We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict Trs:
  { dec(Cons(Cons(x', xs'), Cons(x, xs))) -> dec(Cons(x, xs))
  , dec(Cons(Cons(x, xs), Nil())) -> dec(Nil())
  , dec(Cons(Nil(), Cons(x, xs))) -> dec(Cons(x, xs))
  , dec(Cons(Nil(), Nil())) -> Nil()
  , isNilNil(Cons(Cons(x', xs'), Cons(x, xs))) -> False()
  , isNilNil(Cons(Cons(x, xs), Nil())) -> False()
  , isNilNil(Cons(Nil(), Cons(x, xs))) -> False()
  , isNilNil(Cons(Nil(), Nil())) -> True()
  , nestdec(Cons(x, xs)) -> nestdec(dec(Cons(x, xs)))
  , nestdec(Nil()) ->
    Cons(Nil(),
         Cons(Nil(),
              Cons(Nil(),
                   Cons(Nil(),
                        Cons(Nil(),
                             Cons(Nil(),
                                  Cons(Nil(),
                                       Cons(Nil(),
                                            Cons(Nil(),
                                                 Cons(Nil(),
                                                      Cons(Nil(),
                                                           Cons(Nil(),
                                                                Cons(Nil(),
                                                                     Cons(Nil(),
                                                                          Cons(Nil(),
                                                                               Cons(Nil(),
                                                                                    Cons(Nil(),
                                                                                         Nil())))))))))))))))))
  , number17(n) ->
    Cons(Nil(),
         Cons(Nil(),
              Cons(Nil(),
                   Cons(Nil(),
                        Cons(Nil(),
                             Cons(Nil(),
                                  Cons(Nil(),
                                       Cons(Nil(),
                                            Cons(Nil(),
                                                 Cons(Nil(),
                                                      Cons(Nil(),
                                                           Cons(Nil(),
                                                                Cons(Nil(),
                                                                     Cons(Nil(),
                                                                          Cons(Nil(),
                                                                               Cons(Nil(),
                                                                                    Cons(Nil(),
                                                                                         Nil())))))))))))))))))
  , goal(x) -> nestdec(x) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

We add the following weak dependency pairs:

Strict DPs:
  { dec^#(Cons(Cons(x', xs'), Cons(x, xs))) ->
    c_1(dec^#(Cons(x, xs)))
  , dec^#(Cons(Cons(x, xs), Nil())) -> c_2(dec^#(Nil()))
  , dec^#(Cons(Nil(), Cons(x, xs))) -> c_3(dec^#(Cons(x, xs)))
  , dec^#(Cons(Nil(), Nil())) -> c_4()
  , isNilNil^#(Cons(Cons(x', xs'), Cons(x, xs))) -> c_5()
  , isNilNil^#(Cons(Cons(x, xs), Nil())) -> c_6()
  , isNilNil^#(Cons(Nil(), Cons(x, xs))) -> c_7()
  , isNilNil^#(Cons(Nil(), Nil())) -> c_8()
  , nestdec^#(Cons(x, xs)) -> c_9(nestdec^#(dec(Cons(x, xs))))
  , nestdec^#(Nil()) -> c_10()
  , number17^#(n) -> c_11()
  , goal^#(x) -> c_12(nestdec^#(x)) }

and mark the set of starting terms.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { dec^#(Cons(Cons(x', xs'), Cons(x, xs))) ->
    c_1(dec^#(Cons(x, xs)))
  , dec^#(Cons(Cons(x, xs), Nil())) -> c_2(dec^#(Nil()))
  , dec^#(Cons(Nil(), Cons(x, xs))) -> c_3(dec^#(Cons(x, xs)))
  , dec^#(Cons(Nil(), Nil())) -> c_4()
  , isNilNil^#(Cons(Cons(x', xs'), Cons(x, xs))) -> c_5()
  , isNilNil^#(Cons(Cons(x, xs), Nil())) -> c_6()
  , isNilNil^#(Cons(Nil(), Cons(x, xs))) -> c_7()
  , isNilNil^#(Cons(Nil(), Nil())) -> c_8()
  , nestdec^#(Cons(x, xs)) -> c_9(nestdec^#(dec(Cons(x, xs))))
  , nestdec^#(Nil()) -> c_10()
  , number17^#(n) -> c_11()
  , goal^#(x) -> c_12(nestdec^#(x)) }
Strict Trs:
  { dec(Cons(Cons(x', xs'), Cons(x, xs))) -> dec(Cons(x, xs))
  , dec(Cons(Cons(x, xs), Nil())) -> dec(Nil())
  , dec(Cons(Nil(), Cons(x, xs))) -> dec(Cons(x, xs))
  , dec(Cons(Nil(), Nil())) -> Nil()
  , isNilNil(Cons(Cons(x', xs'), Cons(x, xs))) -> False()
  , isNilNil(Cons(Cons(x, xs), Nil())) -> False()
  , isNilNil(Cons(Nil(), Cons(x, xs))) -> False()
  , isNilNil(Cons(Nil(), Nil())) -> True()
  , nestdec(Cons(x, xs)) -> nestdec(dec(Cons(x, xs)))
  , nestdec(Nil()) ->
    Cons(Nil(),
         Cons(Nil(),
              Cons(Nil(),
                   Cons(Nil(),
                        Cons(Nil(),
                             Cons(Nil(),
                                  Cons(Nil(),
                                       Cons(Nil(),
                                            Cons(Nil(),
                                                 Cons(Nil(),
                                                      Cons(Nil(),
                                                           Cons(Nil(),
                                                                Cons(Nil(),
                                                                     Cons(Nil(),
                                                                          Cons(Nil(),
                                                                               Cons(Nil(),
                                                                                    Cons(Nil(),
                                                                                         Nil())))))))))))))))))
  , number17(n) ->
    Cons(Nil(),
         Cons(Nil(),
              Cons(Nil(),
                   Cons(Nil(),
                        Cons(Nil(),
                             Cons(Nil(),
                                  Cons(Nil(),
                                       Cons(Nil(),
                                            Cons(Nil(),
                                                 Cons(Nil(),
                                                      Cons(Nil(),
                                                           Cons(Nil(),
                                                                Cons(Nil(),
                                                                     Cons(Nil(),
                                                                          Cons(Nil(),
                                                                               Cons(Nil(),
                                                                                    Cons(Nil(),
                                                                                         Nil())))))))))))))))))
  , goal(x) -> nestdec(x) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

We replace rewrite rules by usable rules:

  Strict Usable Rules:
    { dec(Cons(Cons(x', xs'), Cons(x, xs))) -> dec(Cons(x, xs))
    , dec(Cons(Cons(x, xs), Nil())) -> dec(Nil())
    , dec(Cons(Nil(), Cons(x, xs))) -> dec(Cons(x, xs))
    , dec(Cons(Nil(), Nil())) -> Nil() }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { dec^#(Cons(Cons(x', xs'), Cons(x, xs))) ->
    c_1(dec^#(Cons(x, xs)))
  , dec^#(Cons(Cons(x, xs), Nil())) -> c_2(dec^#(Nil()))
  , dec^#(Cons(Nil(), Cons(x, xs))) -> c_3(dec^#(Cons(x, xs)))
  , dec^#(Cons(Nil(), Nil())) -> c_4()
  , isNilNil^#(Cons(Cons(x', xs'), Cons(x, xs))) -> c_5()
  , isNilNil^#(Cons(Cons(x, xs), Nil())) -> c_6()
  , isNilNil^#(Cons(Nil(), Cons(x, xs))) -> c_7()
  , isNilNil^#(Cons(Nil(), Nil())) -> c_8()
  , nestdec^#(Cons(x, xs)) -> c_9(nestdec^#(dec(Cons(x, xs))))
  , nestdec^#(Nil()) -> c_10()
  , number17^#(n) -> c_11()
  , goal^#(x) -> c_12(nestdec^#(x)) }
Strict Trs:
  { dec(Cons(Cons(x', xs'), Cons(x, xs))) -> dec(Cons(x, xs))
  , dec(Cons(Cons(x, xs), Nil())) -> dec(Nil())
  , dec(Cons(Nil(), Cons(x, xs))) -> dec(Cons(x, xs))
  , dec(Cons(Nil(), Nil())) -> Nil() }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

The weightgap principle applies (using the following constant
growth matrix-interpretation)

The following argument positions are usable:
  Uargs(c_1) = {1}, Uargs(c_3) = {1}, Uargs(nestdec^#) = {1},
  Uargs(c_9) = {1}, Uargs(c_12) = {1}

TcT has computed the following constructor-restricted matrix
interpretation.

         [dec](x1) = [1 1] x1 + [1]
                     [2 0]      [2]
                                   
    [Cons](x1, x2) = [0 0] x2 + [1]
                     [0 1]      [1]
                                   
             [Nil] = [1]           
                     [2]           
                                   
       [dec^#](x1) = [0]           
                     [0]           
                                   
         [c_1](x1) = [1 0] x1 + [0]
                     [0 1]      [0]
                                   
         [c_2](x1) = [0]           
                     [0]           
                                   
         [c_3](x1) = [1 0] x1 + [0]
                     [0 1]      [0]
                                   
             [c_4] = [0]           
                     [0]           
                                   
  [isNilNil^#](x1) = [0]           
                     [0]           
                                   
             [c_5] = [0]           
                     [0]           
                                   
             [c_6] = [0]           
                     [0]           
                                   
             [c_7] = [0]           
                     [0]           
                                   
             [c_8] = [0]           
                     [0]           
                                   
   [nestdec^#](x1) = [1 1] x1 + [0]
                     [0 0]      [0]
                                   
         [c_9](x1) = [1 0] x1 + [0]
                     [0 1]      [0]
                                   
            [c_10] = [0]           
                     [0]           
                                   
  [number17^#](x1) = [0]           
                     [0]           
                                   
            [c_11] = [0]           
                     [0]           
                                   
      [goal^#](x1) = [2 2] x1 + [0]
                     [0 0]      [0]
                                   
        [c_12](x1) = [1 0] x1 + [0]
                     [0 1]      [0]

The order satisfies the following ordering constraints:

         [dec(Cons(Cons(x', xs'), Cons(x, xs)))] =  [0 1] xs + [4]                    
                                                    [0 0]      [4]                    
                                                 >  [0 1] xs + [3]                    
                                                    [0 0]      [4]                    
                                                 =  [dec(Cons(x, xs))]                
                                                                                      
                 [dec(Cons(Cons(x, xs), Nil()))] =  [5]                               
                                                    [4]                               
                                                 >  [4]                               
                                                    [4]                               
                                                 =  [dec(Nil())]                      
                                                                                      
                 [dec(Cons(Nil(), Cons(x, xs)))] =  [0 1] xs + [4]                    
                                                    [0 0]      [4]                    
                                                 >  [0 1] xs + [3]                    
                                                    [0 0]      [4]                    
                                                 =  [dec(Cons(x, xs))]                
                                                                                      
                       [dec(Cons(Nil(), Nil()))] =  [5]                               
                                                    [4]                               
                                                 >  [1]                               
                                                    [2]                               
                                                 =  [Nil()]                           
                                                                                      
       [dec^#(Cons(Cons(x', xs'), Cons(x, xs)))] =  [0]                               
                                                    [0]                               
                                                 >= [0]                               
                                                    [0]                               
                                                 =  [c_1(dec^#(Cons(x, xs)))]         
                                                                                      
               [dec^#(Cons(Cons(x, xs), Nil()))] =  [0]                               
                                                    [0]                               
                                                 >= [0]                               
                                                    [0]                               
                                                 =  [c_2(dec^#(Nil()))]               
                                                                                      
               [dec^#(Cons(Nil(), Cons(x, xs)))] =  [0]                               
                                                    [0]                               
                                                 >= [0]                               
                                                    [0]                               
                                                 =  [c_3(dec^#(Cons(x, xs)))]         
                                                                                      
                     [dec^#(Cons(Nil(), Nil()))] =  [0]                               
                                                    [0]                               
                                                 >= [0]                               
                                                    [0]                               
                                                 =  [c_4()]                           
                                                                                      
  [isNilNil^#(Cons(Cons(x', xs'), Cons(x, xs)))] =  [0]                               
                                                    [0]                               
                                                 >= [0]                               
                                                    [0]                               
                                                 =  [c_5()]                           
                                                                                      
          [isNilNil^#(Cons(Cons(x, xs), Nil()))] =  [0]                               
                                                    [0]                               
                                                 >= [0]                               
                                                    [0]                               
                                                 =  [c_6()]                           
                                                                                      
          [isNilNil^#(Cons(Nil(), Cons(x, xs)))] =  [0]                               
                                                    [0]                               
                                                 >= [0]                               
                                                    [0]                               
                                                 =  [c_7()]                           
                                                                                      
                [isNilNil^#(Cons(Nil(), Nil()))] =  [0]                               
                                                    [0]                               
                                                 >= [0]                               
                                                    [0]                               
                                                 =  [c_8()]                           
                                                                                      
                        [nestdec^#(Cons(x, xs))] =  [0 1] xs + [2]                    
                                                    [0 0]      [0]                    
                                                 ?  [0 1] xs + [7]                    
                                                    [0 0]      [0]                    
                                                 =  [c_9(nestdec^#(dec(Cons(x, xs))))]
                                                                                      
                              [nestdec^#(Nil())] =  [3]                               
                                                    [0]                               
                                                 >  [0]                               
                                                    [0]                               
                                                 =  [c_10()]                          
                                                                                      
                                 [number17^#(n)] =  [0]                               
                                                    [0]                               
                                                 >= [0]                               
                                                    [0]                               
                                                 =  [c_11()]                          
                                                                                      
                                     [goal^#(x)] =  [2 2] x + [0]                     
                                                    [0 0]     [0]                     
                                                 >= [1 1] x + [0]                     
                                                    [0 0]     [0]                     
                                                 =  [c_12(nestdec^#(x))]              
                                                                                      

Further, it can be verified that all rules not oriented are covered by the weightgap condition.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { dec^#(Cons(Cons(x', xs'), Cons(x, xs))) ->
    c_1(dec^#(Cons(x, xs)))
  , dec^#(Cons(Cons(x, xs), Nil())) -> c_2(dec^#(Nil()))
  , dec^#(Cons(Nil(), Cons(x, xs))) -> c_3(dec^#(Cons(x, xs)))
  , dec^#(Cons(Nil(), Nil())) -> c_4()
  , isNilNil^#(Cons(Cons(x', xs'), Cons(x, xs))) -> c_5()
  , isNilNil^#(Cons(Cons(x, xs), Nil())) -> c_6()
  , isNilNil^#(Cons(Nil(), Cons(x, xs))) -> c_7()
  , isNilNil^#(Cons(Nil(), Nil())) -> c_8()
  , nestdec^#(Cons(x, xs)) -> c_9(nestdec^#(dec(Cons(x, xs))))
  , number17^#(n) -> c_11()
  , goal^#(x) -> c_12(nestdec^#(x)) }
Weak DPs: { nestdec^#(Nil()) -> c_10() }
Weak Trs:
  { dec(Cons(Cons(x', xs'), Cons(x, xs))) -> dec(Cons(x, xs))
  , dec(Cons(Cons(x, xs), Nil())) -> dec(Nil())
  , dec(Cons(Nil(), Cons(x, xs))) -> dec(Cons(x, xs))
  , dec(Cons(Nil(), Nil())) -> Nil() }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

We estimate the number of application of {2,4,5,6,7,8,9,10} by
applications of Pre({2,4,5,6,7,8,9,10}) = {1,3,11}. Here rules are
labeled as follows:

  DPs:
    { 1: dec^#(Cons(Cons(x', xs'), Cons(x, xs))) ->
         c_1(dec^#(Cons(x, xs)))
    , 2: dec^#(Cons(Cons(x, xs), Nil())) -> c_2(dec^#(Nil()))
    , 3: dec^#(Cons(Nil(), Cons(x, xs))) -> c_3(dec^#(Cons(x, xs)))
    , 4: dec^#(Cons(Nil(), Nil())) -> c_4()
    , 5: isNilNil^#(Cons(Cons(x', xs'), Cons(x, xs))) -> c_5()
    , 6: isNilNil^#(Cons(Cons(x, xs), Nil())) -> c_6()
    , 7: isNilNil^#(Cons(Nil(), Cons(x, xs))) -> c_7()
    , 8: isNilNil^#(Cons(Nil(), Nil())) -> c_8()
    , 9: nestdec^#(Cons(x, xs)) -> c_9(nestdec^#(dec(Cons(x, xs))))
    , 10: number17^#(n) -> c_11()
    , 11: goal^#(x) -> c_12(nestdec^#(x))
    , 12: nestdec^#(Nil()) -> c_10() }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { dec^#(Cons(Cons(x', xs'), Cons(x, xs))) ->
    c_1(dec^#(Cons(x, xs)))
  , dec^#(Cons(Nil(), Cons(x, xs))) -> c_3(dec^#(Cons(x, xs)))
  , goal^#(x) -> c_12(nestdec^#(x)) }
Weak DPs:
  { dec^#(Cons(Cons(x, xs), Nil())) -> c_2(dec^#(Nil()))
  , dec^#(Cons(Nil(), Nil())) -> c_4()
  , isNilNil^#(Cons(Cons(x', xs'), Cons(x, xs))) -> c_5()
  , isNilNil^#(Cons(Cons(x, xs), Nil())) -> c_6()
  , isNilNil^#(Cons(Nil(), Cons(x, xs))) -> c_7()
  , isNilNil^#(Cons(Nil(), Nil())) -> c_8()
  , nestdec^#(Cons(x, xs)) -> c_9(nestdec^#(dec(Cons(x, xs))))
  , nestdec^#(Nil()) -> c_10()
  , number17^#(n) -> c_11() }
Weak Trs:
  { dec(Cons(Cons(x', xs'), Cons(x, xs))) -> dec(Cons(x, xs))
  , dec(Cons(Cons(x, xs), Nil())) -> dec(Nil())
  , dec(Cons(Nil(), Cons(x, xs))) -> dec(Cons(x, xs))
  , dec(Cons(Nil(), Nil())) -> Nil() }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

We estimate the number of application of {3} by applications of
Pre({3}) = {}. Here rules are labeled as follows:

  DPs:
    { 1: dec^#(Cons(Cons(x', xs'), Cons(x, xs))) ->
         c_1(dec^#(Cons(x, xs)))
    , 2: dec^#(Cons(Nil(), Cons(x, xs))) -> c_3(dec^#(Cons(x, xs)))
    , 3: goal^#(x) -> c_12(nestdec^#(x))
    , 4: dec^#(Cons(Cons(x, xs), Nil())) -> c_2(dec^#(Nil()))
    , 5: dec^#(Cons(Nil(), Nil())) -> c_4()
    , 6: isNilNil^#(Cons(Cons(x', xs'), Cons(x, xs))) -> c_5()
    , 7: isNilNil^#(Cons(Cons(x, xs), Nil())) -> c_6()
    , 8: isNilNil^#(Cons(Nil(), Cons(x, xs))) -> c_7()
    , 9: isNilNil^#(Cons(Nil(), Nil())) -> c_8()
    , 10: nestdec^#(Cons(x, xs)) -> c_9(nestdec^#(dec(Cons(x, xs))))
    , 11: nestdec^#(Nil()) -> c_10()
    , 12: number17^#(n) -> c_11() }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { dec^#(Cons(Cons(x', xs'), Cons(x, xs))) ->
    c_1(dec^#(Cons(x, xs)))
  , dec^#(Cons(Nil(), Cons(x, xs))) -> c_3(dec^#(Cons(x, xs))) }
Weak DPs:
  { dec^#(Cons(Cons(x, xs), Nil())) -> c_2(dec^#(Nil()))
  , dec^#(Cons(Nil(), Nil())) -> c_4()
  , isNilNil^#(Cons(Cons(x', xs'), Cons(x, xs))) -> c_5()
  , isNilNil^#(Cons(Cons(x, xs), Nil())) -> c_6()
  , isNilNil^#(Cons(Nil(), Cons(x, xs))) -> c_7()
  , isNilNil^#(Cons(Nil(), Nil())) -> c_8()
  , nestdec^#(Cons(x, xs)) -> c_9(nestdec^#(dec(Cons(x, xs))))
  , nestdec^#(Nil()) -> c_10()
  , number17^#(n) -> c_11()
  , goal^#(x) -> c_12(nestdec^#(x)) }
Weak Trs:
  { dec(Cons(Cons(x', xs'), Cons(x, xs))) -> dec(Cons(x, xs))
  , dec(Cons(Cons(x, xs), Nil())) -> dec(Nil())
  , dec(Cons(Nil(), Cons(x, xs))) -> dec(Cons(x, xs))
  , dec(Cons(Nil(), Nil())) -> Nil() }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

The following weak DPs constitute a sub-graph of the DG that is
closed under successors. The DPs are removed.

{ dec^#(Cons(Cons(x, xs), Nil())) -> c_2(dec^#(Nil()))
, dec^#(Cons(Nil(), Nil())) -> c_4()
, isNilNil^#(Cons(Cons(x', xs'), Cons(x, xs))) -> c_5()
, isNilNil^#(Cons(Cons(x, xs), Nil())) -> c_6()
, isNilNil^#(Cons(Nil(), Cons(x, xs))) -> c_7()
, isNilNil^#(Cons(Nil(), Nil())) -> c_8()
, nestdec^#(Cons(x, xs)) -> c_9(nestdec^#(dec(Cons(x, xs))))
, nestdec^#(Nil()) -> c_10()
, number17^#(n) -> c_11()
, goal^#(x) -> c_12(nestdec^#(x)) }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { dec^#(Cons(Cons(x', xs'), Cons(x, xs))) ->
    c_1(dec^#(Cons(x, xs)))
  , dec^#(Cons(Nil(), Cons(x, xs))) -> c_3(dec^#(Cons(x, xs))) }
Weak Trs:
  { dec(Cons(Cons(x', xs'), Cons(x, xs))) -> dec(Cons(x, xs))
  , dec(Cons(Cons(x, xs), Nil())) -> dec(Nil())
  , dec(Cons(Nil(), Cons(x, xs))) -> dec(Cons(x, xs))
  , dec(Cons(Nil(), Nil())) -> Nil() }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

No rule is usable, rules are removed from the input problem.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { dec^#(Cons(Cons(x', xs'), Cons(x, xs))) ->
    c_1(dec^#(Cons(x, xs)))
  , dec^#(Cons(Nil(), Cons(x, xs))) -> c_3(dec^#(Cons(x, xs))) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

We use the processor 'Small Polynomial Path Order (PS,1-bounded)'
to orient following rules strictly.

DPs:
  { 1: dec^#(Cons(Cons(x', xs'), Cons(x, xs))) ->
       c_1(dec^#(Cons(x, xs)))
  , 2: dec^#(Cons(Nil(), Cons(x, xs))) -> c_3(dec^#(Cons(x, xs))) }

Sub-proof:
----------
  The input was oriented with the instance of 'Small Polynomial Path
  Order (PS,1-bounded)' as induced by the safe mapping
  
   safe(Cons) = {1, 2}, safe(Nil) = {}, safe(dec^#) = {},
   safe(c_1) = {}, safe(c_3) = {}
  
  and precedence
  
   empty .
  
  Following symbols are considered recursive:
  
   {dec^#}
  
  The recursion depth is 1.
  
  Further, following argument filtering is employed:
  
   pi(Cons) = [2], pi(Nil) = [], pi(dec^#) = [1], pi(c_1) = [1],
   pi(c_3) = [1]
  
  Usable defined function symbols are a subset of:
  
   {dec^#}
  
  For your convenience, here are the satisfied ordering constraints:
  
    pi(dec^#(Cons(Cons(x', xs'), Cons(x, xs)))) = dec^#(Cons(; Cons(; xs));) 
                                                > c_1(dec^#(Cons(; xs););)   
                                                = pi(c_1(dec^#(Cons(x, xs))))
                                                                             
            pi(dec^#(Cons(Nil(), Cons(x, xs)))) = dec^#(Cons(; Cons(; xs));) 
                                                > c_3(dec^#(Cons(; xs););)   
                                                = pi(c_3(dec^#(Cons(x, xs))))
                                                                             

The strictly oriented rules are moved into the weak component.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).

Weak DPs:
  { dec^#(Cons(Cons(x', xs'), Cons(x, xs))) ->
    c_1(dec^#(Cons(x, xs)))
  , dec^#(Cons(Nil(), Cons(x, xs))) -> c_3(dec^#(Cons(x, xs))) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(1))

The following weak DPs constitute a sub-graph of the DG that is
closed under successors. The DPs are removed.

{ dec^#(Cons(Cons(x', xs'), Cons(x, xs))) ->
  c_1(dec^#(Cons(x, xs)))
, dec^#(Cons(Nil(), Cons(x, xs))) -> c_3(dec^#(Cons(x, xs))) }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).

Rules: Empty
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(1))

Empty rules are trivially bounded

Hurray, we answered YES(O(1),O(n^1))