(0) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
nolexicord(Nil, b1, a2, b2, a3, b3) → Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil))))))))))))))))))))))))))))))))))))))))))
eqNatList(Cons(x, xs), Cons(y, ys)) → eqNatList[Match][Cons][Match][Cons][Ite](!EQ(x, y), y, ys, x, xs)
eqNatList(Cons(x, xs), Nil) → False
eqNatList(Nil, Cons(y, ys)) → False
eqNatList(Nil, Nil) → True
nolexicord(Cons(x, xs), b1, a2, b2, a3, b3) → nolexicord[Ite][False][Ite](eqNatList(Cons(x, xs), b1), Cons(x, xs), b1, a2, b2, a3, b3)
number42 → Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil))))))))))))))))))))))))))))))))))))))))))
goal(a1, b1, a2, b2, a3, b3) → nolexicord(a1, b1, a2, b2, a3, b3)
The (relative) TRS S consists of the following rules:
!EQ(S(x), S(y)) → !EQ(x, y)
!EQ(0, S(y)) → False
!EQ(S(x), 0) → False
!EQ(0, 0) → True
nolexicord[Ite][False][Ite](False, Cons(x', xs'), Cons(x', xs'), Cons(x', xs'), Cons(x', xs'), Cons(x', xs'), Cons(x, xs)) → nolexicord(xs', xs', xs', xs', xs', xs)
nolexicord[Ite][False][Ite](True, Cons(x', xs'), Cons(x', xs'), Cons(x', xs'), Cons(x', xs'), Cons(x, xs), Cons(x', xs')) → nolexicord(xs', xs', xs', xs', xs', xs)
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (UPPER BOUND(ID) transformation)
Converted Cpx (relative) TRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
!EQ(S(z0), S(z1)) → !EQ(z0, z1)
!EQ(0, S(z0)) → False
!EQ(S(z0), 0) → False
!EQ(0, 0) → True
nolexicord[Ite][False][Ite](False, Cons(z0, z1), Cons(z0, z1), Cons(z0, z1), Cons(z0, z1), Cons(z0, z1), Cons(z2, z3)) → nolexicord(z1, z1, z1, z1, z1, z3)
nolexicord[Ite][False][Ite](True, Cons(z0, z1), Cons(z0, z1), Cons(z0, z1), Cons(z0, z1), Cons(z2, z3), Cons(z0, z1)) → nolexicord(z1, z1, z1, z1, z1, z3)
nolexicord(Nil, z0, z1, z2, z3, z4) → Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil))))))))))))))))))))))))))))))))))))))))))
nolexicord(Cons(z0, z1), z2, z3, z4, z5, z6) → nolexicord[Ite][False][Ite](eqNatList(Cons(z0, z1), z2), Cons(z0, z1), z2, z3, z4, z5, z6)
eqNatList(Cons(z0, z1), Cons(z2, z3)) → eqNatList[Match][Cons][Match][Cons][Ite](!EQ(z0, z2), z2, z3, z0, z1)
eqNatList(Cons(z0, z1), Nil) → False
eqNatList(Nil, Cons(z0, z1)) → False
eqNatList(Nil, Nil) → True
number42 → Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil))))))))))))))))))))))))))))))))))))))))))
goal(z0, z1, z2, z3, z4, z5) → nolexicord(z0, z1, z2, z3, z4, z5)
Tuples:
!EQ'(S(z0), S(z1)) → c(!EQ'(z0, z1))
!EQ'(0, S(z0)) → c1
!EQ'(S(z0), 0) → c2
!EQ'(0, 0) → c3
NOLEXICORD[ITE][FALSE][ITE](False, Cons(z0, z1), Cons(z0, z1), Cons(z0, z1), Cons(z0, z1), Cons(z0, z1), Cons(z2, z3)) → c4(NOLEXICORD(z1, z1, z1, z1, z1, z3))
NOLEXICORD[ITE][FALSE][ITE](True, Cons(z0, z1), Cons(z0, z1), Cons(z0, z1), Cons(z0, z1), Cons(z2, z3), Cons(z0, z1)) → c5(NOLEXICORD(z1, z1, z1, z1, z1, z3))
NOLEXICORD(Nil, z0, z1, z2, z3, z4) → c6
NOLEXICORD(Cons(z0, z1), z2, z3, z4, z5, z6) → c7(NOLEXICORD[ITE][FALSE][ITE](eqNatList(Cons(z0, z1), z2), Cons(z0, z1), z2, z3, z4, z5, z6), EQNATLIST(Cons(z0, z1), z2))
EQNATLIST(Cons(z0, z1), Cons(z2, z3)) → c8(!EQ'(z0, z2))
EQNATLIST(Cons(z0, z1), Nil) → c9
EQNATLIST(Nil, Cons(z0, z1)) → c10
EQNATLIST(Nil, Nil) → c11
NUMBER42 → c12
GOAL(z0, z1, z2, z3, z4, z5) → c13(NOLEXICORD(z0, z1, z2, z3, z4, z5))
S tuples:
NOLEXICORD(Nil, z0, z1, z2, z3, z4) → c6
NOLEXICORD(Cons(z0, z1), z2, z3, z4, z5, z6) → c7(NOLEXICORD[ITE][FALSE][ITE](eqNatList(Cons(z0, z1), z2), Cons(z0, z1), z2, z3, z4, z5, z6), EQNATLIST(Cons(z0, z1), z2))
EQNATLIST(Cons(z0, z1), Cons(z2, z3)) → c8(!EQ'(z0, z2))
EQNATLIST(Cons(z0, z1), Nil) → c9
EQNATLIST(Nil, Cons(z0, z1)) → c10
EQNATLIST(Nil, Nil) → c11
NUMBER42 → c12
GOAL(z0, z1, z2, z3, z4, z5) → c13(NOLEXICORD(z0, z1, z2, z3, z4, z5))
K tuples:none
Defined Rule Symbols:
nolexicord, eqNatList, number42, goal, !EQ, nolexicord[Ite][False][Ite]
Defined Pair Symbols:
!EQ', NOLEXICORD[ITE][FALSE][ITE], NOLEXICORD, EQNATLIST, NUMBER42, GOAL
Compound Symbols:
c, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13
(3) CdtLeafRemovalProof (ComplexityIfPolyImplication transformation)
Removed 1 leading nodes:
GOAL(z0, z1, z2, z3, z4, z5) → c13(NOLEXICORD(z0, z1, z2, z3, z4, z5))
Removed 7 trailing nodes:
EQNATLIST(Nil, Cons(z0, z1)) → c10
EQNATLIST(Cons(z0, z1), Nil) → c9
!EQ'(0, S(z0)) → c1
!EQ'(S(z0), 0) → c2
NUMBER42 → c12
EQNATLIST(Nil, Nil) → c11
!EQ'(0, 0) → c3
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
!EQ(S(z0), S(z1)) → !EQ(z0, z1)
!EQ(0, S(z0)) → False
!EQ(S(z0), 0) → False
!EQ(0, 0) → True
nolexicord[Ite][False][Ite](False, Cons(z0, z1), Cons(z0, z1), Cons(z0, z1), Cons(z0, z1), Cons(z0, z1), Cons(z2, z3)) → nolexicord(z1, z1, z1, z1, z1, z3)
nolexicord[Ite][False][Ite](True, Cons(z0, z1), Cons(z0, z1), Cons(z0, z1), Cons(z0, z1), Cons(z2, z3), Cons(z0, z1)) → nolexicord(z1, z1, z1, z1, z1, z3)
nolexicord(Nil, z0, z1, z2, z3, z4) → Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil))))))))))))))))))))))))))))))))))))))))))
nolexicord(Cons(z0, z1), z2, z3, z4, z5, z6) → nolexicord[Ite][False][Ite](eqNatList(Cons(z0, z1), z2), Cons(z0, z1), z2, z3, z4, z5, z6)
eqNatList(Cons(z0, z1), Cons(z2, z3)) → eqNatList[Match][Cons][Match][Cons][Ite](!EQ(z0, z2), z2, z3, z0, z1)
eqNatList(Cons(z0, z1), Nil) → False
eqNatList(Nil, Cons(z0, z1)) → False
eqNatList(Nil, Nil) → True
number42 → Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil))))))))))))))))))))))))))))))))))))))))))
goal(z0, z1, z2, z3, z4, z5) → nolexicord(z0, z1, z2, z3, z4, z5)
Tuples:
!EQ'(S(z0), S(z1)) → c(!EQ'(z0, z1))
NOLEXICORD[ITE][FALSE][ITE](False, Cons(z0, z1), Cons(z0, z1), Cons(z0, z1), Cons(z0, z1), Cons(z0, z1), Cons(z2, z3)) → c4(NOLEXICORD(z1, z1, z1, z1, z1, z3))
NOLEXICORD[ITE][FALSE][ITE](True, Cons(z0, z1), Cons(z0, z1), Cons(z0, z1), Cons(z0, z1), Cons(z2, z3), Cons(z0, z1)) → c5(NOLEXICORD(z1, z1, z1, z1, z1, z3))
NOLEXICORD(Nil, z0, z1, z2, z3, z4) → c6
NOLEXICORD(Cons(z0, z1), z2, z3, z4, z5, z6) → c7(NOLEXICORD[ITE][FALSE][ITE](eqNatList(Cons(z0, z1), z2), Cons(z0, z1), z2, z3, z4, z5, z6), EQNATLIST(Cons(z0, z1), z2))
EQNATLIST(Cons(z0, z1), Cons(z2, z3)) → c8(!EQ'(z0, z2))
S tuples:
NOLEXICORD(Nil, z0, z1, z2, z3, z4) → c6
NOLEXICORD(Cons(z0, z1), z2, z3, z4, z5, z6) → c7(NOLEXICORD[ITE][FALSE][ITE](eqNatList(Cons(z0, z1), z2), Cons(z0, z1), z2, z3, z4, z5, z6), EQNATLIST(Cons(z0, z1), z2))
EQNATLIST(Cons(z0, z1), Cons(z2, z3)) → c8(!EQ'(z0, z2))
K tuples:none
Defined Rule Symbols:
nolexicord, eqNatList, number42, goal, !EQ, nolexicord[Ite][False][Ite]
Defined Pair Symbols:
!EQ', NOLEXICORD[ITE][FALSE][ITE], NOLEXICORD, EQNATLIST
Compound Symbols:
c, c4, c5, c6, c7, c8
(5) CdtUsableRulesProof (EQUIVALENT transformation)
The following rules are not usable and were removed:
nolexicord[Ite][False][Ite](False, Cons(z0, z1), Cons(z0, z1), Cons(z0, z1), Cons(z0, z1), Cons(z0, z1), Cons(z2, z3)) → nolexicord(z1, z1, z1, z1, z1, z3)
nolexicord[Ite][False][Ite](True, Cons(z0, z1), Cons(z0, z1), Cons(z0, z1), Cons(z0, z1), Cons(z2, z3), Cons(z0, z1)) → nolexicord(z1, z1, z1, z1, z1, z3)
nolexicord(Nil, z0, z1, z2, z3, z4) → Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil))))))))))))))))))))))))))))))))))))))))))
nolexicord(Cons(z0, z1), z2, z3, z4, z5, z6) → nolexicord[Ite][False][Ite](eqNatList(Cons(z0, z1), z2), Cons(z0, z1), z2, z3, z4, z5, z6)
eqNatList(Nil, Cons(z0, z1)) → False
eqNatList(Nil, Nil) → True
number42 → Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil))))))))))))))))))))))))))))))))))))))))))
goal(z0, z1, z2, z3, z4, z5) → nolexicord(z0, z1, z2, z3, z4, z5)
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
eqNatList(Cons(z0, z1), Cons(z2, z3)) → eqNatList[Match][Cons][Match][Cons][Ite](!EQ(z0, z2), z2, z3, z0, z1)
eqNatList(Cons(z0, z1), Nil) → False
!EQ(S(z0), S(z1)) → !EQ(z0, z1)
!EQ(0, S(z0)) → False
!EQ(S(z0), 0) → False
!EQ(0, 0) → True
Tuples:
!EQ'(S(z0), S(z1)) → c(!EQ'(z0, z1))
NOLEXICORD[ITE][FALSE][ITE](False, Cons(z0, z1), Cons(z0, z1), Cons(z0, z1), Cons(z0, z1), Cons(z0, z1), Cons(z2, z3)) → c4(NOLEXICORD(z1, z1, z1, z1, z1, z3))
NOLEXICORD[ITE][FALSE][ITE](True, Cons(z0, z1), Cons(z0, z1), Cons(z0, z1), Cons(z0, z1), Cons(z2, z3), Cons(z0, z1)) → c5(NOLEXICORD(z1, z1, z1, z1, z1, z3))
NOLEXICORD(Nil, z0, z1, z2, z3, z4) → c6
NOLEXICORD(Cons(z0, z1), z2, z3, z4, z5, z6) → c7(NOLEXICORD[ITE][FALSE][ITE](eqNatList(Cons(z0, z1), z2), Cons(z0, z1), z2, z3, z4, z5, z6), EQNATLIST(Cons(z0, z1), z2))
EQNATLIST(Cons(z0, z1), Cons(z2, z3)) → c8(!EQ'(z0, z2))
S tuples:
NOLEXICORD(Nil, z0, z1, z2, z3, z4) → c6
NOLEXICORD(Cons(z0, z1), z2, z3, z4, z5, z6) → c7(NOLEXICORD[ITE][FALSE][ITE](eqNatList(Cons(z0, z1), z2), Cons(z0, z1), z2, z3, z4, z5, z6), EQNATLIST(Cons(z0, z1), z2))
EQNATLIST(Cons(z0, z1), Cons(z2, z3)) → c8(!EQ'(z0, z2))
K tuples:none
Defined Rule Symbols:
eqNatList, !EQ
Defined Pair Symbols:
!EQ', NOLEXICORD[ITE][FALSE][ITE], NOLEXICORD, EQNATLIST
Compound Symbols:
c, c4, c5, c6, c7, c8
(7) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
NOLEXICORD(Nil, z0, z1, z2, z3, z4) → c6
We considered the (Usable) Rules:none
And the Tuples:
!EQ'(S(z0), S(z1)) → c(!EQ'(z0, z1))
NOLEXICORD[ITE][FALSE][ITE](False, Cons(z0, z1), Cons(z0, z1), Cons(z0, z1), Cons(z0, z1), Cons(z0, z1), Cons(z2, z3)) → c4(NOLEXICORD(z1, z1, z1, z1, z1, z3))
NOLEXICORD[ITE][FALSE][ITE](True, Cons(z0, z1), Cons(z0, z1), Cons(z0, z1), Cons(z0, z1), Cons(z2, z3), Cons(z0, z1)) → c5(NOLEXICORD(z1, z1, z1, z1, z1, z3))
NOLEXICORD(Nil, z0, z1, z2, z3, z4) → c6
NOLEXICORD(Cons(z0, z1), z2, z3, z4, z5, z6) → c7(NOLEXICORD[ITE][FALSE][ITE](eqNatList(Cons(z0, z1), z2), Cons(z0, z1), z2, z3, z4, z5, z6), EQNATLIST(Cons(z0, z1), z2))
EQNATLIST(Cons(z0, z1), Cons(z2, z3)) → c8(!EQ'(z0, z2))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(!EQ(x1, x2)) = [4]x2
POL(!EQ'(x1, x2)) = 0
POL(0) = [3]
POL(Cons(x1, x2)) = 0
POL(EQNATLIST(x1, x2)) = 0
POL(False) = 0
POL(NOLEXICORD(x1, x2, x3, x4, x5, x6)) = [1]
POL(NOLEXICORD[ITE][FALSE][ITE](x1, x2, x3, x4, x5, x6, x7)) = [1]
POL(Nil) = [2]
POL(S(x1)) = [3]
POL(True) = [3]
POL(c(x1)) = x1
POL(c4(x1)) = x1
POL(c5(x1)) = x1
POL(c6) = 0
POL(c7(x1, x2)) = x1 + x2
POL(c8(x1)) = x1
POL(eqNatList(x1, x2)) = [3]x1
POL(eqNatList[Match][Cons][Match][Cons][Ite](x1, x2, x3, x4, x5)) = [2]
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
eqNatList(Cons(z0, z1), Cons(z2, z3)) → eqNatList[Match][Cons][Match][Cons][Ite](!EQ(z0, z2), z2, z3, z0, z1)
eqNatList(Cons(z0, z1), Nil) → False
!EQ(S(z0), S(z1)) → !EQ(z0, z1)
!EQ(0, S(z0)) → False
!EQ(S(z0), 0) → False
!EQ(0, 0) → True
Tuples:
!EQ'(S(z0), S(z1)) → c(!EQ'(z0, z1))
NOLEXICORD[ITE][FALSE][ITE](False, Cons(z0, z1), Cons(z0, z1), Cons(z0, z1), Cons(z0, z1), Cons(z0, z1), Cons(z2, z3)) → c4(NOLEXICORD(z1, z1, z1, z1, z1, z3))
NOLEXICORD[ITE][FALSE][ITE](True, Cons(z0, z1), Cons(z0, z1), Cons(z0, z1), Cons(z0, z1), Cons(z2, z3), Cons(z0, z1)) → c5(NOLEXICORD(z1, z1, z1, z1, z1, z3))
NOLEXICORD(Nil, z0, z1, z2, z3, z4) → c6
NOLEXICORD(Cons(z0, z1), z2, z3, z4, z5, z6) → c7(NOLEXICORD[ITE][FALSE][ITE](eqNatList(Cons(z0, z1), z2), Cons(z0, z1), z2, z3, z4, z5, z6), EQNATLIST(Cons(z0, z1), z2))
EQNATLIST(Cons(z0, z1), Cons(z2, z3)) → c8(!EQ'(z0, z2))
S tuples:
NOLEXICORD(Cons(z0, z1), z2, z3, z4, z5, z6) → c7(NOLEXICORD[ITE][FALSE][ITE](eqNatList(Cons(z0, z1), z2), Cons(z0, z1), z2, z3, z4, z5, z6), EQNATLIST(Cons(z0, z1), z2))
EQNATLIST(Cons(z0, z1), Cons(z2, z3)) → c8(!EQ'(z0, z2))
K tuples:
NOLEXICORD(Nil, z0, z1, z2, z3, z4) → c6
Defined Rule Symbols:
eqNatList, !EQ
Defined Pair Symbols:
!EQ', NOLEXICORD[ITE][FALSE][ITE], NOLEXICORD, EQNATLIST
Compound Symbols:
c, c4, c5, c6, c7, c8
(9) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
NOLEXICORD(Cons(z0, z1), z2, z3, z4, z5, z6) → c7(NOLEXICORD[ITE][FALSE][ITE](eqNatList(Cons(z0, z1), z2), Cons(z0, z1), z2, z3, z4, z5, z6), EQNATLIST(Cons(z0, z1), z2))
EQNATLIST(Cons(z0, z1), Cons(z2, z3)) → c8(!EQ'(z0, z2))
We considered the (Usable) Rules:none
And the Tuples:
!EQ'(S(z0), S(z1)) → c(!EQ'(z0, z1))
NOLEXICORD[ITE][FALSE][ITE](False, Cons(z0, z1), Cons(z0, z1), Cons(z0, z1), Cons(z0, z1), Cons(z0, z1), Cons(z2, z3)) → c4(NOLEXICORD(z1, z1, z1, z1, z1, z3))
NOLEXICORD[ITE][FALSE][ITE](True, Cons(z0, z1), Cons(z0, z1), Cons(z0, z1), Cons(z0, z1), Cons(z2, z3), Cons(z0, z1)) → c5(NOLEXICORD(z1, z1, z1, z1, z1, z3))
NOLEXICORD(Nil, z0, z1, z2, z3, z4) → c6
NOLEXICORD(Cons(z0, z1), z2, z3, z4, z5, z6) → c7(NOLEXICORD[ITE][FALSE][ITE](eqNatList(Cons(z0, z1), z2), Cons(z0, z1), z2, z3, z4, z5, z6), EQNATLIST(Cons(z0, z1), z2))
EQNATLIST(Cons(z0, z1), Cons(z2, z3)) → c8(!EQ'(z0, z2))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(!EQ(x1, x2)) = [3]
POL(!EQ'(x1, x2)) = 0
POL(0) = 0
POL(Cons(x1, x2)) = [4] + x2
POL(EQNATLIST(x1, x2)) = [2]
POL(False) = 0
POL(NOLEXICORD(x1, x2, x3, x4, x5, x6)) = [3] + x4
POL(NOLEXICORD[ITE][FALSE][ITE](x1, x2, x3, x4, x5, x6, x7)) = x5
POL(Nil) = [2]
POL(S(x1)) = [4]
POL(True) = [2]
POL(c(x1)) = x1
POL(c4(x1)) = x1
POL(c5(x1)) = x1
POL(c6) = 0
POL(c7(x1, x2)) = x1 + x2
POL(c8(x1)) = x1
POL(eqNatList(x1, x2)) = 0
POL(eqNatList[Match][Cons][Match][Cons][Ite](x1, x2, x3, x4, x5)) = [3]
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
eqNatList(Cons(z0, z1), Cons(z2, z3)) → eqNatList[Match][Cons][Match][Cons][Ite](!EQ(z0, z2), z2, z3, z0, z1)
eqNatList(Cons(z0, z1), Nil) → False
!EQ(S(z0), S(z1)) → !EQ(z0, z1)
!EQ(0, S(z0)) → False
!EQ(S(z0), 0) → False
!EQ(0, 0) → True
Tuples:
!EQ'(S(z0), S(z1)) → c(!EQ'(z0, z1))
NOLEXICORD[ITE][FALSE][ITE](False, Cons(z0, z1), Cons(z0, z1), Cons(z0, z1), Cons(z0, z1), Cons(z0, z1), Cons(z2, z3)) → c4(NOLEXICORD(z1, z1, z1, z1, z1, z3))
NOLEXICORD[ITE][FALSE][ITE](True, Cons(z0, z1), Cons(z0, z1), Cons(z0, z1), Cons(z0, z1), Cons(z2, z3), Cons(z0, z1)) → c5(NOLEXICORD(z1, z1, z1, z1, z1, z3))
NOLEXICORD(Nil, z0, z1, z2, z3, z4) → c6
NOLEXICORD(Cons(z0, z1), z2, z3, z4, z5, z6) → c7(NOLEXICORD[ITE][FALSE][ITE](eqNatList(Cons(z0, z1), z2), Cons(z0, z1), z2, z3, z4, z5, z6), EQNATLIST(Cons(z0, z1), z2))
EQNATLIST(Cons(z0, z1), Cons(z2, z3)) → c8(!EQ'(z0, z2))
S tuples:none
K tuples:
NOLEXICORD(Nil, z0, z1, z2, z3, z4) → c6
NOLEXICORD(Cons(z0, z1), z2, z3, z4, z5, z6) → c7(NOLEXICORD[ITE][FALSE][ITE](eqNatList(Cons(z0, z1), z2), Cons(z0, z1), z2, z3, z4, z5, z6), EQNATLIST(Cons(z0, z1), z2))
EQNATLIST(Cons(z0, z1), Cons(z2, z3)) → c8(!EQ'(z0, z2))
Defined Rule Symbols:
eqNatList, !EQ
Defined Pair Symbols:
!EQ', NOLEXICORD[ITE][FALSE][ITE], NOLEXICORD, EQNATLIST
Compound Symbols:
c, c4, c5, c6, c7, c8
(11) SIsEmptyProof (BOTH BOUNDS(ID, ID) transformation)
The set S is empty
(12) BOUNDS(1, 1)