> c_4()
        goal#(a1,b1,a2,b2,a3,b3) -> c_5(nolexicord#(a1,b1,a2,b2,a3,b3))
        nolexicord#(Cons(x,xs),b1,a2,b2,a3,b3) -> c_6(nolexicord[Ite][False][Ite]#(eqNatList(Cons(x,xs),b1),Cons(x,xs),b1,a2,b2,a3,b3))
        nolexicord#(Nil(),b1,a2,b2,a3,b3) -> c_7()
        number42#() -> c_8()
      Strict TRS Rules:
        eqNatList(Cons(x,xs),Cons(y,ys)) -> eqNatList[Match][Cons][Match][Cons][Ite](!EQ(x,y),y,ys,x,xs)
        eqNatList(Cons(x,xs),Nil()) -> False()
        eqNatList(Nil(),Cons(y,ys)) -> False()
        eqNatList(Nil(),Nil()) -> True()
        goal(a1,b1,a2,b2,a3,b3) -> nolexicord(a1,b1,a2,b2,a3,b3)
        nolexicord(Cons(x,xs),b1,a2,b2,a3,b3) -> nolexicord[Ite][False][Ite](eqNatList(Cons(x,xs),b1),Cons(x,xs),b1,a2,b2,a3,b3)
        nolexicord(Nil(),b1,a2,b2,a3,b3) -> Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil()))))))))))))))))))))))))))))))))))))))))))
        number42() -> Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil()))))))))))))))))))))))))))))))))))))))))))
      Weak DP Rules:
        !EQ#(0(),0()) -> c_9()
        !EQ#(0(),S(y)) -> c_10()
        !EQ#(S(x),0()) -> c_11()
        !EQ#(S(x),S(y)) -> c_12(!EQ#(x,y))
        nolexicord[Ite][False][Ite]#(False(),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x,xs)) -> c_13(nolexicord#(xs',xs',xs',xs',xs',xs))
        nolexicord[Ite][False][Ite]#(True(),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x,xs),Cons(x',xs')) -> c_14(nolexicord#(xs',xs',xs',xs',xs',xs))
      Weak TRS Rules:
        !EQ(0(),0()) -> True()
        !EQ(0(),S(y)) -> False()
        !EQ(S(x),0()) -> False()
        !EQ(S(x),S(y)) -> !EQ(x,y)
        nolexicord[Ite][False][Ite](False(),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x,xs)) -> nolexicord(xs',xs',xs',xs',xs',xs)
        nolexicord[Ite][False][Ite](True(),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x,xs),Cons(x',xs')) -> nolexicord(xs',xs',xs',xs',xs',xs)
      Signature:
        {!EQ/2,eqNatList/2,goal/6,nolexicord/6,nolexicord[Ite][False][Ite]/7,number42/0,!EQ#/2,eqNatList#/2,goal#/6,nolexicord#/6,nolexicord[Ite][False][Ite]#/7,number42#/0} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,eqNatList[Match][Cons][Match][Cons][Ite]/5,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/1,c_13/1,c_14/1}
      Obligation:
        Innermost
        basic terms: {!EQ#,eqNatList#,goal#,nolexicord#,nolexicord[Ite][False][Ite]#,number42#}/{0,Cons,False,Nil,S,True,eqNatList[Match][Cons][Match][Cons][Ite]}
    Applied Processor:
      UsableRules
    Proof:
      We replace rewrite rules by usable rules:
        !EQ(0(),0()) -> True()
        !EQ(0(),S(y)) -> False()
        !EQ(S(x),0()) -> False()
        !EQ(S(x),S(y)) -> !EQ(x,y)
        eqNatList(Cons(x,xs),Cons(y,ys)) -> eqNatList[Match][Cons][Match][Cons][Ite](!EQ(x,y),y,ys,x,xs)
        eqNatList(Cons(x,xs),Nil()) -> False()
        !EQ#(0(),0()) -> c_9()
        !EQ#(0(),S(y)) -> c_10()
        !EQ#(S(x),0()) -> c_11()
        !EQ#(S(x),S(y)) -> c_12(!EQ#(x,y))
        eqNatList#(Cons(x,xs),Cons(y,ys)) -> c_1(!EQ#(x,y))
        eqNatList#(Cons(x,xs),Nil()) -> c_2()
        eqNatList#(Nil(),Cons(y,ys)) -> c_3()
        eqNatList#(Nil(),Nil()) -> c_4()
        goal#(a1,b1,a2,b2,a3,b3) -> c_5(nolexicord#(a1,b1,a2,b2,a3,b3))
        nolexicord#(Cons(x,xs),b1,a2,b2,a3,b3) -> c_6(nolexicord[Ite][False][Ite]#(eqNatList(Cons(x,xs),b1),Cons(x,xs),b1,a2,b2,a3,b3))
        nolexicord#(Nil(),b1,a2,b2,a3,b3) -> c_7()
        nolexicord[Ite][False][Ite]#(False(),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x,xs)) -> c_13(nolexicord#(xs',xs',xs',xs',xs',xs))
        nolexicord[Ite][False][Ite]#(True(),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x,xs),Cons(x',xs')) -> c_14(nolexicord#(xs',xs',xs',xs',xs',xs))
        number42#() -> c_8()
*** 1.1.1 Progress [(?,O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        eqNatList#(Cons(x,xs),Cons(y,ys)) -> c_1(!EQ#(x,y))
        eqNatList#(Cons(x,xs),Nil()) -> c_2()
        eqNatList#(Nil(),Cons(y,ys)) -> c_3()
        eqNatList#(Nil(),Nil()) -> c_4()
        goal#(a1,b1,a2,b2,a3,b3) -> c_5(nolexicord#(a1,b1,a2,b2,a3,b3))
        nolexicord#(Cons(x,xs),b1,a2,b2,a3,b3) -> c_6(nolexicord[Ite][False][Ite]#(eqNatList(Cons(x,xs),b1),Cons(x,xs),b1,a2,b2,a3,b3))
        nolexicord#(Nil(),b1,a2,b2,a3,b3) -> c_7()
        number42#() -> c_8()
      Strict TRS Rules:
        eqNatList(Cons(x,xs),Cons(y,ys)) -> eqNatList[Match][Cons][Match][Cons][Ite](!EQ(x,y),y,ys,x,xs)
        eqNatList(Cons(x,xs),Nil()) -> False()
      Weak DP Rules:
        !EQ#(0(),0()) -> c_9()
        !EQ#(0(),S(y)) -> c_10()
        !EQ#(S(x),0()) -> c_11()
        !EQ#(S(x),S(y)) -> c_12(!EQ#(x,y))
        nolexicord[Ite][False][Ite]#(False(),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x,xs)) -> c_13(nolexicord#(xs',xs',xs',xs',xs',xs))
        nolexicord[Ite][False][Ite]#(True(),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x,xs),Cons(x',xs')) -> c_14(nolexicord#(xs',xs',xs',xs',xs',xs))
      Weak TRS Rules:
        !EQ(0(),0()) -> True()
        !EQ(0(),S(y)) -> False()
        !EQ(S(x),0()) -> False()
        !EQ(S(x),S(y)) -> !EQ(x,y)
      Signature:
        {!EQ/2,eqNatList/2,goal/6,nolexicord/6,nolexicord[Ite][False][Ite]/7,number42/0,!EQ#/2,eqNatList#/2,goal#/6,nolexicord#/6,nolexicord[Ite][False][Ite]#/7,number42#/0} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,eqNatList[Match][Cons][Match][Cons][Ite]/5,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/1,c_13/1,c_14/1}
      Obligation:
        Innermost
        basic terms: {!EQ#,eqNatList#,goal#,nolexicord#,nolexicord[Ite][False][Ite]#,number42#}/{0,Cons,False,Nil,S,True,eqNatList[Match][Cons][Match][Cons][Ite]}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnTrs}
    Proof:
      The weightgap principle applies using the following constant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(eqNatList[Match][Cons][Match][Cons][Ite]) = {1},
          uargs(nolexicord[Ite][False][Ite]#) = {1},
          uargs(c_1) = {1},
          uargs(c_5) = {1},
          uargs(c_6) = {1},
          uargs(c_12) = {1},
          uargs(c_13) = {1},
          uargs(c_14) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                                               p(!EQ) = [1]                                             
                                                 p(0) = [0]                                             
                                              p(Cons) = [1] x1 + [1] x2 + [0]                           
                                             p(False) = [1]                                             
                                               p(Nil) = [2]                                             
                                                 p(S) = [1] x1 + [0]                                    
                                              p(True) = [0]                                             
                                         p(eqNatList) = [2]                                             
          p(eqNatList[Match][Cons][Match][Cons][Ite]) = [1] x1 + [0]                                    
                                              p(goal) = [1] x2 + [2] x3 + [1] x5 + [0]                  
                                        p(nolexicord) = [1] x2 + [1] x4 + [0]                           
                       p(nolexicord[Ite][False][Ite]) = [2] x1 + [2] x3 + [1] x4 + [1] x5 + [0]         
                                          p(number42) = [0]                                             
                                              p(!EQ#) = [0]                                             
                                        p(eqNatList#) = [6] x1 + [0]                                    
                                             p(goal#) = [4] x1 + [5] x2 + [4] x3 + [1] x5 + [5] x6 + [0]
                                       p(nolexicord#) = [5] x2 + [4] x3 + [0]                           
                      p(nolexicord[Ite][False][Ite]#) = [1] x1 + [5] x3 + [4] x4 + [7]                  
                                         p(number42#) = [0]                                             
                                               p(c_1) = [1] x1 + [1]                                    
                                               p(c_2) = [2]                                             
                                               p(c_3) = [4]                                             
                                               p(c_4) = [1]                                             
                                               p(c_5) = [1] x1 + [1]                                    
                                               p(c_6) = [1] x1 + [3]                                    
                                               p(c_7) = [1]                                             
                                               p(c_8) = [0]                                             
                                               p(c_9) = [0]                                             
                                              p(c_10) = [0]                                             
                                              p(c_11) = [0]                                             
                                              p(c_12) = [1] x1 + [0]                                    
                                              p(c_13) = [1] x1 + [0]                                    
                                              p(c_14) = [1] x1 + [1]                                    
        
        Following rules are strictly oriented:
            eqNatList#(Nil(),Cons(y,ys)) = [12]                                           
                                         > [4]                                            
                                         = c_3()                                          
        
                 eqNatList#(Nil(),Nil()) = [12]                                           
                                         > [1]                                            
                                         = c_4()                                          
        
        eqNatList(Cons(x,xs),Cons(y,ys)) = [2]                                            
                                         > [1]                                            
                                         = eqNatList[Match][Cons][Match][Cons][Ite](!EQ(x 
                                                                                       ,y)
                                                                                   ,y     
                                                                                   ,ys    
                                                                                   ,x     
                                                                                   ,xs)   
        
             eqNatList(Cons(x,xs),Nil()) = [2]                                            
                                         > [1]                                            
                                         = False()                                        
        
        
        Following rules are (at-least) weakly oriented:
                                     !EQ#(0(),0()) =  [0]                                                
                                                   >= [0]                                                
                                                   =  c_9()                                              
        
                                    !EQ#(0(),S(y)) =  [0]                                                
                                                   >= [0]                                                
                                                   =  c_10()                                             
        
                                    !EQ#(S(x),0()) =  [0]                                                
                                                   >= [0]                                                
                                                   =  c_11()                                             
        
                                   !EQ#(S(x),S(y)) =  [0]                                                
                                                   >= [0]                                                
                                                   =  c_12(!EQ#(x,y))                                    
        
                             eqNatList#(Cons(x,xs) =  [6] x + [6] xs + [0]                               
                                      ,Cons(y,ys))                                                       
                                                   >= [1]                                                
                                                   =  c_1(!EQ#(x,y))                                     
        
                      eqNatList#(Cons(x,xs),Nil()) =  [6] x + [6] xs + [0]                               
                                                   >= [2]                                                
                                                   =  c_2()                                              
        
                          goal#(a1,b1,a2,b2,a3,b3) =  [4] a1 + [4] a2 + [1] a3 + [5] b1 + [5] b3 + [0]   
                                                   >= [4] a2 + [5] b1 + [1]                              
                                                   =  c_5(nolexicord#(a1                                 
                                                                     ,b1                                 
                                                                     ,a2                                 
                                                                     ,b2                                 
                                                                     ,a3                                 
                                                                     ,b3))                               
        
                            nolexicord#(Cons(x,xs) =  [4] a2 + [5] b1 + [0]                              
                                               ,b1                                                       
                                               ,a2                                                       
                                               ,b2                                                       
                                               ,a3                                                       
                                              ,b3)                                                       
                                                   >= [4] a2 + [5] b1 + [12]                             
                                                   =  c_6(nolexicord[Ite][False][Ite]#(eqNatList(Cons(x  
                                                                                                     ,xs)
                                                                                                ,b1)     
                                                                                      ,Cons(x,xs)        
                                                                                      ,b1                
                                                                                      ,a2                
                                                                                      ,b2                
                                                                                      ,a3                
                                                                                      ,b3))              
        
                                 nolexicord#(Nil() =  [4] a2 + [5] b1 + [0]                              
                                               ,b1                                                       
                                               ,a2                                                       
                                               ,b2                                                       
                                               ,a3                                                       
                                              ,b3)                                                       
                                                   >= [1]                                                
                                                   =  c_7()                                              
        
              nolexicord[Ite][False][Ite]#(False() =  [9] x' + [9] xs' + [8]                             
                                     ,Cons(x',xs')                                                       
                                     ,Cons(x',xs')                                                       
                                     ,Cons(x',xs')                                                       
                                     ,Cons(x',xs')                                                       
                                     ,Cons(x',xs')                                                       
                                      ,Cons(x,xs))                                                       
                                                   >= [9] xs' + [0]                                      
                                                   =  c_13(nolexicord#(xs'                               
                                                                      ,xs'                               
                                                                      ,xs'                               
                                                                      ,xs'                               
                                                                      ,xs'                               
                                                                      ,xs))                              
        
               nolexicord[Ite][False][Ite]#(True() =  [9] x' + [9] xs' + [7]                             
                                     ,Cons(x',xs')                                                       
                                     ,Cons(x',xs')                                                       
                                     ,Cons(x',xs')                                                       
                                     ,Cons(x',xs')                                                       
                                       ,Cons(x,xs)                                                       
                                    ,Cons(x',xs'))                                                       
                                                   >= [9] xs' + [1]                                      
                                                   =  c_14(nolexicord#(xs'                               
                                                                      ,xs'                               
                                                                      ,xs'                               
                                                                      ,xs'                               
                                                                      ,xs'                               
                                                                      ,xs))                              
        
                                       number42#() =  [0]                                                
                                                   >= [0]                                                
                                                   =  c_8()                                              
        
                                      !EQ(0(),0()) =  [1]                                                
                                                   >= [0]                                                
                                                   =  True()                                             
        
                                     !EQ(0(),S(y)) =  [1]                                                
                                                   >= [1]                                                
                                                   =  False()                                            
        
                                     !EQ(S(x),0()) =  [1]                                                
                                                   >= [1]                                                
                                                   =  False()                                            
        
                                    !EQ(S(x),S(y)) =  [1]                                                
                                                   >= [1]                                                
                                                   =  !EQ(x,y)                                           
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1 Progress [(?,O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        eqNatList#(Cons(x,xs),Cons(y,ys)) -> c_1(!EQ#(x,y))
        eqNatList#(Cons(x,xs),Nil()) -> c_2()
        goal#(a1,b1,a2,b2,a3,b3) -> c_5(nolexicord#(a1,b1,a2,b2,a3,b3))
        nolexicord#(Cons(x,xs),b1,a2,b2,a3,b3) -> c_6(nolexicord[Ite][False][Ite]#(eqNatList(Cons(x,xs),b1),Cons(x,xs),b1,a2,b2,a3,b3))
        nolexicord#(Nil(),b1,a2,b2,a3,b3) -> c_7()
        number42#() -> c_8()
      Strict TRS Rules:
        
      Weak DP Rules:
        !EQ#(0(),0()) -> c_9()
        !EQ#(0(),S(y)) -> c_10()
        !EQ#(S(x),0()) -> c_11()
        !EQ#(S(x),S(y)) -> c_12(!EQ#(x,y))
        eqNatList#(Nil(),Cons(y,ys)) -> c_3()
        eqNatList#(Nil(),Nil()) -> c_4()
        nolexicord[Ite][False][Ite]#(False(),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x,xs)) -> c_13(nolexicord#(xs',xs',xs',xs',xs',xs))
        nolexicord[Ite][False][Ite]#(True(),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x,xs),Cons(x',xs')) -> c_14(nolexicord#(xs',xs',xs',xs',xs',xs))
      Weak TRS Rules:
        !EQ(0(),0()) -> True()
        !EQ(0(),S(y)) -> False()
        !EQ(S(x),0()) -> False()
        !EQ(S(x),S(y)) -> !EQ(x,y)
        eqNatList(Cons(x,xs),Cons(y,ys)) -> eqNatList[Match][Cons][Match][Cons][Ite](!EQ(x,y),y,ys,x,xs)
        eqNatList(Cons(x,xs),Nil()) -> False()
      Signature:
        {!EQ/2,eqNatList/2,goal/6,nolexicord/6,nolexicord[Ite][False][Ite]/7,number42/0,!EQ#/2,eqNatList#/2,goal#/6,nolexicord#/6,nolexicord[Ite][False][Ite]#/7,number42#/0} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,eqNatList[Match][Cons][Match][Cons][Ite]/5,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/1,c_13/1,c_14/1}
      Obligation:
        Innermost
        basic terms: {!EQ#,eqNatList#,goal#,nolexicord#,nolexicord[Ite][False][Ite]#,number42#}/{0,Cons,False,Nil,S,True,eqNatList[Match][Cons][Match][Cons][Ite]}
    Applied Processor:
      PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    Proof:
      We estimate the number of application of
        {1,2,6}
      by application of
        Pre({1,2,6}) = {}.
      Here rules are labelled as follows:
        1:  eqNatList#(Cons(x,xs)                                
                      ,Cons(y,ys)) -> c_1(!EQ#(x,y))             
        2:  eqNatList#(Cons(x,xs),Nil()) ->                      
              c_2()                                              
        3:  goal#(a1,b1,a2,b2,a3,b3) ->                          
              c_5(nolexicord#(a1                                 
                             ,b1                                 
                             ,a2                                 
                             ,b2                                 
                             ,a3                                 
                             ,b3))                               
        4:  nolexicord#(Cons(x,xs)                               
                       ,b1                                       
                       ,a2                                       
                       ,b2                                       
                       ,a3                                       
                       ,b3) ->                                   
              c_6(nolexicord[Ite][False][Ite]#(eqNatList(Cons(x  
                                                             ,xs)
                                                        ,b1)     
                                              ,Cons(x,xs)        
                                              ,b1                
                                              ,a2                
                                              ,b2                
                                              ,a3                
                                              ,b3))              
        5:  nolexicord#(Nil()                                    
                       ,b1                                       
                       ,a2                                       
                       ,b2                                       
                       ,a3                                       
                       ,b3) -> c_7()                             
        6:  number42#() -> c_8()                                 
        7:  !EQ#(0(),0()) -> c_9()                               
        8:  !EQ#(0(),S(y)) -> c_10()                             
        9:  !EQ#(S(x),0()) -> c_11()                             
        10: !EQ#(S(x),S(y)) -> c_12(!EQ#(x                       
                                        ,y))                     
        11: eqNatList#(Nil(),Cons(y,ys)) ->                      
              c_3()                                              
        12: eqNatList#(Nil(),Nil()) -> c_4()                     
        13: nolexicord[Ite][False][Ite]#(False()                 
                                        ,Cons(x',xs')            
                                        ,Cons(x',xs')            
                                        ,Cons(x',xs')            
                                        ,Cons(x',xs')            
                                        ,Cons(x',xs')            
                                        ,Cons(x,xs)) ->          
              c_13(nolexicord#(xs'                               
                              ,xs'                               
                              ,xs'                               
                              ,xs'                               
                              ,xs'                               
                              ,xs))                              
        14: nolexicord[Ite][False][Ite]#(True()                  
                                        ,Cons(x',xs')            
                                        ,Cons(x',xs')            
                                        ,Cons(x',xs')            
                                        ,Cons(x',xs')            
                                        ,Cons(x,xs)              
                                        ,Cons(x',xs')) ->        
              c_14(nolexicord#(xs'                               
                              ,xs'                               
                              ,xs'                               
                              ,xs'                               
                              ,xs'                               
                              ,xs))                              
*** 1.1.1.1.1 Progress [(?,O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        goal#(a1,b1,a2,b2,a3,b3) -> c_5(nolexicord#(a1,b1,a2,b2,a3,b3))
        nolexicord#(Cons(x,xs),b1,a2,b2,a3,b3) -> c_6(nolexicord[Ite][False][Ite]#(eqNatList(Cons(x,xs),b1),Cons(x,xs),b1,a2,b2,a3,b3))
        nolexicord#(Nil(),b1,a2,b2,a3,b3) -> c_7()
      Strict TRS Rules:
        
      Weak DP Rules:
        !EQ#(0(),0()) -> c_9()
        !EQ#(0(),S(y)) -> c_10()
        !EQ#(S(x),0()) -> c_11()
        !EQ#(S(x),S(y)) -> c_12(!EQ#(x,y))
        eqNatList#(Cons(x,xs),Cons(y,ys)) -> c_1(!EQ#(x,y))
        eqNatList#(Cons(x,xs),Nil()) -> c_2()
        eqNatList#(Nil(),Cons(y,ys)) -> c_3()
        eqNatList#(Nil(),Nil()) -> c_4()
        nolexicord[Ite][False][Ite]#(False(),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x,xs)) -> c_13(nolexicord#(xs',xs',xs',xs',xs',xs))
        nolexicord[Ite][False][Ite]#(True(),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x,xs),Cons(x',xs')) -> c_14(nolexicord#(xs',xs',xs',xs',xs',xs))
        number42#() -> c_8()
      Weak TRS Rules:
        !EQ(0(),0()) -> True()
        !EQ(0(),S(y)) -> False()
        !EQ(S(x),0()) -> False()
        !EQ(S(x),S(y)) -> !EQ(x,y)
        eqNatList(Cons(x,xs),Cons(y,ys)) -> eqNatList[Match][Cons][Match][Cons][Ite](!EQ(x,y),y,ys,x,xs)
        eqNatList(Cons(x,xs),Nil()) -> False()
      Signature:
        {!EQ/2,eqNatList/2,goal/6,nolexicord/6,nolexicord[Ite][False][Ite]/7,number42/0,!EQ#/2,eqNatList#/2,goal#/6,nolexicord#/6,nolexicord[Ite][False][Ite]#/7,number42#/0} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,eqNatList[Match][Cons][Match][Cons][Ite]/5,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/1,c_13/1,c_14/1}
      Obligation:
        Innermost
        basic terms: {!EQ#,eqNatList#,goal#,nolexicord#,nolexicord[Ite][False][Ite]#,number42#}/{0,Cons,False,Nil,S,True,eqNatList[Match][Cons][Match][Cons][Ite]}
    Applied Processor:
      RemoveWeakSuffixes
    Proof:
      Consider the dependency graph
        1:S:goal#(a1,b1,a2,b2,a3,b3) -> c_5(nolexicord#(a1,b1,a2,b2,a3,b3))
           -->_1 nolexicord#(Cons(x,xs),b1,a2,b2,a3,b3) -> c_6(nolexicord[Ite][False][Ite]#(eqNatList(Cons(x,xs),b1),Cons(x,xs),b1,a2,b2,a3,b3)):2
           -->_1 nolexicord#(Nil(),b1,a2,b2,a3,b3) -> c_7():3
        
        2:S:nolexicord#(Cons(x,xs),b1,a2,b2,a3,b3) -> c_6(nolexicord[Ite][False][Ite]#(eqNatList(Cons(x,xs),b1),Cons(x,xs),b1,a2,b2,a3,b3))
           -->_1 nolexicord[Ite][False][Ite]#(True(),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x,xs),Cons(x',xs')) -> c_14(nolexicord#(xs',xs',xs',xs',xs',xs)):13
           -->_1 nolexicord[Ite][False][Ite]#(False(),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x,xs)) -> c_13(nolexicord#(xs',xs',xs',xs',xs',xs)):12
        
        3:S:nolexicord#(Nil(),b1,a2,b2,a3,b3) -> c_7()
           
        
        4:W:!EQ#(0(),0()) -> c_9()
           
        
        5:W:!EQ#(0(),S(y)) -> c_10()
           
        
        6:W:!EQ#(S(x),0()) -> c_11()
           
        
        7:W:!EQ#(S(x),S(y)) -> c_12(!EQ#(x,y))
           -->_1 !EQ#(S(x),S(y)) -> c_12(!EQ#(x,y)):7
           -->_1 !EQ#(S(x),0()) -> c_11():6
           -->_1 !EQ#(0(),S(y)) -> c_10():5
           -->_1 !EQ#(0(),0()) -> c_9():4
        
        8:W:eqNatList#(Cons(x,xs),Cons(y,ys)) -> c_1(!EQ#(x,y))
           -->_1 !EQ#(S(x),S(y)) -> c_12(!EQ#(x,y)):7
           -->_1 !EQ#(S(x),0()) -> c_11():6
           -->_1 !EQ#(0(),S(y)) -> c_10():5
           -->_1 !EQ#(0(),0()) -> c_9():4
        
        9:W:eqNatList#(Cons(x,xs),Nil()) -> c_2()
           
        
        10:W:eqNatList#(Nil(),Cons(y,ys)) -> c_3()
           
        
        11:W:eqNatList#(Nil(),Nil()) -> c_4()
           
        
        12:W:nolexicord[Ite][False][Ite]#(False(),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x,xs)) -> c_13(nolexicord#(xs',xs',xs',xs',xs',xs))
           -->_1 nolexicord#(Nil(),b1,a2,b2,a3,b3) -> c_7():3
           -->_1 nolexicord#(Cons(x,xs),b1,a2,b2,a3,b3) -> c_6(nolexicord[Ite][False][Ite]#(eqNatList(Cons(x,xs),b1),Cons(x,xs),b1,a2,b2,a3,b3)):2
        
        13:W:nolexicord[Ite][False][Ite]#(True(),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x,xs),Cons(x',xs')) -> c_14(nolexicord#(xs',xs',xs',xs',xs',xs))
           -->_1 nolexicord#(Nil(),b1,a2,b2,a3,b3) -> c_7():3
           -->_1 nolexicord#(Cons(x,xs),b1,a2,b2,a3,b3) -> c_6(nolexicord[Ite][False][Ite]#(eqNatList(Cons(x,xs),b1),Cons(x,xs),b1,a2,b2,a3,b3)):2
        
        14:W:number42#() -> c_8()
           
        
      The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
        14: number42#() -> c_8()                    
        11: eqNatList#(Nil(),Nil()) -> c_4()        
        10: eqNatList#(Nil(),Cons(y,ys)) ->         
              c_3()                                 
        9:  eqNatList#(Cons(x,xs),Nil()) ->         
              c_2()                                 
        8:  eqNatList#(Cons(x,xs)                   
                      ,Cons(y,ys)) -> c_1(!EQ#(x,y))
        7:  !EQ#(S(x),S(y)) -> c_12(!EQ#(x          
                                        ,y))        
        6:  !EQ#(S(x),0()) -> c_11()                
        5:  !EQ#(0(),S(y)) -> c_10()                
        4:  !EQ#(0(),0()) -> c_9()                  
*** 1.1.1.1.1.1 Progress [(?,O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        goal#(a1,b1,a2,b2,a3,b3) -> c_5(nolexicord#(a1,b1,a2,b2,a3,b3))
        nolexicord#(Cons(x,xs),b1,a2,b2,a3,b3) -> c_6(nolexicord[Ite][False][Ite]#(eqNatList(Cons(x,xs),b1),Cons(x,xs),b1,a2,b2,a3,b3))
        nolexicord#(Nil(),b1,a2,b2,a3,b3) -> c_7()
      Strict TRS Rules:
        
      Weak DP Rules:
        nolexicord[Ite][False][Ite]#(False(),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x,xs)) -> c_13(nolexicord#(xs',xs',xs',xs',xs',xs))
        nolexicord[Ite][False][Ite]#(True(),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x,xs),Cons(x',xs')) -> c_14(nolexicord#(xs',xs',xs',xs',xs',xs))
      Weak TRS Rules:
        !EQ(0(),0()) -> True()
        !EQ(0(),S(y)) -> False()
        !EQ(S(x),0()) -> False()
        !EQ(S(x),S(y)) -> !EQ(x,y)
        eqNatList(Cons(x,xs),Cons(y,ys)) -> eqNatList[Match][Cons][Match][Cons][Ite](!EQ(x,y),y,ys,x,xs)
        eqNatList(Cons(x,xs),Nil()) -> False()
      Signature:
        {!EQ/2,eqNatList/2,goal/6,nolexicord/6,nolexicord[Ite][False][Ite]/7,number42/0,!EQ#/2,eqNatList#/2,goal#/6,nolexicord#/6,nolexicord[Ite][False][Ite]#/7,number42#/0} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,eqNatList[Match][Cons][Match][Cons][Ite]/5,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/1,c_13/1,c_14/1}
      Obligation:
        Innermost
        basic terms: {!EQ#,eqNatList#,goal#,nolexicord#,nolexicord[Ite][False][Ite]#,number42#}/{0,Cons,False,Nil,S,True,eqNatList[Match][Cons][Match][Cons][Ite]}
    Applied Processor:
      RemoveHeads
    Proof:
      Consider the dependency graph
      
      1:S:goal#(a1,b1,a2,b2,a3,b3) -> c_5(nolexicord#(a1,b1,a2,b2,a3,b3))
         -->_1 nolexicord#(Cons(x,xs),b1,a2,b2,a3,b3) -> c_6(nolexicord[Ite][False][Ite]#(eqNatList(Cons(x,xs),b1),Cons(x,xs),b1,a2,b2,a3,b3)):2
         -->_1 nolexicord#(Nil(),b1,a2,b2,a3,b3) -> c_7():3
      
      2:S:nolexicord#(Cons(x,xs),b1,a2,b2,a3,b3) -> c_6(nolexicord[Ite][False][Ite]#(eqNatList(Cons(x,xs),b1),Cons(x,xs),b1,a2,b2,a3,b3))
         -->_1 nolexicord[Ite][False][Ite]#(True(),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x,xs),Cons(x',xs')) -> c_14(nolexicord#(xs',xs',xs',xs',xs',xs)):13
         -->_1 nolexicord[Ite][False][Ite]#(False(),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x,xs)) -> c_13(nolexicord#(xs',xs',xs',xs',xs',xs)):12
      
      3:S:nolexicord#(Nil(),b1,a2,b2,a3,b3) -> c_7()
         
      
      12:W:nolexicord[Ite][False][Ite]#(False(),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x,xs)) -> c_13(nolexicord#(xs',xs',xs',xs',xs',xs))
         -->_1 nolexicord#(Nil(),b1,a2,b2,a3,b3) -> c_7():3
         -->_1 nolexicord#(Cons(x,xs),b1,a2,b2,a3,b3) -> c_6(nolexicord[Ite][False][Ite]#(eqNatList(Cons(x,xs),b1),Cons(x,xs),b1,a2,b2,a3,b3)):2
      
      13:W:nolexicord[Ite][False][Ite]#(True(),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x,xs),Cons(x',xs')) -> c_14(nolexicord#(xs',xs',xs',xs',xs',xs))
         -->_1 nolexicord#(Nil(),b1,a2,b2,a3,b3) -> c_7():3
         -->_1 nolexicord#(Cons(x,xs),b1,a2,b2,a3,b3) -> c_6(nolexicord[Ite][False][Ite]#(eqNatList(Cons(x,xs),b1),Cons(x,xs),b1,a2,b2,a3,b3)):2
      
      
      Following roots of the dependency graph are removed, as the considered set of starting terms is closed under reduction with respect to these rules (modulo compound contexts).
      
      [(1,goal#(a1,b1,a2,b2,a3,b3) -> c_5(nolexicord#(a1,b1,a2,b2,a3,b3)))]
*** 1.1.1.1.1.1.1 Progress [(?,O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        nolexicord#(Cons(x,xs),b1,a2,b2,a3,b3) -> c_6(nolexicord[Ite][False][Ite]#(eqNatList(Cons(x,xs),b1),Cons(x,xs),b1,a2,b2,a3,b3))
        nolexicord#(Nil(),b1,a2,b2,a3,b3) -> c_7()
      Strict TRS Rules:
        
      Weak DP Rules:
        nolexicord[Ite][False][Ite]#(False(),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x,xs)) -> c_13(nolexicord#(xs',xs',xs',xs',xs',xs))
        nolexicord[Ite][False][Ite]#(True(),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x,xs),Cons(x',xs')) -> c_14(nolexicord#(xs',xs',xs',xs',xs',xs))
      Weak TRS Rules:
        !EQ(0(),0()) -> True()
        !EQ(0(),S(y)) -> False()
        !EQ(S(x),0()) -> False()
        !EQ(S(x),S(y)) -> !EQ(x,y)
        eqNatList(Cons(x,xs),Cons(y,ys)) -> eqNatList[Match][Cons][Match][Cons][Ite](!EQ(x,y),y,ys,x,xs)
        eqNatList(Cons(x,xs),Nil()) -> False()
      Signature:
        {!EQ/2,eqNatList/2,goal/6,nolexicord/6,nolexicord[Ite][False][Ite]/7,number42/0,!EQ#/2,eqNatList#/2,goal#/6,nolexicord#/6,nolexicord[Ite][False][Ite]#/7,number42#/0} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,eqNatList[Match][Cons][Match][Cons][Ite]/5,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/1,c_13/1,c_14/1}
      Obligation:
        Innermost
        basic terms: {!EQ#,eqNatList#,goal#,nolexicord#,nolexicord[Ite][False][Ite]#,number42#}/{0,Cons,False,Nil,S,True,eqNatList[Match][Cons][Match][Cons][Ite]}
    Applied Processor:
      PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
    Proof:
      We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
        2: nolexicord#(Cons(x,xs)                               
                      ,b1                                       
                      ,a2                                       
                      ,b2                                       
                      ,a3                                       
                      ,b3) ->                                   
             c_6(nolexicord[Ite][False][Ite]#(eqNatList(Cons(x  
                                                            ,xs)
                                                       ,b1)     
                                             ,Cons(x,xs)        
                                             ,b1                
                                             ,a2                
                                             ,b2                
                                             ,a3                
                                             ,b3))              
        3: nolexicord#(Nil()                                    
                      ,b1                                       
                      ,a2                                       
                      ,b2                                       
                      ,a3                                       
                      ,b3) -> c_7()                             
        
      Consider the set of all dependency pairs
        2:  nolexicord#(Cons(x,xs)                               
                       ,b1                                       
                       ,a2                                       
                       ,b2                                       
                       ,a3                                       
                       ,b3) ->                                   
              c_6(nolexicord[Ite][False][Ite]#(eqNatList(Cons(x  
                                                             ,xs)
                                                        ,b1)     
                                              ,Cons(x,xs)        
                                              ,b1                
                                              ,a2                
                                              ,b2                
                                              ,a3                
                                              ,b3))              
        3:  nolexicord#(Nil()                                    
                       ,b1                                       
                       ,a2                                       
                       ,b2                                       
                       ,a3                                       
                       ,b3) -> c_7()                             
        12: nolexicord[Ite][False][Ite]#(False()                 
                                        ,Cons(x',xs')            
                                        ,Cons(x',xs')            
                                        ,Cons(x',xs')            
                                        ,Cons(x',xs')            
                                        ,Cons(x',xs')            
                                        ,Cons(x,xs)) ->          
              c_13(nolexicord#(xs'                               
                              ,xs'                               
                              ,xs'                               
                              ,xs'                               
                              ,xs'                               
                              ,xs))                              
        13: nolexicord[Ite][False][Ite]#(True()                  
                                        ,Cons(x',xs')            
                                        ,Cons(x',xs')            
                                        ,Cons(x',xs')            
                                        ,Cons(x',xs')            
                                        ,Cons(x,xs)              
                                        ,Cons(x',xs')) ->        
              c_14(nolexicord#(xs'                               
                              ,xs'                               
                              ,xs'                               
                              ,xs'                               
                              ,xs'                               
                              ,xs))                              
      Processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}induces the complexity certificateTIME (?,O(n^1))
      SPACE(?,?)on application of the dependency pairs
        {2,3}
      These cover all (indirect) predecessors of dependency pairs
        {2,3,12,13}
      their number of applications is equally bounded.
      The dependency pairs are shifted into the weak component.
  *** 1.1.1.1.1.1.1.1 Progress [(?,O(n^1))]  ***
      Considered Problem:
        Strict DP Rules:
          nolexicord#(Cons(x,xs),b1,a2,b2,a3,b3) -> c_6(nolexicord[Ite][False][Ite]#(eqNatList(Cons(x,xs),b1),Cons(x,xs),b1,a2,b2,a3,b3))
          nolexicord#(Nil(),b1,a2,b2,a3,b3) -> c_7()
        Strict TRS Rules:
          
        Weak DP Rules:
          nolexicord[Ite][False][Ite]#(False(),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x,xs)) -> c_13(nolexicord#(xs',xs',xs',xs',xs',xs))
          nolexicord[Ite][False][Ite]#(True(),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x,xs),Cons(x',xs')) -> c_14(nolexicord#(xs',xs',xs',xs',xs',xs))
        Weak TRS Rules:
          !EQ(0(),0()) -> True()
          !EQ(0(),S(y)) -> False()
          !EQ(S(x),0()) -> False()
          !EQ(S(x),S(y)) -> !EQ(x,y)
          eqNatList(Cons(x,xs),Cons(y,ys)) -> eqNatList[Match][Cons][Match][Cons][Ite](!EQ(x,y),y,ys,x,xs)
          eqNatList(Cons(x,xs),Nil()) -> False()
        Signature:
          {!EQ/2,eqNatList/2,goal/6,nolexicord/6,nolexicord[Ite][False][Ite]/7,number42/0,!EQ#/2,eqNatList#/2,goal#/6,nolexicord#/6,nolexicord[Ite][False][Ite]#/7,number42#/0} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,eqNatList[Match][Cons][Match][Cons][Ite]/5,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/1,c_13/1,c_14/1}
        Obligation:
          Innermost
          basic terms: {!EQ#,eqNatList#,goal#,nolexicord#,nolexicord[Ite][False][Ite]#,number42#}/{0,Cons,False,Nil,S,True,eqNatList[Match][Cons][Match][Cons][Ite]}
      Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
      Proof:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_6) = {1},
          uargs(c_13) = {1},
          uargs(c_14) = {1}
        
        Following symbols are considered usable:
          {eqNatList,!EQ#,eqNatList#,goal#,nolexicord#,nolexicord[Ite][False][Ite]#,number42#}
        TcT has computed the following interpretation:
                                               p(!EQ) = [2] x1 + [2] x2 + [4]         
                                                 p(0) = [2]                           
                                              p(Cons) = [1] x2 + [2]                  
                                             p(False) = [1]                           
                                               p(Nil) = [0]                           
                                                 p(S) = [1] x1 + [1]                  
                                              p(True) = [6]                           
                                         p(eqNatList) = [4]                           
          p(eqNatList[Match][Cons][Match][Cons][Ite]) = [4]                           
                                              p(goal) = [2] x2 + [1] x5 + [1] x6 + [1]
                                        p(nolexicord) = [1] x6 + [1]                  
                       p(nolexicord[Ite][False][Ite]) = [1] x6 + [4]                  
                                          p(number42) = [1]                           
                                              p(!EQ#) = [4] x1 + [1]                  
                                        p(eqNatList#) = [1] x2 + [1]                  
                                             p(goal#) = [4] x4 + [4]                  
                                       p(nolexicord#) = [1] x2 + [1] x3 + [7]         
                      p(nolexicord[Ite][False][Ite]#) = [1] x1 + [1] x3 + [1] x4 + [2]
                                         p(number42#) = [0]                           
                                               p(c_1) = [1]                           
                                               p(c_2) = [0]                           
                                               p(c_3) = [0]                           
                                               p(c_4) = [2]                           
                                               p(c_5) = [1]                           
                                               p(c_6) = [1] x1 + [0]                  
                                               p(c_7) = [1]                           
                                               p(c_8) = [1]                           
                                               p(c_9) = [2]                           
                                              p(c_10) = [1]                           
                                              p(c_11) = [4]                           
                                              p(c_12) = [2]                           
                                              p(c_13) = [1] x1 + [0]                  
                                              p(c_14) = [1] x1 + [5]                  
        
        Following rules are strictly oriented:
        nolexicord#(Cons(x,xs) = [1] a2 + [1] b1 + [7]                              
                           ,b1                                                      
                           ,a2                                                      
                           ,b2                                                      
                           ,a3                                                      
                          ,b3)                                                      
                               > [1] a2 + [1] b1 + [6]                              
                               = c_6(nolexicord[Ite][False][Ite]#(eqNatList(Cons(x  
                                                                                ,xs)
                                                                           ,b1)     
                                                                 ,Cons(x,xs)        
                                                                 ,b1                
                                                                 ,a2                
                                                                 ,b2                
                                                                 ,a3                
                                                                 ,b3))              
        
             nolexicord#(Nil() = [1] a2 + [1] b1 + [7]                              
                           ,b1                                                      
                           ,a2                                                      
                           ,b2                                                      
                           ,a3                                                      
                          ,b3)                                                      
                               > [1]                                                
                               = c_7()                                              
        
        
        Following rules are (at-least) weakly oriented:
              nolexicord[Ite][False][Ite]#(False() =  [2] xs' + [7]                                  
                                     ,Cons(x',xs')                                                   
                                     ,Cons(x',xs')                                                   
                                     ,Cons(x',xs')                                                   
                                     ,Cons(x',xs')                                                   
                                     ,Cons(x',xs')                                                   
                                      ,Cons(x,xs))                                                   
                                                   >= [2] xs' + [7]                                  
                                                   =  c_13(nolexicord#(xs'                           
                                                                      ,xs'                           
                                                                      ,xs'                           
                                                                      ,xs'                           
                                                                      ,xs'                           
                                                                      ,xs))                          
        
               nolexicord[Ite][False][Ite]#(True() =  [2] xs' + [12]                                 
                                     ,Cons(x',xs')                                                   
                                     ,Cons(x',xs')                                                   
                                     ,Cons(x',xs')                                                   
                                     ,Cons(x',xs')                                                   
                                       ,Cons(x,xs)                                                   
                                    ,Cons(x',xs'))                                                   
                                                   >= [2] xs' + [12]                                 
                                                   =  c_14(nolexicord#(xs'                           
                                                                      ,xs'                           
                                                                      ,xs'                           
                                                                      ,xs'                           
                                                                      ,xs'                           
                                                                      ,xs))                          
        
                  eqNatList(Cons(x,xs),Cons(y,ys)) =  [4]                                            
                                                   >= [4]                                            
                                                   =  eqNatList[Match][Cons][Match][Cons][Ite](!EQ(x 
                                                                                                  ,y)
                                                                                              ,y     
                                                                                              ,ys    
                                                                                              ,x     
                                                                                              ,xs)   
        
                       eqNatList(Cons(x,xs),Nil()) =  [4]                                            
                                                   >= [1]                                            
                                                   =  False()                                        
        
  *** 1.1.1.1.1.1.1.1.1 Progress [(?,O(1))]  ***
      Considered Problem:
        Strict DP Rules:
          
        Strict TRS Rules:
          
        Weak DP Rules:
          nolexicord#(Cons(x,xs),b1,a2,b2,a3,b3) -> c_6(nolexicord[Ite][False][Ite]#(eqNatList(Cons(x,xs),b1),Cons(x,xs),b1,a2,b2,a3,b3))
          nolexicord#(Nil(),b1,a2,b2,a3,b3) -> c_7()
          nolexicord[Ite][False][Ite]#(False(),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x,xs)) -> c_13(nolexicord#(xs',xs',xs',xs',xs',xs))
          nolexicord[Ite][False][Ite]#(True(),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x,xs),Cons(x',xs')) -> c_14(nolexicord#(xs',xs',xs',xs',xs',xs))
        Weak TRS Rules:
          !EQ(0(),0()) -> True()
          !EQ(0(),S(y)) -> False()
          !EQ(S(x),0()) -> False()
          !EQ(S(x),S(y)) -> !EQ(x,y)
          eqNatList(Cons(x,xs),Cons(y,ys)) -> eqNatList[Match][Cons][Match][Cons][Ite](!EQ(x,y),y,ys,x,xs)
          eqNatList(Cons(x,xs),Nil()) -> False()
        Signature:
          {!EQ/2,eqNatList/2,goal/6,nolexicord/6,nolexicord[Ite][False][Ite]/7,number42/0,!EQ#/2,eqNatList#/2,goal#/6,nolexicord#/6,nolexicord[Ite][False][Ite]#/7,number42#/0} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,eqNatList[Match][Cons][Match][Cons][Ite]/5,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/1,c_13/1,c_14/1}
        Obligation:
          Innermost
          basic terms: {!EQ#,eqNatList#,goal#,nolexicord#,nolexicord[Ite][False][Ite]#,number42#}/{0,Cons,False,Nil,S,True,eqNatList[Match][Cons][Match][Cons][Ite]}
      Applied Processor:
        Assumption
      Proof:
        ()
  
  *** 1.1.1.1.1.1.1.2 Progress [(O(1),O(1))]  ***
      Considered Problem:
        Strict DP Rules:
          
        Strict TRS Rules:
          
        Weak DP Rules:
          nolexicord#(Cons(x,xs),b1,a2,b2,a3,b3) -> c_6(nolexicord[Ite][False][Ite]#(eqNatList(Cons(x,xs),b1),Cons(x,xs),b1,a2,b2,a3,b3))
          nolexicord#(Nil(),b1,a2,b2,a3,b3) -> c_7()
          nolexicord[Ite][False][Ite]#(False(),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x,xs)) -> c_13(nolexicord#(xs',xs',xs',xs',xs',xs))
          nolexicord[Ite][False][Ite]#(True(),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x,xs),Cons(x',xs')) -> c_14(nolexicord#(xs',xs',xs',xs',xs',xs))
        Weak TRS Rules:
          !EQ(0(),0()) -> True()
          !EQ(0(),S(y)) -> False()
          !EQ(S(x),0()) -> False()
          !EQ(S(x),S(y)) -> !EQ(x,y)
          eqNatList(Cons(x,xs),Cons(y,ys)) -> eqNatList[Match][Cons][Match][Cons][Ite](!EQ(x,y),y,ys,x,xs)
          eqNatList(Cons(x,xs),Nil()) -> False()
        Signature:
          {!EQ/2,eqNatList/2,goal/6,nolexicord/6,nolexicord[Ite][False][Ite]/7,number42/0,!EQ#/2,eqNatList#/2,goal#/6,nolexicord#/6,nolexicord[Ite][False][Ite]#/7,number42#/0} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,eqNatList[Match][Cons][Match][Cons][Ite]/5,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/1,c_13/1,c_14/1}
        Obligation:
          Innermost
          basic terms: {!EQ#,eqNatList#,goal#,nolexicord#,nolexicord[Ite][False][Ite]#,number42#}/{0,Cons,False,Nil,S,True,eqNatList[Match][Cons][Match][Cons][Ite]}
      Applied Processor:
        RemoveWeakSuffixes
      Proof:
        Consider the dependency graph
          1:W:nolexicord#(Cons(x,xs),b1,a2,b2,a3,b3) -> c_6(nolexicord[Ite][False][Ite]#(eqNatList(Cons(x,xs),b1),Cons(x,xs),b1,a2,b2,a3,b3))
             -->_1 nolexicord[Ite][False][Ite]#(True(),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x,xs),Cons(x',xs')) -> c_14(nolexicord#(xs',xs',xs',xs',xs',xs)):4
             -->_1 nolexicord[Ite][False][Ite]#(False(),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x,xs)) -> c_13(nolexicord#(xs',xs',xs',xs',xs',xs)):3
          
          2:W:nolexicord#(Nil(),b1,a2,b2,a3,b3) -> c_7()
             
          
          3:W:nolexicord[Ite][False][Ite]#(False(),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x,xs)) -> c_13(nolexicord#(xs',xs',xs',xs',xs',xs))
             -->_1 nolexicord#(Nil(),b1,a2,b2,a3,b3) -> c_7():2
             -->_1 nolexicord#(Cons(x,xs),b1,a2,b2,a3,b3) -> c_6(nolexicord[Ite][False][Ite]#(eqNatList(Cons(x,xs),b1),Cons(x,xs),b1,a2,b2,a3,b3)):1
          
          4:W:nolexicord[Ite][False][Ite]#(True(),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x,xs),Cons(x',xs')) -> c_14(nolexicord#(xs',xs',xs',xs',xs',xs))
             -->_1 nolexicord#(Nil(),b1,a2,b2,a3,b3) -> c_7():2
             -->_1 nolexicord#(Cons(x,xs),b1,a2,b2,a3,b3) -> c_6(nolexicord[Ite][False][Ite]#(eqNatList(Cons(x,xs),b1),Cons(x,xs),b1,a2,b2,a3,b3)):1
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          1: nolexicord#(Cons(x,xs)                               
                        ,b1                                       
                        ,a2                                       
                        ,b2                                       
                        ,a3                                       
                        ,b3) ->                                   
               c_6(nolexicord[Ite][False][Ite]#(eqNatList(Cons(x  
                                                              ,xs)
                                                         ,b1)     
                                               ,Cons(x,xs)        
                                               ,b1                
                                               ,a2                
                                               ,b2                
                                               ,a3                
                                               ,b3))              
          4: nolexicord[Ite][False][Ite]#(True()                  
                                         ,Cons(x',xs')            
                                         ,Cons(x',xs')            
                                         ,Cons(x',xs')            
                                         ,Cons(x',xs')            
                                         ,Cons(x,xs)              
                                         ,Cons(x',xs')) ->        
               c_14(nolexicord#(xs'                               
                               ,xs'                               
                               ,xs'                               
                               ,xs'                               
                               ,xs'                               
                               ,xs))                              
          3: nolexicord[Ite][False][Ite]#(False()                 
                                         ,Cons(x',xs')            
                                         ,Cons(x',xs')            
                                         ,Cons(x',xs')            
                                         ,Cons(x',xs')            
                                         ,Cons(x',xs')            
                                         ,Cons(x,xs)) ->          
               c_13(nolexicord#(xs'                               
                               ,xs'                               
                               ,xs'                               
                               ,xs'                               
                               ,xs'                               
                               ,xs))                              
          2: nolexicord#(Nil()                                    
                        ,b1                                       
                        ,a2                                       
                        ,b2                                       
                        ,a3                                       
                        ,b3) -> c_7()                             
  *** 1.1.1.1.1.1.1.2.1 Progress [(O(1),O(1))]  ***
      Considered Problem:
        Strict DP Rules:
          
        Strict TRS Rules:
          
        Weak DP Rules:
          
        Weak TRS Rules:
          !EQ(0(),0()) -> True()
          !EQ(0(),S(y)) -> False()
          !EQ(S(x),0()) -> False()
          !EQ(S(x),S(y)) -> !EQ(x,y)
          eqNatList(Cons(x,xs),Cons(y,ys)) -> eqNatList[Match][Cons][Match][Cons][Ite](!EQ(x,y),y,ys,x,xs)
          eqNatList(Cons(x,xs),Nil()) -> False()
        Signature:
          {!EQ/2,eqNatList/2,goal/6,nolexicord/6,nolexicord[Ite][False][Ite]/7,number42/0,!EQ#/2,eqNatList#/2,goal#/6,nolexicord#/6,nolexicord[Ite][False][Ite]#/7,number42#/0} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,eqNatList[Match][Cons][Match][Cons][Ite]/5,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/1,c_13/1,c_14/1}
        Obligation:
          Innermost
          basic terms: {!EQ#,eqNatList#,goal#,nolexicord#,nolexicord[Ite][False][Ite]#,number42#}/{0,Cons,False,Nil,S,True,eqNatList[Match][Cons][Match][Cons][Ite]}
      Applied Processor:
        EmptyProcessor
      Proof:
        The problem is already closed. The intended complexity is O(1).