*** 1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: eqNatList(Cons(x,xs),Cons(y,ys)) -> eqNatList[Match][Cons][Match][Cons][Ite](!EQ(x,y),y,ys,x,xs) eqNatList(Cons(x,xs),Nil()) -> False() eqNatList(Nil(),Cons(y,ys)) -> False() eqNatList(Nil(),Nil()) -> True() goal(a1,b1,a2,b2,a3,b3) -> nolexicord(a1,b1,a2,b2,a3,b3) nolexicord(Cons(x,xs),b1,a2,b2,a3,b3) -> nolexicord[Ite][False][Ite](eqNatList(Cons(x,xs),b1),Cons(x,xs),b1,a2,b2,a3,b3) nolexicord(Nil(),b1,a2,b2,a3,b3) -> Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil())))))))))))))))))))))))))))))))))))))))))) number42() -> Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil())))))))))))))))))))))))))))))))))))))))))) Weak DP Rules: Weak TRS Rules: !EQ(0(),0()) -> True() !EQ(0(),S(y)) -> False() !EQ(S(x),0()) -> False() !EQ(S(x),S(y)) -> !EQ(x,y) nolexicord[Ite][False][Ite](False(),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x,xs)) -> nolexicord(xs',xs',xs',xs',xs',xs) nolexicord[Ite][False][Ite](True(),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x,xs),Cons(x',xs')) -> nolexicord(xs',xs',xs',xs',xs',xs) Signature: {!EQ/2,eqNatList/2,goal/6,nolexicord/6,nolexicord[Ite][False][Ite]/7,number42/0} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,eqNatList[Match][Cons][Match][Cons][Ite]/5} Obligation: Innermost basic terms: {!EQ,eqNatList,goal,nolexicord,nolexicord[Ite][False][Ite],number42}/{0,Cons,False,Nil,S,True,eqNatList[Match][Cons][Match][Cons][Ite]} Applied Processor: DependencyPairs {dpKind_ = WIDP} Proof: We add the following weak innermost dependency pairs: Strict DPs eqNatList#(Cons(x,xs),Cons(y,ys)) -> c_1(!EQ#(x,y)) eqNatList#(Cons(x,xs),Nil()) -> c_2() eqNatList#(Nil(),Cons(y,ys)) -> c_3() eqNatList#(Nil(),Nil()) -> c_4() goal#(a1,b1,a2,b2,a3,b3) -> c_5(nolexicord#(a1,b1,a2,b2,a3,b3)) nolexicord#(Cons(x,xs),b1,a2,b2,a3,b3) -> c_6(nolexicord[Ite][False][Ite]#(eqNatList(Cons(x,xs),b1),Cons(x,xs),b1,a2,b2,a3,b3)) nolexicord#(Nil(),b1,a2,b2,a3,b3) -> c_7() number42#() -> c_8() Weak DPs !EQ#(0(),0()) -> c_9() !EQ#(0(),S(y)) -> c_10() !EQ#(S(x),0()) -> c_11() !EQ#(S(x),S(y)) -> c_12(!EQ#(x,y)) nolexicord[Ite][False][Ite]#(False(),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x,xs)) -> c_13(nolexicord#(xs',xs',xs',xs',xs',xs)) nolexicord[Ite][False][Ite]#(True(),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x,xs),Cons(x',xs')) -> c_14(nolexicord#(xs',xs',xs',xs',xs',xs)) and mark the set of starting terms. *** 1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: eqNatList#(Cons(x,xs),Cons(y,ys)) -> c_1(!EQ#(x,y)) eqNatList#(Cons(x,xs),Nil()) -> c_2() eqNatList#(Nil(),Cons(y,ys)) -> c_3() eqNatList#(Nil(),Nil()) -> c_4() goal#(a1,b1,a2,b2,a3,b3) -> c_5(nolexicord#(a1,b1,a2,b2,a3,b3)) nolexicord#(Cons(x,xs),b1,a2,b2,a3,b3) -> c_6(nolexicord[Ite][False][Ite]#(eqNatList(Cons(x,xs),b1),Cons(x,xs),b1,a2,b2,a3,b3)) nolexicord#(Nil(),b1,a2,b2,a3,b3) -> c_7() number42#() -> c_8() Strict TRS Rules: eqNatList(Cons(x,xs),Cons(y,ys)) -> eqNatList[Match][Cons][Match][Cons][Ite](!EQ(x,y),y,ys,x,xs) eqNatList(Cons(x,xs),Nil()) -> False() eqNatList(Nil(),Cons(y,ys)) -> False() eqNatList(Nil(),Nil()) -> True() goal(a1,b1,a2,b2,a3,b3) -> nolexicord(a1,b1,a2,b2,a3,b3) nolexicord(Cons(x,xs),b1,a2,b2,a3,b3) -> nolexicord[Ite][False][Ite](eqNatList(Cons(x,xs),b1),Cons(x,xs),b1,a2,b2,a3,b3) nolexicord(Nil(),b1,a2,b2,a3,b3) -> Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil())))))))))))))))))))))))))))))))))))))))))) number42() -> Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil())))))))))))))))))))))))))))))))))))))))))) Weak DP Rules: !EQ#(0(),0()) -> c_9() !EQ#(0(),S(y)) -> c_10() !EQ#(S(x),0()) -> c_11() !EQ#(S(x),S(y)) -> c_12(!EQ#(x,y)) nolexicord[Ite][False][Ite]#(False(),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x,xs)) -> c_13(nolexicord#(xs',xs',xs',xs',xs',xs)) nolexicord[Ite][False][Ite]#(True(),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x,xs),Cons(x',xs')) -> c_14(nolexicord#(xs',xs',xs',xs',xs',xs)) Weak TRS Rules: !EQ(0(),0()) -> True() !EQ(0(),S(y)) -> False() !EQ(S(x),0()) -> False() !EQ(S(x),S(y)) -> !EQ(x,y) nolexicord[Ite][False][Ite](False(),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x,xs)) -> nolexicord(xs',xs',xs',xs',xs',xs) nolexicord[Ite][False][Ite](True(),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x,xs),Cons(x',xs')) -> nolexicord(xs',xs',xs',xs',xs',xs) Signature: {!EQ/2,eqNatList/2,goal/6,nolexicord/6,nolexicord[Ite][False][Ite]/7,number42/0,!EQ#/2,eqNatList#/2,goal#/6,nolexicord#/6,nolexicord[Ite][False][Ite]#/7,number42#/0} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,eqNatList[Match][Cons][Match][Cons][Ite]/5,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/1,c_13/1,c_14/1} Obligation: Innermost basic terms: {!EQ#,eqNatList#,goal#,nolexicord#,nolexicord[Ite][False][Ite]#,number42#}/{0,Cons,False,Nil,S,True,eqNatList[Match][Cons][Match][Cons][Ite]} Applied Processor: UsableRules Proof: We replace rewrite rules by usable rules: !EQ(0(),0()) -> True() !EQ(0(),S(y)) -> False() !EQ(S(x),0()) -> False() !EQ(S(x),S(y)) -> !EQ(x,y) eqNatList(Cons(x,xs),Cons(y,ys)) -> eqNatList[Match][Cons][Match][Cons][Ite](!EQ(x,y),y,ys,x,xs) eqNatList(Cons(x,xs),Nil()) -> False() !EQ#(0(),0()) -> c_9() !EQ#(0(),S(y)) -> c_10() !EQ#(S(x),0()) -> c_11() !EQ#(S(x),S(y)) -> c_12(!EQ#(x,y)) eqNatList#(Cons(x,xs),Cons(y,ys)) -> c_1(!EQ#(x,y)) eqNatList#(Cons(x,xs),Nil()) -> c_2() eqNatList#(Nil(),Cons(y,ys)) -> c_3() eqNatList#(Nil(),Nil()) -> c_4() goal#(a1,b1,a2,b2,a3,b3) -> c_5(nolexicord#(a1,b1,a2,b2,a3,b3)) nolexicord#(Cons(x,xs),b1,a2,b2,a3,b3) -> c_6(nolexicord[Ite][False][Ite]#(eqNatList(Cons(x,xs),b1),Cons(x,xs),b1,a2,b2,a3,b3)) nolexicord#(Nil(),b1,a2,b2,a3,b3) -> c_7() nolexicord[Ite][False][Ite]#(False(),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x,xs)) -> c_13(nolexicord#(xs',xs',xs',xs',xs',xs)) nolexicord[Ite][False][Ite]#(True(),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x,xs),Cons(x',xs')) -> c_14(nolexicord#(xs',xs',xs',xs',xs',xs)) number42#() -> c_8() *** 1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: eqNatList#(Cons(x,xs),Cons(y,ys)) -> c_1(!EQ#(x,y)) eqNatList#(Cons(x,xs),Nil()) -> c_2() eqNatList#(Nil(),Cons(y,ys)) -> c_3() eqNatList#(Nil(),Nil()) -> c_4() goal#(a1,b1,a2,b2,a3,b3) -> c_5(nolexicord#(a1,b1,a2,b2,a3,b3)) nolexicord#(Cons(x,xs),b1,a2,b2,a3,b3) -> c_6(nolexicord[Ite][False][Ite]#(eqNatList(Cons(x,xs),b1),Cons(x,xs),b1,a2,b2,a3,b3)) nolexicord#(Nil(),b1,a2,b2,a3,b3) -> c_7() number42#() -> c_8() Strict TRS Rules: eqNatList(Cons(x,xs),Cons(y,ys)) -> eqNatList[Match][Cons][Match][Cons][Ite](!EQ(x,y),y,ys,x,xs) eqNatList(Cons(x,xs),Nil()) -> False() Weak DP Rules: !EQ#(0(),0()) -> c_9() !EQ#(0(),S(y)) -> c_10() !EQ#(S(x),0()) -> c_11() !EQ#(S(x),S(y)) -> c_12(!EQ#(x,y)) nolexicord[Ite][False][Ite]#(False(),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x,xs)) -> c_13(nolexicord#(xs',xs',xs',xs',xs',xs)) nolexicord[Ite][False][Ite]#(True(),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x,xs),Cons(x',xs')) -> c_14(nolexicord#(xs',xs',xs',xs',xs',xs)) Weak TRS Rules: !EQ(0(),0()) -> True() !EQ(0(),S(y)) -> False() !EQ(S(x),0()) -> False() !EQ(S(x),S(y)) -> !EQ(x,y) Signature: {!EQ/2,eqNatList/2,goal/6,nolexicord/6,nolexicord[Ite][False][Ite]/7,number42/0,!EQ#/2,eqNatList#/2,goal#/6,nolexicord#/6,nolexicord[Ite][False][Ite]#/7,number42#/0} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,eqNatList[Match][Cons][Match][Cons][Ite]/5,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/1,c_13/1,c_14/1} Obligation: Innermost basic terms: {!EQ#,eqNatList#,goal#,nolexicord#,nolexicord[Ite][False][Ite]#,number42#}/{0,Cons,False,Nil,S,True,eqNatList[Match][Cons][Match][Cons][Ite]} Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnTrs} Proof: The weightgap principle applies using the following constant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(eqNatList[Match][Cons][Match][Cons][Ite]) = {1}, uargs(nolexicord[Ite][False][Ite]#) = {1}, uargs(c_1) = {1}, uargs(c_5) = {1}, uargs(c_6) = {1}, uargs(c_12) = {1}, uargs(c_13) = {1}, uargs(c_14) = {1} Following symbols are considered usable: {} TcT has computed the following interpretation: p(!EQ) = [1] p(0) = [0] p(Cons) = [1] x1 + [1] x2 + [0] p(False) = [1] p(Nil) = [2] p(S) = [1] x1 + [0] p(True) = [0] p(eqNatList) = [2] p(eqNatList[Match][Cons][Match][Cons][Ite]) = [1] x1 + [0] p(goal) = [1] x2 + [2] x3 + [1] x5 + [0] p(nolexicord) = [1] x2 + [1] x4 + [0] p(nolexicord[Ite][False][Ite]) = [2] x1 + [2] x3 + [1] x4 + [1] x5 + [0] p(number42) = [0] p(!EQ#) = [0] p(eqNatList#) = [6] x1 + [0] p(goal#) = [4] x1 + [5] x2 + [4] x3 + [1] x5 + [5] x6 + [0] p(nolexicord#) = [5] x2 + [4] x3 + [0] p(nolexicord[Ite][False][Ite]#) = [1] x1 + [5] x3 + [4] x4 + [7] p(number42#) = [0] p(c_1) = [1] x1 + [1] p(c_2) = [2] p(c_3) = [4] p(c_4) = [1] p(c_5) = [1] x1 + [1] p(c_6) = [1] x1 + [3] p(c_7) = [1] p(c_8) = [0] p(c_9) = [0] p(c_10) = [0] p(c_11) = [0] p(c_12) = [1] x1 + [0] p(c_13) = [1] x1 + [0] p(c_14) = [1] x1 + [1] Following rules are strictly oriented: eqNatList#(Nil(),Cons(y,ys)) = [12] > [4] = c_3() eqNatList#(Nil(),Nil()) = [12] > [1] = c_4() eqNatList(Cons(x,xs),Cons(y,ys)) = [2] > [1] = eqNatList[Match][Cons][Match][Cons][Ite](!EQ(x ,y) ,y ,ys ,x ,xs) eqNatList(Cons(x,xs),Nil()) = [2] > [1] = False() Following rules are (at-least) weakly oriented: !EQ#(0(),0()) = [0] >= [0] = c_9() !EQ#(0(),S(y)) = [0] >= [0] = c_10() !EQ#(S(x),0()) = [0] >= [0] = c_11() !EQ#(S(x),S(y)) = [0] >= [0] = c_12(!EQ#(x,y)) eqNatList#(Cons(x,xs) = [6] x + [6] xs + [0] ,Cons(y,ys)) >= [1] = c_1(!EQ#(x,y)) eqNatList#(Cons(x,xs),Nil()) = [6] x + [6] xs + [0] >= [2] = c_2() goal#(a1,b1,a2,b2,a3,b3) = [4] a1 + [4] a2 + [1] a3 + [5] b1 + [5] b3 + [0] >= [4] a2 + [5] b1 + [1] = c_5(nolexicord#(a1 ,b1 ,a2 ,b2 ,a3 ,b3)) nolexicord#(Cons(x,xs) = [4] a2 + [5] b1 + [0] ,b1 ,a2 ,b2 ,a3 ,b3) >= [4] a2 + [5] b1 + [12] = c_6(nolexicord[Ite][False][Ite]#(eqNatList(Cons(x ,xs) ,b1) ,Cons(x,xs) ,b1 ,a2 ,b2 ,a3 ,b3)) nolexicord#(Nil() = [4] a2 + [5] b1 + [0] ,b1 ,a2 ,b2 ,a3 ,b3) >= [1] = c_7() nolexicord[Ite][False][Ite]#(False() = [9] x' + [9] xs' + [8] ,Cons(x',xs') ,Cons(x',xs') ,Cons(x',xs') ,Cons(x',xs') ,Cons(x',xs') ,Cons(x,xs)) >= [9] xs' + [0] = c_13(nolexicord#(xs' ,xs' ,xs' ,xs' ,xs' ,xs)) nolexicord[Ite][False][Ite]#(True() = [9] x' + [9] xs' + [7] ,Cons(x',xs') ,Cons(x',xs') ,Cons(x',xs') ,Cons(x',xs') ,Cons(x,xs) ,Cons(x',xs')) >= [9] xs' + [1] = c_14(nolexicord#(xs' ,xs' ,xs' ,xs' ,xs' ,xs)) number42#() = [0] >= [0] = c_8() !EQ(0(),0()) = [1] >= [0] = True() !EQ(0(),S(y)) = [1] >= [1] = False() !EQ(S(x),0()) = [1] >= [1] = False() !EQ(S(x),S(y)) = [1] >= [1] = !EQ(x,y) Further, it can be verified that all rules not oriented are covered by the weightgap condition. *** 1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: eqNatList#(Cons(x,xs),Cons(y,ys)) -> c_1(!EQ#(x,y)) eqNatList#(Cons(x,xs),Nil()) -> c_2() goal#(a1,b1,a2,b2,a3,b3) -> c_5(nolexicord#(a1,b1,a2,b2,a3,b3)) nolexicord#(Cons(x,xs),b1,a2,b2,a3,b3) -> c_6(nolexicord[Ite][False][Ite]#(eqNatList(Cons(x,xs),b1),Cons(x,xs),b1,a2,b2,a3,b3)) nolexicord#(Nil(),b1,a2,b2,a3,b3) -> c_7() number42#() -> c_8() Strict TRS Rules: Weak DP Rules: !EQ#(0(),0()) -> c_9() !EQ#(0(),S(y)) -> c_10() !EQ#(S(x),0()) -> c_11() !EQ#(S(x),S(y)) -> c_12(!EQ#(x,y)) eqNatList#(Nil(),Cons(y,ys)) -> c_3() eqNatList#(Nil(),Nil()) -> c_4() nolexicord[Ite][False][Ite]#(False(),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x,xs)) -> c_13(nolexicord#(xs',xs',xs',xs',xs',xs)) nolexicord[Ite][False][Ite]#(True(),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x,xs),Cons(x',xs')) -> c_14(nolexicord#(xs',xs',xs',xs',xs',xs)) Weak TRS Rules: !EQ(0(),0()) -> True() !EQ(0(),S(y)) -> False() !EQ(S(x),0()) -> False() !EQ(S(x),S(y)) -> !EQ(x,y) eqNatList(Cons(x,xs),Cons(y,ys)) -> eqNatList[Match][Cons][Match][Cons][Ite](!EQ(x,y),y,ys,x,xs) eqNatList(Cons(x,xs),Nil()) -> False() Signature: {!EQ/2,eqNatList/2,goal/6,nolexicord/6,nolexicord[Ite][False][Ite]/7,number42/0,!EQ#/2,eqNatList#/2,goal#/6,nolexicord#/6,nolexicord[Ite][False][Ite]#/7,number42#/0} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,eqNatList[Match][Cons][Match][Cons][Ite]/5,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/1,c_13/1,c_14/1} Obligation: Innermost basic terms: {!EQ#,eqNatList#,goal#,nolexicord#,nolexicord[Ite][False][Ite]#,number42#}/{0,Cons,False,Nil,S,True,eqNatList[Match][Cons][Match][Cons][Ite]} Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} Proof: We estimate the number of application of {1,2,6} by application of Pre({1,2,6}) = {}. Here rules are labelled as follows: 1: eqNatList#(Cons(x,xs) ,Cons(y,ys)) -> c_1(!EQ#(x,y)) 2: eqNatList#(Cons(x,xs),Nil()) -> c_2() 3: goal#(a1,b1,a2,b2,a3,b3) -> c_5(nolexicord#(a1 ,b1 ,a2 ,b2 ,a3 ,b3)) 4: nolexicord#(Cons(x,xs) ,b1 ,a2 ,b2 ,a3 ,b3) -> c_6(nolexicord[Ite][False][Ite]#(eqNatList(Cons(x ,xs) ,b1) ,Cons(x,xs) ,b1 ,a2 ,b2 ,a3 ,b3)) 5: nolexicord#(Nil() ,b1 ,a2 ,b2 ,a3 ,b3) -> c_7() 6: number42#() -> c_8() 7: !EQ#(0(),0()) -> c_9() 8: !EQ#(0(),S(y)) -> c_10() 9: !EQ#(S(x),0()) -> c_11() 10: !EQ#(S(x),S(y)) -> c_12(!EQ#(x ,y)) 11: eqNatList#(Nil(),Cons(y,ys)) -> c_3() 12: eqNatList#(Nil(),Nil()) -> c_4() 13: nolexicord[Ite][False][Ite]#(False() ,Cons(x',xs') ,Cons(x',xs') ,Cons(x',xs') ,Cons(x',xs') ,Cons(x',xs') ,Cons(x,xs)) -> c_13(nolexicord#(xs' ,xs' ,xs' ,xs' ,xs' ,xs)) 14: nolexicord[Ite][False][Ite]#(True() ,Cons(x',xs') ,Cons(x',xs') ,Cons(x',xs') ,Cons(x',xs') ,Cons(x,xs) ,Cons(x',xs')) -> c_14(nolexicord#(xs' ,xs' ,xs' ,xs' ,xs' ,xs)) *** 1.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: goal#(a1,b1,a2,b2,a3,b3) -> c_5(nolexicord#(a1,b1,a2,b2,a3,b3)) nolexicord#(Cons(x,xs),b1,a2,b2,a3,b3) -> c_6(nolexicord[Ite][False][Ite]#(eqNatList(Cons(x,xs),b1),Cons(x,xs),b1,a2,b2,a3,b3)) nolexicord#(Nil(),b1,a2,b2,a3,b3) -> c_7() Strict TRS Rules: Weak DP Rules: !EQ#(0(),0()) -> c_9() !EQ#(0(),S(y)) -> c_10() !EQ#(S(x),0()) -> c_11() !EQ#(S(x),S(y)) -> c_12(!EQ#(x,y)) eqNatList#(Cons(x,xs),Cons(y,ys)) -> c_1(!EQ#(x,y)) eqNatList#(Cons(x,xs),Nil()) -> c_2() eqNatList#(Nil(),Cons(y,ys)) -> c_3() eqNatList#(Nil(),Nil()) -> c_4() nolexicord[Ite][False][Ite]#(False(),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x,xs)) -> c_13(nolexicord#(xs',xs',xs',xs',xs',xs)) nolexicord[Ite][False][Ite]#(True(),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x,xs),Cons(x',xs')) -> c_14(nolexicord#(xs',xs',xs',xs',xs',xs)) number42#() -> c_8() Weak TRS Rules: !EQ(0(),0()) -> True() !EQ(0(),S(y)) -> False() !EQ(S(x),0()) -> False() !EQ(S(x),S(y)) -> !EQ(x,y) eqNatList(Cons(x,xs),Cons(y,ys)) -> eqNatList[Match][Cons][Match][Cons][Ite](!EQ(x,y),y,ys,x,xs) eqNatList(Cons(x,xs),Nil()) -> False() Signature: {!EQ/2,eqNatList/2,goal/6,nolexicord/6,nolexicord[Ite][False][Ite]/7,number42/0,!EQ#/2,eqNatList#/2,goal#/6,nolexicord#/6,nolexicord[Ite][False][Ite]#/7,number42#/0} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,eqNatList[Match][Cons][Match][Cons][Ite]/5,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/1,c_13/1,c_14/1} Obligation: Innermost basic terms: {!EQ#,eqNatList#,goal#,nolexicord#,nolexicord[Ite][False][Ite]#,number42#}/{0,Cons,False,Nil,S,True,eqNatList[Match][Cons][Match][Cons][Ite]} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:goal#(a1,b1,a2,b2,a3,b3) -> c_5(nolexicord#(a1,b1,a2,b2,a3,b3)) -->_1 nolexicord#(Cons(x,xs),b1,a2,b2,a3,b3) -> c_6(nolexicord[Ite][False][Ite]#(eqNatList(Cons(x,xs),b1),Cons(x,xs),b1,a2,b2,a3,b3)):2 -->_1 nolexicord#(Nil(),b1,a2,b2,a3,b3) -> c_7():3 2:S:nolexicord#(Cons(x,xs),b1,a2,b2,a3,b3) -> c_6(nolexicord[Ite][False][Ite]#(eqNatList(Cons(x,xs),b1),Cons(x,xs),b1,a2,b2,a3,b3)) -->_1 nolexicord[Ite][False][Ite]#(True(),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x,xs),Cons(x',xs')) -> c_14(nolexicord#(xs',xs',xs',xs',xs',xs)):13 -->_1 nolexicord[Ite][False][Ite]#(False(),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x,xs)) -> c_13(nolexicord#(xs',xs',xs',xs',xs',xs)):12 3:S:nolexicord#(Nil(),b1,a2,b2,a3,b3) -> c_7() 4:W:!EQ#(0(),0()) -> c_9() 5:W:!EQ#(0(),S(y)) -> c_10() 6:W:!EQ#(S(x),0()) -> c_11() 7:W:!EQ#(S(x),S(y)) -> c_12(!EQ#(x,y)) -->_1 !EQ#(S(x),S(y)) -> c_12(!EQ#(x,y)):7 -->_1 !EQ#(S(x),0()) -> c_11():6 -->_1 !EQ#(0(),S(y)) -> c_10():5 -->_1 !EQ#(0(),0()) -> c_9():4 8:W:eqNatList#(Cons(x,xs),Cons(y,ys)) -> c_1(!EQ#(x,y)) -->_1 !EQ#(S(x),S(y)) -> c_12(!EQ#(x,y)):7 -->_1 !EQ#(S(x),0()) -> c_11():6 -->_1 !EQ#(0(),S(y)) -> c_10():5 -->_1 !EQ#(0(),0()) -> c_9():4 9:W:eqNatList#(Cons(x,xs),Nil()) -> c_2() 10:W:eqNatList#(Nil(),Cons(y,ys)) -> c_3() 11:W:eqNatList#(Nil(),Nil()) -> c_4() 12:W:nolexicord[Ite][False][Ite]#(False(),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x,xs)) -> c_13(nolexicord#(xs',xs',xs',xs',xs',xs)) -->_1 nolexicord#(Nil(),b1,a2,b2,a3,b3) -> c_7():3 -->_1 nolexicord#(Cons(x,xs),b1,a2,b2,a3,b3) -> c_6(nolexicord[Ite][False][Ite]#(eqNatList(Cons(x,xs),b1),Cons(x,xs),b1,a2,b2,a3,b3)):2 13:W:nolexicord[Ite][False][Ite]#(True(),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x,xs),Cons(x',xs')) -> c_14(nolexicord#(xs',xs',xs',xs',xs',xs)) -->_1 nolexicord#(Nil(),b1,a2,b2,a3,b3) -> c_7():3 -->_1 nolexicord#(Cons(x,xs),b1,a2,b2,a3,b3) -> c_6(nolexicord[Ite][False][Ite]#(eqNatList(Cons(x,xs),b1),Cons(x,xs),b1,a2,b2,a3,b3)):2 14:W:number42#() -> c_8() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 14: number42#() -> c_8() 11: eqNatList#(Nil(),Nil()) -> c_4() 10: eqNatList#(Nil(),Cons(y,ys)) -> c_3() 9: eqNatList#(Cons(x,xs),Nil()) -> c_2() 8: eqNatList#(Cons(x,xs) ,Cons(y,ys)) -> c_1(!EQ#(x,y)) 7: !EQ#(S(x),S(y)) -> c_12(!EQ#(x ,y)) 6: !EQ#(S(x),0()) -> c_11() 5: !EQ#(0(),S(y)) -> c_10() 4: !EQ#(0(),0()) -> c_9() *** 1.1.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: goal#(a1,b1,a2,b2,a3,b3) -> c_5(nolexicord#(a1,b1,a2,b2,a3,b3)) nolexicord#(Cons(x,xs),b1,a2,b2,a3,b3) -> c_6(nolexicord[Ite][False][Ite]#(eqNatList(Cons(x,xs),b1),Cons(x,xs),b1,a2,b2,a3,b3)) nolexicord#(Nil(),b1,a2,b2,a3,b3) -> c_7() Strict TRS Rules: Weak DP Rules: nolexicord[Ite][False][Ite]#(False(),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x,xs)) -> c_13(nolexicord#(xs',xs',xs',xs',xs',xs)) nolexicord[Ite][False][Ite]#(True(),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x,xs),Cons(x',xs')) -> c_14(nolexicord#(xs',xs',xs',xs',xs',xs)) Weak TRS Rules: !EQ(0(),0()) -> True() !EQ(0(),S(y)) -> False() !EQ(S(x),0()) -> False() !EQ(S(x),S(y)) -> !EQ(x,y) eqNatList(Cons(x,xs),Cons(y,ys)) -> eqNatList[Match][Cons][Match][Cons][Ite](!EQ(x,y),y,ys,x,xs) eqNatList(Cons(x,xs),Nil()) -> False() Signature: {!EQ/2,eqNatList/2,goal/6,nolexicord/6,nolexicord[Ite][False][Ite]/7,number42/0,!EQ#/2,eqNatList#/2,goal#/6,nolexicord#/6,nolexicord[Ite][False][Ite]#/7,number42#/0} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,eqNatList[Match][Cons][Match][Cons][Ite]/5,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/1,c_13/1,c_14/1} Obligation: Innermost basic terms: {!EQ#,eqNatList#,goal#,nolexicord#,nolexicord[Ite][False][Ite]#,number42#}/{0,Cons,False,Nil,S,True,eqNatList[Match][Cons][Match][Cons][Ite]} Applied Processor: RemoveHeads Proof: Consider the dependency graph 1:S:goal#(a1,b1,a2,b2,a3,b3) -> c_5(nolexicord#(a1,b1,a2,b2,a3,b3)) -->_1 nolexicord#(Cons(x,xs),b1,a2,b2,a3,b3) -> c_6(nolexicord[Ite][False][Ite]#(eqNatList(Cons(x,xs),b1),Cons(x,xs),b1,a2,b2,a3,b3)):2 -->_1 nolexicord#(Nil(),b1,a2,b2,a3,b3) -> c_7():3 2:S:nolexicord#(Cons(x,xs),b1,a2,b2,a3,b3) -> c_6(nolexicord[Ite][False][Ite]#(eqNatList(Cons(x,xs),b1),Cons(x,xs),b1,a2,b2,a3,b3)) -->_1 nolexicord[Ite][False][Ite]#(True(),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x,xs),Cons(x',xs')) -> c_14(nolexicord#(xs',xs',xs',xs',xs',xs)):13 -->_1 nolexicord[Ite][False][Ite]#(False(),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x,xs)) -> c_13(nolexicord#(xs',xs',xs',xs',xs',xs)):12 3:S:nolexicord#(Nil(),b1,a2,b2,a3,b3) -> c_7() 12:W:nolexicord[Ite][False][Ite]#(False(),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x,xs)) -> c_13(nolexicord#(xs',xs',xs',xs',xs',xs)) -->_1 nolexicord#(Nil(),b1,a2,b2,a3,b3) -> c_7():3 -->_1 nolexicord#(Cons(x,xs),b1,a2,b2,a3,b3) -> c_6(nolexicord[Ite][False][Ite]#(eqNatList(Cons(x,xs),b1),Cons(x,xs),b1,a2,b2,a3,b3)):2 13:W:nolexicord[Ite][False][Ite]#(True(),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x,xs),Cons(x',xs')) -> c_14(nolexicord#(xs',xs',xs',xs',xs',xs)) -->_1 nolexicord#(Nil(),b1,a2,b2,a3,b3) -> c_7():3 -->_1 nolexicord#(Cons(x,xs),b1,a2,b2,a3,b3) -> c_6(nolexicord[Ite][False][Ite]#(eqNatList(Cons(x,xs),b1),Cons(x,xs),b1,a2,b2,a3,b3)):2 Following roots of the dependency graph are removed, as the considered set of starting terms is closed under reduction with respect to these rules (modulo compound contexts). [(1,goal#(a1,b1,a2,b2,a3,b3) -> c_5(nolexicord#(a1,b1,a2,b2,a3,b3)))] *** 1.1.1.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: nolexicord#(Cons(x,xs),b1,a2,b2,a3,b3) -> c_6(nolexicord[Ite][False][Ite]#(eqNatList(Cons(x,xs),b1),Cons(x,xs),b1,a2,b2,a3,b3)) nolexicord#(Nil(),b1,a2,b2,a3,b3) -> c_7() Strict TRS Rules: Weak DP Rules: nolexicord[Ite][False][Ite]#(False(),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x,xs)) -> c_13(nolexicord#(xs',xs',xs',xs',xs',xs)) nolexicord[Ite][False][Ite]#(True(),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x,xs),Cons(x',xs')) -> c_14(nolexicord#(xs',xs',xs',xs',xs',xs)) Weak TRS Rules: !EQ(0(),0()) -> True() !EQ(0(),S(y)) -> False() !EQ(S(x),0()) -> False() !EQ(S(x),S(y)) -> !EQ(x,y) eqNatList(Cons(x,xs),Cons(y,ys)) -> eqNatList[Match][Cons][Match][Cons][Ite](!EQ(x,y),y,ys,x,xs) eqNatList(Cons(x,xs),Nil()) -> False() Signature: {!EQ/2,eqNatList/2,goal/6,nolexicord/6,nolexicord[Ite][False][Ite]/7,number42/0,!EQ#/2,eqNatList#/2,goal#/6,nolexicord#/6,nolexicord[Ite][False][Ite]#/7,number42#/0} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,eqNatList[Match][Cons][Match][Cons][Ite]/5,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/1,c_13/1,c_14/1} Obligation: Innermost basic terms: {!EQ#,eqNatList#,goal#,nolexicord#,nolexicord[Ite][False][Ite]#,number42#}/{0,Cons,False,Nil,S,True,eqNatList[Match][Cons][Match][Cons][Ite]} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 2: nolexicord#(Cons(x,xs) ,b1 ,a2 ,b2 ,a3 ,b3) -> c_6(nolexicord[Ite][False][Ite]#(eqNatList(Cons(x ,xs) ,b1) ,Cons(x,xs) ,b1 ,a2 ,b2 ,a3 ,b3)) 3: nolexicord#(Nil() ,b1 ,a2 ,b2 ,a3 ,b3) -> c_7() Consider the set of all dependency pairs 2: nolexicord#(Cons(x,xs) ,b1 ,a2 ,b2 ,a3 ,b3) -> c_6(nolexicord[Ite][False][Ite]#(eqNatList(Cons(x ,xs) ,b1) ,Cons(x,xs) ,b1 ,a2 ,b2 ,a3 ,b3)) 3: nolexicord#(Nil() ,b1 ,a2 ,b2 ,a3 ,b3) -> c_7() 12: nolexicord[Ite][False][Ite]#(False() ,Cons(x',xs') ,Cons(x',xs') ,Cons(x',xs') ,Cons(x',xs') ,Cons(x',xs') ,Cons(x,xs)) -> c_13(nolexicord#(xs' ,xs' ,xs' ,xs' ,xs' ,xs)) 13: nolexicord[Ite][False][Ite]#(True() ,Cons(x',xs') ,Cons(x',xs') ,Cons(x',xs') ,Cons(x',xs') ,Cons(x,xs) ,Cons(x',xs')) -> c_14(nolexicord#(xs' ,xs' ,xs' ,xs' ,xs' ,xs)) Processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}induces the complexity certificateTIME (?,O(n^1)) SPACE(?,?)on application of the dependency pairs {2,3} These cover all (indirect) predecessors of dependency pairs {2,3,12,13} their number of applications is equally bounded. The dependency pairs are shifted into the weak component. *** 1.1.1.1.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: nolexicord#(Cons(x,xs),b1,a2,b2,a3,b3) -> c_6(nolexicord[Ite][False][Ite]#(eqNatList(Cons(x,xs),b1),Cons(x,xs),b1,a2,b2,a3,b3)) nolexicord#(Nil(),b1,a2,b2,a3,b3) -> c_7() Strict TRS Rules: Weak DP Rules: nolexicord[Ite][False][Ite]#(False(),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x,xs)) -> c_13(nolexicord#(xs',xs',xs',xs',xs',xs)) nolexicord[Ite][False][Ite]#(True(),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x,xs),Cons(x',xs')) -> c_14(nolexicord#(xs',xs',xs',xs',xs',xs)) Weak TRS Rules: !EQ(0(),0()) -> True() !EQ(0(),S(y)) -> False() !EQ(S(x),0()) -> False() !EQ(S(x),S(y)) -> !EQ(x,y) eqNatList(Cons(x,xs),Cons(y,ys)) -> eqNatList[Match][Cons][Match][Cons][Ite](!EQ(x,y),y,ys,x,xs) eqNatList(Cons(x,xs),Nil()) -> False() Signature: {!EQ/2,eqNatList/2,goal/6,nolexicord/6,nolexicord[Ite][False][Ite]/7,number42/0,!EQ#/2,eqNatList#/2,goal#/6,nolexicord#/6,nolexicord[Ite][False][Ite]#/7,number42#/0} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,eqNatList[Match][Cons][Match][Cons][Ite]/5,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/1,c_13/1,c_14/1} Obligation: Innermost basic terms: {!EQ#,eqNatList#,goal#,nolexicord#,nolexicord[Ite][False][Ite]#,number42#}/{0,Cons,False,Nil,S,True,eqNatList[Match][Cons][Match][Cons][Ite]} Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_6) = {1}, uargs(c_13) = {1}, uargs(c_14) = {1} Following symbols are considered usable: {eqNatList,!EQ#,eqNatList#,goal#,nolexicord#,nolexicord[Ite][False][Ite]#,number42#} TcT has computed the following interpretation: p(!EQ) = [2] x1 + [2] x2 + [4] p(0) = [2] p(Cons) = [1] x2 + [2] p(False) = [1] p(Nil) = [0] p(S) = [1] x1 + [1] p(True) = [6] p(eqNatList) = [4] p(eqNatList[Match][Cons][Match][Cons][Ite]) = [4] p(goal) = [2] x2 + [1] x5 + [1] x6 + [1] p(nolexicord) = [1] x6 + [1] p(nolexicord[Ite][False][Ite]) = [1] x6 + [4] p(number42) = [1] p(!EQ#) = [4] x1 + [1] p(eqNatList#) = [1] x2 + [1] p(goal#) = [4] x4 + [4] p(nolexicord#) = [1] x2 + [1] x3 + [7] p(nolexicord[Ite][False][Ite]#) = [1] x1 + [1] x3 + [1] x4 + [2] p(number42#) = [0] p(c_1) = [1] p(c_2) = [0] p(c_3) = [0] p(c_4) = [2] p(c_5) = [1] p(c_6) = [1] x1 + [0] p(c_7) = [1] p(c_8) = [1] p(c_9) = [2] p(c_10) = [1] p(c_11) = [4] p(c_12) = [2] p(c_13) = [1] x1 + [0] p(c_14) = [1] x1 + [5] Following rules are strictly oriented: nolexicord#(Cons(x,xs) = [1] a2 + [1] b1 + [7] ,b1 ,a2 ,b2 ,a3 ,b3) > [1] a2 + [1] b1 + [6] = c_6(nolexicord[Ite][False][Ite]#(eqNatList(Cons(x ,xs) ,b1) ,Cons(x,xs) ,b1 ,a2 ,b2 ,a3 ,b3)) nolexicord#(Nil() = [1] a2 + [1] b1 + [7] ,b1 ,a2 ,b2 ,a3 ,b3) > [1] = c_7() Following rules are (at-least) weakly oriented: nolexicord[Ite][False][Ite]#(False() = [2] xs' + [7] ,Cons(x',xs') ,Cons(x',xs') ,Cons(x',xs') ,Cons(x',xs') ,Cons(x',xs') ,Cons(x,xs)) >= [2] xs' + [7] = c_13(nolexicord#(xs' ,xs' ,xs' ,xs' ,xs' ,xs)) nolexicord[Ite][False][Ite]#(True() = [2] xs' + [12] ,Cons(x',xs') ,Cons(x',xs') ,Cons(x',xs') ,Cons(x',xs') ,Cons(x,xs) ,Cons(x',xs')) >= [2] xs' + [12] = c_14(nolexicord#(xs' ,xs' ,xs' ,xs' ,xs' ,xs)) eqNatList(Cons(x,xs),Cons(y,ys)) = [4] >= [4] = eqNatList[Match][Cons][Match][Cons][Ite](!EQ(x ,y) ,y ,ys ,x ,xs) eqNatList(Cons(x,xs),Nil()) = [4] >= [1] = False() *** 1.1.1.1.1.1.1.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: nolexicord#(Cons(x,xs),b1,a2,b2,a3,b3) -> c_6(nolexicord[Ite][False][Ite]#(eqNatList(Cons(x,xs),b1),Cons(x,xs),b1,a2,b2,a3,b3)) nolexicord#(Nil(),b1,a2,b2,a3,b3) -> c_7() nolexicord[Ite][False][Ite]#(False(),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x,xs)) -> c_13(nolexicord#(xs',xs',xs',xs',xs',xs)) nolexicord[Ite][False][Ite]#(True(),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x,xs),Cons(x',xs')) -> c_14(nolexicord#(xs',xs',xs',xs',xs',xs)) Weak TRS Rules: !EQ(0(),0()) -> True() !EQ(0(),S(y)) -> False() !EQ(S(x),0()) -> False() !EQ(S(x),S(y)) -> !EQ(x,y) eqNatList(Cons(x,xs),Cons(y,ys)) -> eqNatList[Match][Cons][Match][Cons][Ite](!EQ(x,y),y,ys,x,xs) eqNatList(Cons(x,xs),Nil()) -> False() Signature: {!EQ/2,eqNatList/2,goal/6,nolexicord/6,nolexicord[Ite][False][Ite]/7,number42/0,!EQ#/2,eqNatList#/2,goal#/6,nolexicord#/6,nolexicord[Ite][False][Ite]#/7,number42#/0} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,eqNatList[Match][Cons][Match][Cons][Ite]/5,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/1,c_13/1,c_14/1} Obligation: Innermost basic terms: {!EQ#,eqNatList#,goal#,nolexicord#,nolexicord[Ite][False][Ite]#,number42#}/{0,Cons,False,Nil,S,True,eqNatList[Match][Cons][Match][Cons][Ite]} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.1.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: nolexicord#(Cons(x,xs),b1,a2,b2,a3,b3) -> c_6(nolexicord[Ite][False][Ite]#(eqNatList(Cons(x,xs),b1),Cons(x,xs),b1,a2,b2,a3,b3)) nolexicord#(Nil(),b1,a2,b2,a3,b3) -> c_7() nolexicord[Ite][False][Ite]#(False(),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x,xs)) -> c_13(nolexicord#(xs',xs',xs',xs',xs',xs)) nolexicord[Ite][False][Ite]#(True(),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x,xs),Cons(x',xs')) -> c_14(nolexicord#(xs',xs',xs',xs',xs',xs)) Weak TRS Rules: !EQ(0(),0()) -> True() !EQ(0(),S(y)) -> False() !EQ(S(x),0()) -> False() !EQ(S(x),S(y)) -> !EQ(x,y) eqNatList(Cons(x,xs),Cons(y,ys)) -> eqNatList[Match][Cons][Match][Cons][Ite](!EQ(x,y),y,ys,x,xs) eqNatList(Cons(x,xs),Nil()) -> False() Signature: {!EQ/2,eqNatList/2,goal/6,nolexicord/6,nolexicord[Ite][False][Ite]/7,number42/0,!EQ#/2,eqNatList#/2,goal#/6,nolexicord#/6,nolexicord[Ite][False][Ite]#/7,number42#/0} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,eqNatList[Match][Cons][Match][Cons][Ite]/5,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/1,c_13/1,c_14/1} Obligation: Innermost basic terms: {!EQ#,eqNatList#,goal#,nolexicord#,nolexicord[Ite][False][Ite]#,number42#}/{0,Cons,False,Nil,S,True,eqNatList[Match][Cons][Match][Cons][Ite]} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:nolexicord#(Cons(x,xs),b1,a2,b2,a3,b3) -> c_6(nolexicord[Ite][False][Ite]#(eqNatList(Cons(x,xs),b1),Cons(x,xs),b1,a2,b2,a3,b3)) -->_1 nolexicord[Ite][False][Ite]#(True(),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x,xs),Cons(x',xs')) -> c_14(nolexicord#(xs',xs',xs',xs',xs',xs)):4 -->_1 nolexicord[Ite][False][Ite]#(False(),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x,xs)) -> c_13(nolexicord#(xs',xs',xs',xs',xs',xs)):3 2:W:nolexicord#(Nil(),b1,a2,b2,a3,b3) -> c_7() 3:W:nolexicord[Ite][False][Ite]#(False(),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x,xs)) -> c_13(nolexicord#(xs',xs',xs',xs',xs',xs)) -->_1 nolexicord#(Nil(),b1,a2,b2,a3,b3) -> c_7():2 -->_1 nolexicord#(Cons(x,xs),b1,a2,b2,a3,b3) -> c_6(nolexicord[Ite][False][Ite]#(eqNatList(Cons(x,xs),b1),Cons(x,xs),b1,a2,b2,a3,b3)):1 4:W:nolexicord[Ite][False][Ite]#(True(),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x',xs'),Cons(x,xs),Cons(x',xs')) -> c_14(nolexicord#(xs',xs',xs',xs',xs',xs)) -->_1 nolexicord#(Nil(),b1,a2,b2,a3,b3) -> c_7():2 -->_1 nolexicord#(Cons(x,xs),b1,a2,b2,a3,b3) -> c_6(nolexicord[Ite][False][Ite]#(eqNatList(Cons(x,xs),b1),Cons(x,xs),b1,a2,b2,a3,b3)):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: nolexicord#(Cons(x,xs) ,b1 ,a2 ,b2 ,a3 ,b3) -> c_6(nolexicord[Ite][False][Ite]#(eqNatList(Cons(x ,xs) ,b1) ,Cons(x,xs) ,b1 ,a2 ,b2 ,a3 ,b3)) 4: nolexicord[Ite][False][Ite]#(True() ,Cons(x',xs') ,Cons(x',xs') ,Cons(x',xs') ,Cons(x',xs') ,Cons(x,xs) ,Cons(x',xs')) -> c_14(nolexicord#(xs' ,xs' ,xs' ,xs' ,xs' ,xs)) 3: nolexicord[Ite][False][Ite]#(False() ,Cons(x',xs') ,Cons(x',xs') ,Cons(x',xs') ,Cons(x',xs') ,Cons(x',xs') ,Cons(x,xs)) -> c_13(nolexicord#(xs' ,xs' ,xs' ,xs' ,xs' ,xs)) 2: nolexicord#(Nil() ,b1 ,a2 ,b2 ,a3 ,b3) -> c_7() *** 1.1.1.1.1.1.1.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: !EQ(0(),0()) -> True() !EQ(0(),S(y)) -> False() !EQ(S(x),0()) -> False() !EQ(S(x),S(y)) -> !EQ(x,y) eqNatList(Cons(x,xs),Cons(y,ys)) -> eqNatList[Match][Cons][Match][Cons][Ite](!EQ(x,y),y,ys,x,xs) eqNatList(Cons(x,xs),Nil()) -> False() Signature: {!EQ/2,eqNatList/2,goal/6,nolexicord/6,nolexicord[Ite][False][Ite]/7,number42/0,!EQ#/2,eqNatList#/2,goal#/6,nolexicord#/6,nolexicord[Ite][False][Ite]#/7,number42#/0} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,eqNatList[Match][Cons][Match][Cons][Ite]/5,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/1,c_13/1,c_14/1} Obligation: Innermost basic terms: {!EQ#,eqNatList#,goal#,nolexicord#,nolexicord[Ite][False][Ite]#,number42#}/{0,Cons,False,Nil,S,True,eqNatList[Match][Cons][Match][Cons][Ite]} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1).