*** 1 Progress [(?,O(n^2))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
app(Cons(x,xs),ys) -> Cons(x,app(xs,ys))
app(Nil(),ys) -> ys
goal(xs) -> naiverev(xs)
naiverev(Cons(x,xs)) -> app(naiverev(xs),Cons(x,Nil()))
naiverev(Nil()) -> Nil()
notEmpty(Cons(x,xs)) -> True()
notEmpty(Nil()) -> False()
Weak DP Rules:
Weak TRS Rules:
Signature:
{app/2,goal/1,naiverev/1,notEmpty/1} / {Cons/2,False/0,Nil/0,True/0}
Obligation:
Innermost
basic terms: {app,goal,naiverev,notEmpty}/{Cons,False,Nil,True}
Applied Processor:
DependencyPairs {dpKind_ = DT}
Proof:
We add the following dependency tuples:
Strict DPs
app#(Cons(x,xs),ys) -> c_1(app#(xs,ys))
app#(Nil(),ys) -> c_2()
goal#(xs) -> c_3(naiverev#(xs))
naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs))
naiverev#(Nil()) -> c_5()
notEmpty#(Cons(x,xs)) -> c_6()
notEmpty#(Nil()) -> c_7()
Weak DPs
and mark the set of starting terms.
*** 1.1 Progress [(?,O(n^2))] ***
Considered Problem:
Strict DP Rules:
app#(Cons(x,xs),ys) -> c_1(app#(xs,ys))
app#(Nil(),ys) -> c_2()
goal#(xs) -> c_3(naiverev#(xs))
naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs))
naiverev#(Nil()) -> c_5()
notEmpty#(Cons(x,xs)) -> c_6()
notEmpty#(Nil()) -> c_7()
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
app(Cons(x,xs),ys) -> Cons(x,app(xs,ys))
app(Nil(),ys) -> ys
goal(xs) -> naiverev(xs)
naiverev(Cons(x,xs)) -> app(naiverev(xs),Cons(x,Nil()))
naiverev(Nil()) -> Nil()
notEmpty(Cons(x,xs)) -> True()
notEmpty(Nil()) -> False()
Signature:
{app/2,goal/1,naiverev/1,notEmpty/1,app#/2,goal#/1,naiverev#/1,notEmpty#/1} / {Cons/2,False/0,Nil/0,True/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0,c_6/0,c_7/0}
Obligation:
Innermost
basic terms: {app#,goal#,naiverev#,notEmpty#}/{Cons,False,Nil,True}
Applied Processor:
UsableRules
Proof:
We replace rewrite rules by usable rules:
app(Cons(x,xs),ys) -> Cons(x,app(xs,ys))
app(Nil(),ys) -> ys
naiverev(Cons(x,xs)) -> app(naiverev(xs),Cons(x,Nil()))
naiverev(Nil()) -> Nil()
app#(Cons(x,xs),ys) -> c_1(app#(xs,ys))
app#(Nil(),ys) -> c_2()
goal#(xs) -> c_3(naiverev#(xs))
naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs))
naiverev#(Nil()) -> c_5()
notEmpty#(Cons(x,xs)) -> c_6()
notEmpty#(Nil()) -> c_7()
*** 1.1.1 Progress [(?,O(n^2))] ***
Considered Problem:
Strict DP Rules:
app#(Cons(x,xs),ys) -> c_1(app#(xs,ys))
app#(Nil(),ys) -> c_2()
goal#(xs) -> c_3(naiverev#(xs))
naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs))
naiverev#(Nil()) -> c_5()
notEmpty#(Cons(x,xs)) -> c_6()
notEmpty#(Nil()) -> c_7()
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
app(Cons(x,xs),ys) -> Cons(x,app(xs,ys))
app(Nil(),ys) -> ys
naiverev(Cons(x,xs)) -> app(naiverev(xs),Cons(x,Nil()))
naiverev(Nil()) -> Nil()
Signature:
{app/2,goal/1,naiverev/1,notEmpty/1,app#/2,goal#/1,naiverev#/1,notEmpty#/1} / {Cons/2,False/0,Nil/0,True/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0,c_6/0,c_7/0}
Obligation:
Innermost
basic terms: {app#,goal#,naiverev#,notEmpty#}/{Cons,False,Nil,True}
Applied Processor:
PredecessorEstimation {onSelection = all simple predecessor estimation selector}
Proof:
We estimate the number of application of
{2,5,6,7}
by application of
Pre({2,5,6,7}) = {1,3,4}.
Here rules are labelled as follows:
1: app#(Cons(x,xs),ys) ->
c_1(app#(xs,ys))
2: app#(Nil(),ys) -> c_2()
3: goal#(xs) -> c_3(naiverev#(xs))
4: naiverev#(Cons(x,xs)) ->
c_4(app#(naiverev(xs)
,Cons(x,Nil()))
,naiverev#(xs))
5: naiverev#(Nil()) -> c_5()
6: notEmpty#(Cons(x,xs)) -> c_6()
7: notEmpty#(Nil()) -> c_7()
*** 1.1.1.1 Progress [(?,O(n^2))] ***
Considered Problem:
Strict DP Rules:
app#(Cons(x,xs),ys) -> c_1(app#(xs,ys))
goal#(xs) -> c_3(naiverev#(xs))
naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs))
Strict TRS Rules:
Weak DP Rules:
app#(Nil(),ys) -> c_2()
naiverev#(Nil()) -> c_5()
notEmpty#(Cons(x,xs)) -> c_6()
notEmpty#(Nil()) -> c_7()
Weak TRS Rules:
app(Cons(x,xs),ys) -> Cons(x,app(xs,ys))
app(Nil(),ys) -> ys
naiverev(Cons(x,xs)) -> app(naiverev(xs),Cons(x,Nil()))
naiverev(Nil()) -> Nil()
Signature:
{app/2,goal/1,naiverev/1,notEmpty/1,app#/2,goal#/1,naiverev#/1,notEmpty#/1} / {Cons/2,False/0,Nil/0,True/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0,c_6/0,c_7/0}
Obligation:
Innermost
basic terms: {app#,goal#,naiverev#,notEmpty#}/{Cons,False,Nil,True}
Applied Processor:
RemoveWeakSuffixes
Proof:
Consider the dependency graph
1:S:app#(Cons(x,xs),ys) -> c_1(app#(xs,ys))
-->_1 app#(Nil(),ys) -> c_2():4
-->_1 app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)):1
2:S:goal#(xs) -> c_3(naiverev#(xs))
-->_1 naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs)):3
-->_1 naiverev#(Nil()) -> c_5():5
3:S:naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs))
-->_2 naiverev#(Nil()) -> c_5():5
-->_1 app#(Nil(),ys) -> c_2():4
-->_2 naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs)):3
-->_1 app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)):1
4:W:app#(Nil(),ys) -> c_2()
5:W:naiverev#(Nil()) -> c_5()
6:W:notEmpty#(Cons(x,xs)) -> c_6()
7:W:notEmpty#(Nil()) -> c_7()
The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
7: notEmpty#(Nil()) -> c_7()
6: notEmpty#(Cons(x,xs)) -> c_6()
5: naiverev#(Nil()) -> c_5()
4: app#(Nil(),ys) -> c_2()
*** 1.1.1.1.1 Progress [(?,O(n^2))] ***
Considered Problem:
Strict DP Rules:
app#(Cons(x,xs),ys) -> c_1(app#(xs,ys))
goal#(xs) -> c_3(naiverev#(xs))
naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs))
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
app(Cons(x,xs),ys) -> Cons(x,app(xs,ys))
app(Nil(),ys) -> ys
naiverev(Cons(x,xs)) -> app(naiverev(xs),Cons(x,Nil()))
naiverev(Nil()) -> Nil()
Signature:
{app/2,goal/1,naiverev/1,notEmpty/1,app#/2,goal#/1,naiverev#/1,notEmpty#/1} / {Cons/2,False/0,Nil/0,True/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0,c_6/0,c_7/0}
Obligation:
Innermost
basic terms: {app#,goal#,naiverev#,notEmpty#}/{Cons,False,Nil,True}
Applied Processor:
RemoveHeads
Proof:
Consider the dependency graph
1:S:app#(Cons(x,xs),ys) -> c_1(app#(xs,ys))
-->_1 app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)):1
2:S:goal#(xs) -> c_3(naiverev#(xs))
-->_1 naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs)):3
3:S:naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs))
-->_2 naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs)):3
-->_1 app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)):1
Following roots of the dependency graph are removed, as the considered set of starting terms is closed under reduction with respect to these rules (modulo compound contexts).
[(2,goal#(xs) -> c_3(naiverev#(xs)))]
*** 1.1.1.1.1.1 Progress [(?,O(n^2))] ***
Considered Problem:
Strict DP Rules:
app#(Cons(x,xs),ys) -> c_1(app#(xs,ys))
naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs))
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
app(Cons(x,xs),ys) -> Cons(x,app(xs,ys))
app(Nil(),ys) -> ys
naiverev(Cons(x,xs)) -> app(naiverev(xs),Cons(x,Nil()))
naiverev(Nil()) -> Nil()
Signature:
{app/2,goal/1,naiverev/1,notEmpty/1,app#/2,goal#/1,naiverev#/1,notEmpty#/1} / {Cons/2,False/0,Nil/0,True/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0,c_6/0,c_7/0}
Obligation:
Innermost
basic terms: {app#,goal#,naiverev#,notEmpty#}/{Cons,False,Nil,True}
Applied Processor:
Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd}
Proof:
We analyse the complexity of following sub-problems (R) and (S).
Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component.
Problem (R)
Strict DP Rules:
app#(Cons(x,xs),ys) -> c_1(app#(xs,ys))
Strict TRS Rules:
Weak DP Rules:
naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs))
Weak TRS Rules:
app(Cons(x,xs),ys) -> Cons(x,app(xs,ys))
app(Nil(),ys) -> ys
naiverev(Cons(x,xs)) -> app(naiverev(xs),Cons(x,Nil()))
naiverev(Nil()) -> Nil()
Signature:
{app/2,goal/1,naiverev/1,notEmpty/1,app#/2,goal#/1,naiverev#/1,notEmpty#/1} / {Cons/2,False/0,Nil/0,True/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0,c_6/0,c_7/0}
Obligation:
Innermost
basic terms: {app#,goal#,naiverev#,notEmpty#}/{Cons,False,Nil,True}
Problem (S)
Strict DP Rules:
naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs))
Strict TRS Rules:
Weak DP Rules:
app#(Cons(x,xs),ys) -> c_1(app#(xs,ys))
Weak TRS Rules:
app(Cons(x,xs),ys) -> Cons(x,app(xs,ys))
app(Nil(),ys) -> ys
naiverev(Cons(x,xs)) -> app(naiverev(xs),Cons(x,Nil()))
naiverev(Nil()) -> Nil()
Signature:
{app/2,goal/1,naiverev/1,notEmpty/1,app#/2,goal#/1,naiverev#/1,notEmpty#/1} / {Cons/2,False/0,Nil/0,True/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0,c_6/0,c_7/0}
Obligation:
Innermost
basic terms: {app#,goal#,naiverev#,notEmpty#}/{Cons,False,Nil,True}
*** 1.1.1.1.1.1.1 Progress [(?,O(n^2))] ***
Considered Problem:
Strict DP Rules:
app#(Cons(x,xs),ys) -> c_1(app#(xs,ys))
Strict TRS Rules:
Weak DP Rules:
naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs))
Weak TRS Rules:
app(Cons(x,xs),ys) -> Cons(x,app(xs,ys))
app(Nil(),ys) -> ys
naiverev(Cons(x,xs)) -> app(naiverev(xs),Cons(x,Nil()))
naiverev(Nil()) -> Nil()
Signature:
{app/2,goal/1,naiverev/1,notEmpty/1,app#/2,goal#/1,naiverev#/1,notEmpty#/1} / {Cons/2,False/0,Nil/0,True/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0,c_6/0,c_7/0}
Obligation:
Innermost
basic terms: {app#,goal#,naiverev#,notEmpty#}/{Cons,False,Nil,True}
Applied Processor:
PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
Proof:
We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
1: app#(Cons(x,xs),ys) ->
c_1(app#(xs,ys))
The strictly oriented rules are moved into the weak component.
*** 1.1.1.1.1.1.1.1 Progress [(?,O(n^2))] ***
Considered Problem:
Strict DP Rules:
app#(Cons(x,xs),ys) -> c_1(app#(xs,ys))
Strict TRS Rules:
Weak DP Rules:
naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs))
Weak TRS Rules:
app(Cons(x,xs),ys) -> Cons(x,app(xs,ys))
app(Nil(),ys) -> ys
naiverev(Cons(x,xs)) -> app(naiverev(xs),Cons(x,Nil()))
naiverev(Nil()) -> Nil()
Signature:
{app/2,goal/1,naiverev/1,notEmpty/1,app#/2,goal#/1,naiverev#/1,notEmpty#/1} / {Cons/2,False/0,Nil/0,True/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0,c_6/0,c_7/0}
Obligation:
Innermost
basic terms: {app#,goal#,naiverev#,notEmpty#}/{Cons,False,Nil,True}
Applied Processor:
NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
Proof:
We apply a polynomial interpretation of kind constructor-based(mixed(2)):
The following argument positions are considered usable:
uargs(c_1) = {1},
uargs(c_4) = {1,2}
Following symbols are considered usable:
{app,naiverev,app#,goal#,naiverev#,notEmpty#}
TcT has computed the following interpretation:
p(Cons) = 1 + x2
p(False) = 0
p(Nil) = 0
p(True) = 0
p(app) = x1 + x2
p(goal) = 1
p(naiverev) = x1
p(notEmpty) = 0
p(app#) = x1 + 7*x1*x2
p(goal#) = 2*x1
p(naiverev#) = 1 + x1 + 5*x1^2
p(notEmpty#) = 1 + x1^2
p(c_1) = x1
p(c_2) = 1
p(c_3) = 0
p(c_4) = 1 + x1 + x2
p(c_5) = 1
p(c_6) = 1
p(c_7) = 1
Following rules are strictly oriented:
app#(Cons(x,xs),ys) = 1 + xs + 7*xs*ys + 7*ys
> xs + 7*xs*ys
= c_1(app#(xs,ys))
Following rules are (at-least) weakly oriented:
naiverev#(Cons(x,xs)) = 7 + 11*xs + 5*xs^2
>= 2 + 9*xs + 5*xs^2
= c_4(app#(naiverev(xs)
,Cons(x,Nil()))
,naiverev#(xs))
app(Cons(x,xs),ys) = 1 + xs + ys
>= 1 + xs + ys
= Cons(x,app(xs,ys))
app(Nil(),ys) = ys
>= ys
= ys
naiverev(Cons(x,xs)) = 1 + xs
>= 1 + xs
= app(naiverev(xs),Cons(x,Nil()))
naiverev(Nil()) = 0
>= 0
= Nil()
*** 1.1.1.1.1.1.1.1.1 Progress [(?,O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
Weak DP Rules:
app#(Cons(x,xs),ys) -> c_1(app#(xs,ys))
naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs))
Weak TRS Rules:
app(Cons(x,xs),ys) -> Cons(x,app(xs,ys))
app(Nil(),ys) -> ys
naiverev(Cons(x,xs)) -> app(naiverev(xs),Cons(x,Nil()))
naiverev(Nil()) -> Nil()
Signature:
{app/2,goal/1,naiverev/1,notEmpty/1,app#/2,goal#/1,naiverev#/1,notEmpty#/1} / {Cons/2,False/0,Nil/0,True/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0,c_6/0,c_7/0}
Obligation:
Innermost
basic terms: {app#,goal#,naiverev#,notEmpty#}/{Cons,False,Nil,True}
Applied Processor:
Assumption
Proof:
()
*** 1.1.1.1.1.1.1.2 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
Weak DP Rules:
app#(Cons(x,xs),ys) -> c_1(app#(xs,ys))
naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs))
Weak TRS Rules:
app(Cons(x,xs),ys) -> Cons(x,app(xs,ys))
app(Nil(),ys) -> ys
naiverev(Cons(x,xs)) -> app(naiverev(xs),Cons(x,Nil()))
naiverev(Nil()) -> Nil()
Signature:
{app/2,goal/1,naiverev/1,notEmpty/1,app#/2,goal#/1,naiverev#/1,notEmpty#/1} / {Cons/2,False/0,Nil/0,True/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0,c_6/0,c_7/0}
Obligation:
Innermost
basic terms: {app#,goal#,naiverev#,notEmpty#}/{Cons,False,Nil,True}
Applied Processor:
RemoveWeakSuffixes
Proof:
Consider the dependency graph
1:W:app#(Cons(x,xs),ys) -> c_1(app#(xs,ys))
-->_1 app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)):1
2:W:naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs))
-->_2 naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs)):2
-->_1 app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)):1
The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
2: naiverev#(Cons(x,xs)) ->
c_4(app#(naiverev(xs)
,Cons(x,Nil()))
,naiverev#(xs))
1: app#(Cons(x,xs),ys) ->
c_1(app#(xs,ys))
*** 1.1.1.1.1.1.1.2.1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
app(Cons(x,xs),ys) -> Cons(x,app(xs,ys))
app(Nil(),ys) -> ys
naiverev(Cons(x,xs)) -> app(naiverev(xs),Cons(x,Nil()))
naiverev(Nil()) -> Nil()
Signature:
{app/2,goal/1,naiverev/1,notEmpty/1,app#/2,goal#/1,naiverev#/1,notEmpty#/1} / {Cons/2,False/0,Nil/0,True/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0,c_6/0,c_7/0}
Obligation:
Innermost
basic terms: {app#,goal#,naiverev#,notEmpty#}/{Cons,False,Nil,True}
Applied Processor:
EmptyProcessor
Proof:
The problem is already closed. The intended complexity is O(1).
*** 1.1.1.1.1.1.2 Progress [(?,O(n^1))] ***
Considered Problem:
Strict DP Rules:
naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs))
Strict TRS Rules:
Weak DP Rules:
app#(Cons(x,xs),ys) -> c_1(app#(xs,ys))
Weak TRS Rules:
app(Cons(x,xs),ys) -> Cons(x,app(xs,ys))
app(Nil(),ys) -> ys
naiverev(Cons(x,xs)) -> app(naiverev(xs),Cons(x,Nil()))
naiverev(Nil()) -> Nil()
Signature:
{app/2,goal/1,naiverev/1,notEmpty/1,app#/2,goal#/1,naiverev#/1,notEmpty#/1} / {Cons/2,False/0,Nil/0,True/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0,c_6/0,c_7/0}
Obligation:
Innermost
basic terms: {app#,goal#,naiverev#,notEmpty#}/{Cons,False,Nil,True}
Applied Processor:
RemoveWeakSuffixes
Proof:
Consider the dependency graph
1:S:naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs))
-->_1 app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)):2
-->_2 naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs)):1
2:W:app#(Cons(x,xs),ys) -> c_1(app#(xs,ys))
-->_1 app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)):2
The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
2: app#(Cons(x,xs),ys) ->
c_1(app#(xs,ys))
*** 1.1.1.1.1.1.2.1 Progress [(?,O(n^1))] ***
Considered Problem:
Strict DP Rules:
naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs))
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
app(Cons(x,xs),ys) -> Cons(x,app(xs,ys))
app(Nil(),ys) -> ys
naiverev(Cons(x,xs)) -> app(naiverev(xs),Cons(x,Nil()))
naiverev(Nil()) -> Nil()
Signature:
{app/2,goal/1,naiverev/1,notEmpty/1,app#/2,goal#/1,naiverev#/1,notEmpty#/1} / {Cons/2,False/0,Nil/0,True/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0,c_6/0,c_7/0}
Obligation:
Innermost
basic terms: {app#,goal#,naiverev#,notEmpty#}/{Cons,False,Nil,True}
Applied Processor:
SimplifyRHS
Proof:
Consider the dependency graph
1:S:naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs))
-->_2 naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs)):1
Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
naiverev#(Cons(x,xs)) -> c_4(naiverev#(xs))
*** 1.1.1.1.1.1.2.1.1 Progress [(?,O(n^1))] ***
Considered Problem:
Strict DP Rules:
naiverev#(Cons(x,xs)) -> c_4(naiverev#(xs))
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
app(Cons(x,xs),ys) -> Cons(x,app(xs,ys))
app(Nil(),ys) -> ys
naiverev(Cons(x,xs)) -> app(naiverev(xs),Cons(x,Nil()))
naiverev(Nil()) -> Nil()
Signature:
{app/2,goal/1,naiverev/1,notEmpty/1,app#/2,goal#/1,naiverev#/1,notEmpty#/1} / {Cons/2,False/0,Nil/0,True/0,c_1/1,c_2/0,c_3/1,c_4/1,c_5/0,c_6/0,c_7/0}
Obligation:
Innermost
basic terms: {app#,goal#,naiverev#,notEmpty#}/{Cons,False,Nil,True}
Applied Processor:
UsableRules
Proof:
We replace rewrite rules by usable rules:
naiverev#(Cons(x,xs)) -> c_4(naiverev#(xs))
*** 1.1.1.1.1.1.2.1.1.1 Progress [(?,O(n^1))] ***
Considered Problem:
Strict DP Rules:
naiverev#(Cons(x,xs)) -> c_4(naiverev#(xs))
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
Signature:
{app/2,goal/1,naiverev/1,notEmpty/1,app#/2,goal#/1,naiverev#/1,notEmpty#/1} / {Cons/2,False/0,Nil/0,True/0,c_1/1,c_2/0,c_3/1,c_4/1,c_5/0,c_6/0,c_7/0}
Obligation:
Innermost
basic terms: {app#,goal#,naiverev#,notEmpty#}/{Cons,False,Nil,True}
Applied Processor:
PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
Proof:
We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
1: naiverev#(Cons(x,xs)) ->
c_4(naiverev#(xs))
The strictly oriented rules are moved into the weak component.
*** 1.1.1.1.1.1.2.1.1.1.1 Progress [(?,O(n^1))] ***
Considered Problem:
Strict DP Rules:
naiverev#(Cons(x,xs)) -> c_4(naiverev#(xs))
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
Signature:
{app/2,goal/1,naiverev/1,notEmpty/1,app#/2,goal#/1,naiverev#/1,notEmpty#/1} / {Cons/2,False/0,Nil/0,True/0,c_1/1,c_2/0,c_3/1,c_4/1,c_5/0,c_6/0,c_7/0}
Obligation:
Innermost
basic terms: {app#,goal#,naiverev#,notEmpty#}/{Cons,False,Nil,True}
Applied Processor:
NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
Proof:
We apply a matrix interpretation of kind constructor based matrix interpretation:
The following argument positions are considered usable:
uargs(c_4) = {1}
Following symbols are considered usable:
{app#,goal#,naiverev#,notEmpty#}
TcT has computed the following interpretation:
p(Cons) = [1] x2 + [5]
p(False) = [2]
p(Nil) = [0]
p(True) = [0]
p(app) = [8] x2 + [0]
p(goal) = [1] x1 + [0]
p(naiverev) = [1] x1 + [0]
p(notEmpty) = [1] x1 + [1]
p(app#) = [2] x2 + [0]
p(goal#) = [1]
p(naiverev#) = [4] x1 + [1]
p(notEmpty#) = [2] x1 + [2]
p(c_1) = [1] x1 + [1]
p(c_2) = [1]
p(c_3) = [1] x1 + [2]
p(c_4) = [1] x1 + [15]
p(c_5) = [1]
p(c_6) = [1]
p(c_7) = [1]
Following rules are strictly oriented:
naiverev#(Cons(x,xs)) = [4] xs + [21]
> [4] xs + [16]
= c_4(naiverev#(xs))
Following rules are (at-least) weakly oriented:
*** 1.1.1.1.1.1.2.1.1.1.1.1 Progress [(?,O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
Weak DP Rules:
naiverev#(Cons(x,xs)) -> c_4(naiverev#(xs))
Weak TRS Rules:
Signature:
{app/2,goal/1,naiverev/1,notEmpty/1,app#/2,goal#/1,naiverev#/1,notEmpty#/1} / {Cons/2,False/0,Nil/0,True/0,c_1/1,c_2/0,c_3/1,c_4/1,c_5/0,c_6/0,c_7/0}
Obligation:
Innermost
basic terms: {app#,goal#,naiverev#,notEmpty#}/{Cons,False,Nil,True}
Applied Processor:
Assumption
Proof:
()
*** 1.1.1.1.1.1.2.1.1.1.2 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
Weak DP Rules:
naiverev#(Cons(x,xs)) -> c_4(naiverev#(xs))
Weak TRS Rules:
Signature:
{app/2,goal/1,naiverev/1,notEmpty/1,app#/2,goal#/1,naiverev#/1,notEmpty#/1} / {Cons/2,False/0,Nil/0,True/0,c_1/1,c_2/0,c_3/1,c_4/1,c_5/0,c_6/0,c_7/0}
Obligation:
Innermost
basic terms: {app#,goal#,naiverev#,notEmpty#}/{Cons,False,Nil,True}
Applied Processor:
RemoveWeakSuffixes
Proof:
Consider the dependency graph
1:W:naiverev#(Cons(x,xs)) -> c_4(naiverev#(xs))
-->_1 naiverev#(Cons(x,xs)) -> c_4(naiverev#(xs)):1
The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
1: naiverev#(Cons(x,xs)) ->
c_4(naiverev#(xs))
*** 1.1.1.1.1.1.2.1.1.1.2.1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
Signature:
{app/2,goal/1,naiverev/1,notEmpty/1,app#/2,goal#/1,naiverev#/1,notEmpty#/1} / {Cons/2,False/0,Nil/0,True/0,c_1/1,c_2/0,c_3/1,c_4/1,c_5/0,c_6/0,c_7/0}
Obligation:
Innermost
basic terms: {app#,goal#,naiverev#,notEmpty#}/{Cons,False,Nil,True}
Applied Processor:
EmptyProcessor
Proof:
The problem is already closed. The intended complexity is O(1).