(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

nesteql(Nil) → Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil)))))))))))))))))
nesteql(Cons(x, xs)) → nesteql(eql(Cons(x, xs)))
eql(Nil) → Nil
eql(Cons(x, xs)) → eql(Cons(x, xs))
number17(n) → Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil)))))))))))))))))
goal(x) → nesteql(x)

Rewrite Strategy: INNERMOST

(1) InfiniteLowerBoundProof (EQUIVALENT transformation)

The loop following loop proves infinite runtime complexity:
The rewrite sequence
eql(Cons(x, xs)) →+ eql(Cons(x, xs))
gives rise to a decreasing loop by considering the right hand sides subterm at position [].
The pumping substitution is [ ].
The result substitution is [ ].

(2) BOUNDS(INF, INF)