*** 1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: app(Cons(x,xs),ys) -> Cons(x,app(xs,ys)) app(Nil(),ys) -> ys goal(xs) -> naiverev(xs) naiverev(Cons(x,xs)) -> app(naiverev(xs),Cons(x,Nil())) naiverev(Nil()) -> Nil() notEmpty(Cons(x,xs)) -> True() notEmpty(Nil()) -> False() Weak DP Rules: Weak TRS Rules: Signature: {app/2,goal/1,naiverev/1,notEmpty/1} / {Cons/2,False/0,Nil/0,True/0} Obligation: Innermost basic terms: {app,goal,naiverev,notEmpty}/{Cons,False,Nil,True} Applied Processor: DependencyPairs {dpKind_ = DT} Proof: We add the following dependency tuples: Strict DPs app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)) app#(Nil(),ys) -> c_2() goal#(xs) -> c_3(naiverev#(xs)) naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs)) naiverev#(Nil()) -> c_5() notEmpty#(Cons(x,xs)) -> c_6() notEmpty#(Nil()) -> c_7() Weak DPs and mark the set of starting terms. *** 1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)) app#(Nil(),ys) -> c_2() goal#(xs) -> c_3(naiverev#(xs)) naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs)) naiverev#(Nil()) -> c_5() notEmpty#(Cons(x,xs)) -> c_6() notEmpty#(Nil()) -> c_7() Strict TRS Rules: Weak DP Rules: Weak TRS Rules: app(Cons(x,xs),ys) -> Cons(x,app(xs,ys)) app(Nil(),ys) -> ys goal(xs) -> naiverev(xs) naiverev(Cons(x,xs)) -> app(naiverev(xs),Cons(x,Nil())) naiverev(Nil()) -> Nil() notEmpty(Cons(x,xs)) -> True() notEmpty(Nil()) -> False() Signature: {app/2,goal/1,naiverev/1,notEmpty/1,app#/2,goal#/1,naiverev#/1,notEmpty#/1} / {Cons/2,False/0,Nil/0,True/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0,c_6/0,c_7/0} Obligation: Innermost basic terms: {app#,goal#,naiverev#,notEmpty#}/{Cons,False,Nil,True} Applied Processor: UsableRules Proof: We replace rewrite rules by usable rules: app(Cons(x,xs),ys) -> Cons(x,app(xs,ys)) app(Nil(),ys) -> ys naiverev(Cons(x,xs)) -> app(naiverev(xs),Cons(x,Nil())) naiverev(Nil()) -> Nil() app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)) app#(Nil(),ys) -> c_2() goal#(xs) -> c_3(naiverev#(xs)) naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs)) naiverev#(Nil()) -> c_5() notEmpty#(Cons(x,xs)) -> c_6() notEmpty#(Nil()) -> c_7() *** 1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)) app#(Nil(),ys) -> c_2() goal#(xs) -> c_3(naiverev#(xs)) naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs)) naiverev#(Nil()) -> c_5() notEmpty#(Cons(x,xs)) -> c_6() notEmpty#(Nil()) -> c_7() Strict TRS Rules: Weak DP Rules: Weak TRS Rules: app(Cons(x,xs),ys) -> Cons(x,app(xs,ys)) app(Nil(),ys) -> ys naiverev(Cons(x,xs)) -> app(naiverev(xs),Cons(x,Nil())) naiverev(Nil()) -> Nil() Signature: {app/2,goal/1,naiverev/1,notEmpty/1,app#/2,goal#/1,naiverev#/1,notEmpty#/1} / {Cons/2,False/0,Nil/0,True/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0,c_6/0,c_7/0} Obligation: Innermost basic terms: {app#,goal#,naiverev#,notEmpty#}/{Cons,False,Nil,True} Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} Proof: We estimate the number of application of {2,5,6,7} by application of Pre({2,5,6,7}) = {1,3,4}. Here rules are labelled as follows: 1: app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)) 2: app#(Nil(),ys) -> c_2() 3: goal#(xs) -> c_3(naiverev#(xs)) 4: naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs) ,Cons(x,Nil())) ,naiverev#(xs)) 5: naiverev#(Nil()) -> c_5() 6: notEmpty#(Cons(x,xs)) -> c_6() 7: notEmpty#(Nil()) -> c_7() *** 1.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)) goal#(xs) -> c_3(naiverev#(xs)) naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs)) Strict TRS Rules: Weak DP Rules: app#(Nil(),ys) -> c_2() naiverev#(Nil()) -> c_5() notEmpty#(Cons(x,xs)) -> c_6() notEmpty#(Nil()) -> c_7() Weak TRS Rules: app(Cons(x,xs),ys) -> Cons(x,app(xs,ys)) app(Nil(),ys) -> ys naiverev(Cons(x,xs)) -> app(naiverev(xs),Cons(x,Nil())) naiverev(Nil()) -> Nil() Signature: {app/2,goal/1,naiverev/1,notEmpty/1,app#/2,goal#/1,naiverev#/1,notEmpty#/1} / {Cons/2,False/0,Nil/0,True/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0,c_6/0,c_7/0} Obligation: Innermost basic terms: {app#,goal#,naiverev#,notEmpty#}/{Cons,False,Nil,True} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)) -->_1 app#(Nil(),ys) -> c_2():4 -->_1 app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)):1 2:S:goal#(xs) -> c_3(naiverev#(xs)) -->_1 naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs)):3 -->_1 naiverev#(Nil()) -> c_5():5 3:S:naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs)) -->_2 naiverev#(Nil()) -> c_5():5 -->_1 app#(Nil(),ys) -> c_2():4 -->_2 naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs)):3 -->_1 app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)):1 4:W:app#(Nil(),ys) -> c_2() 5:W:naiverev#(Nil()) -> c_5() 6:W:notEmpty#(Cons(x,xs)) -> c_6() 7:W:notEmpty#(Nil()) -> c_7() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 7: notEmpty#(Nil()) -> c_7() 6: notEmpty#(Cons(x,xs)) -> c_6() 5: naiverev#(Nil()) -> c_5() 4: app#(Nil(),ys) -> c_2() *** 1.1.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)) goal#(xs) -> c_3(naiverev#(xs)) naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: app(Cons(x,xs),ys) -> Cons(x,app(xs,ys)) app(Nil(),ys) -> ys naiverev(Cons(x,xs)) -> app(naiverev(xs),Cons(x,Nil())) naiverev(Nil()) -> Nil() Signature: {app/2,goal/1,naiverev/1,notEmpty/1,app#/2,goal#/1,naiverev#/1,notEmpty#/1} / {Cons/2,False/0,Nil/0,True/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0,c_6/0,c_7/0} Obligation: Innermost basic terms: {app#,goal#,naiverev#,notEmpty#}/{Cons,False,Nil,True} Applied Processor: RemoveHeads Proof: Consider the dependency graph 1:S:app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)) -->_1 app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)):1 2:S:goal#(xs) -> c_3(naiverev#(xs)) -->_1 naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs)):3 3:S:naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs)) -->_2 naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs)):3 -->_1 app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)):1 Following roots of the dependency graph are removed, as the considered set of starting terms is closed under reduction with respect to these rules (modulo compound contexts). [(2,goal#(xs) -> c_3(naiverev#(xs)))] *** 1.1.1.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)) naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: app(Cons(x,xs),ys) -> Cons(x,app(xs,ys)) app(Nil(),ys) -> ys naiverev(Cons(x,xs)) -> app(naiverev(xs),Cons(x,Nil())) naiverev(Nil()) -> Nil() Signature: {app/2,goal/1,naiverev/1,notEmpty/1,app#/2,goal#/1,naiverev#/1,notEmpty#/1} / {Cons/2,False/0,Nil/0,True/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0,c_6/0,c_7/0} Obligation: Innermost basic terms: {app#,goal#,naiverev#,notEmpty#}/{Cons,False,Nil,True} Applied Processor: Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd} Proof: We analyse the complexity of following sub-problems (R) and (S). Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component. Problem (R) Strict DP Rules: app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)) Strict TRS Rules: Weak DP Rules: naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs)) Weak TRS Rules: app(Cons(x,xs),ys) -> Cons(x,app(xs,ys)) app(Nil(),ys) -> ys naiverev(Cons(x,xs)) -> app(naiverev(xs),Cons(x,Nil())) naiverev(Nil()) -> Nil() Signature: {app/2,goal/1,naiverev/1,notEmpty/1,app#/2,goal#/1,naiverev#/1,notEmpty#/1} / {Cons/2,False/0,Nil/0,True/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0,c_6/0,c_7/0} Obligation: Innermost basic terms: {app#,goal#,naiverev#,notEmpty#}/{Cons,False,Nil,True} Problem (S) Strict DP Rules: naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs)) Strict TRS Rules: Weak DP Rules: app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)) Weak TRS Rules: app(Cons(x,xs),ys) -> Cons(x,app(xs,ys)) app(Nil(),ys) -> ys naiverev(Cons(x,xs)) -> app(naiverev(xs),Cons(x,Nil())) naiverev(Nil()) -> Nil() Signature: {app/2,goal/1,naiverev/1,notEmpty/1,app#/2,goal#/1,naiverev#/1,notEmpty#/1} / {Cons/2,False/0,Nil/0,True/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0,c_6/0,c_7/0} Obligation: Innermost basic terms: {app#,goal#,naiverev#,notEmpty#}/{Cons,False,Nil,True} *** 1.1.1.1.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)) Strict TRS Rules: Weak DP Rules: naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs)) Weak TRS Rules: app(Cons(x,xs),ys) -> Cons(x,app(xs,ys)) app(Nil(),ys) -> ys naiverev(Cons(x,xs)) -> app(naiverev(xs),Cons(x,Nil())) naiverev(Nil()) -> Nil() Signature: {app/2,goal/1,naiverev/1,notEmpty/1,app#/2,goal#/1,naiverev#/1,notEmpty#/1} / {Cons/2,False/0,Nil/0,True/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0,c_6/0,c_7/0} Obligation: Innermost basic terms: {app#,goal#,naiverev#,notEmpty#}/{Cons,False,Nil,True} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)) Strict TRS Rules: Weak DP Rules: naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs)) Weak TRS Rules: app(Cons(x,xs),ys) -> Cons(x,app(xs,ys)) app(Nil(),ys) -> ys naiverev(Cons(x,xs)) -> app(naiverev(xs),Cons(x,Nil())) naiverev(Nil()) -> Nil() Signature: {app/2,goal/1,naiverev/1,notEmpty/1,app#/2,goal#/1,naiverev#/1,notEmpty#/1} / {Cons/2,False/0,Nil/0,True/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0,c_6/0,c_7/0} Obligation: Innermost basic terms: {app#,goal#,naiverev#,notEmpty#}/{Cons,False,Nil,True} Applied Processor: NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a polynomial interpretation of kind constructor-based(mixed(2)): The following argument positions are considered usable: uargs(c_1) = {1}, uargs(c_4) = {1,2} Following symbols are considered usable: {app,naiverev,app#,goal#,naiverev#,notEmpty#} TcT has computed the following interpretation: p(Cons) = 1 + x2 p(False) = 0 p(Nil) = 0 p(True) = 0 p(app) = x1 + x2 p(goal) = 1 p(naiverev) = x1 p(notEmpty) = 0 p(app#) = x1 + 7*x1*x2 p(goal#) = 2*x1 p(naiverev#) = 1 + x1 + 5*x1^2 p(notEmpty#) = 1 + x1^2 p(c_1) = x1 p(c_2) = 1 p(c_3) = 0 p(c_4) = 1 + x1 + x2 p(c_5) = 1 p(c_6) = 1 p(c_7) = 1 Following rules are strictly oriented: app#(Cons(x,xs),ys) = 1 + xs + 7*xs*ys + 7*ys > xs + 7*xs*ys = c_1(app#(xs,ys)) Following rules are (at-least) weakly oriented: naiverev#(Cons(x,xs)) = 7 + 11*xs + 5*xs^2 >= 2 + 9*xs + 5*xs^2 = c_4(app#(naiverev(xs) ,Cons(x,Nil())) ,naiverev#(xs)) app(Cons(x,xs),ys) = 1 + xs + ys >= 1 + xs + ys = Cons(x,app(xs,ys)) app(Nil(),ys) = ys >= ys = ys naiverev(Cons(x,xs)) = 1 + xs >= 1 + xs = app(naiverev(xs),Cons(x,Nil())) naiverev(Nil()) = 0 >= 0 = Nil() *** 1.1.1.1.1.1.1.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)) naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs)) Weak TRS Rules: app(Cons(x,xs),ys) -> Cons(x,app(xs,ys)) app(Nil(),ys) -> ys naiverev(Cons(x,xs)) -> app(naiverev(xs),Cons(x,Nil())) naiverev(Nil()) -> Nil() Signature: {app/2,goal/1,naiverev/1,notEmpty/1,app#/2,goal#/1,naiverev#/1,notEmpty#/1} / {Cons/2,False/0,Nil/0,True/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0,c_6/0,c_7/0} Obligation: Innermost basic terms: {app#,goal#,naiverev#,notEmpty#}/{Cons,False,Nil,True} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.1.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)) naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs)) Weak TRS Rules: app(Cons(x,xs),ys) -> Cons(x,app(xs,ys)) app(Nil(),ys) -> ys naiverev(Cons(x,xs)) -> app(naiverev(xs),Cons(x,Nil())) naiverev(Nil()) -> Nil() Signature: {app/2,goal/1,naiverev/1,notEmpty/1,app#/2,goal#/1,naiverev#/1,notEmpty#/1} / {Cons/2,False/0,Nil/0,True/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0,c_6/0,c_7/0} Obligation: Innermost basic terms: {app#,goal#,naiverev#,notEmpty#}/{Cons,False,Nil,True} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)) -->_1 app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)):1 2:W:naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs)) -->_2 naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs)):2 -->_1 app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 2: naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs) ,Cons(x,Nil())) ,naiverev#(xs)) 1: app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)) *** 1.1.1.1.1.1.1.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: app(Cons(x,xs),ys) -> Cons(x,app(xs,ys)) app(Nil(),ys) -> ys naiverev(Cons(x,xs)) -> app(naiverev(xs),Cons(x,Nil())) naiverev(Nil()) -> Nil() Signature: {app/2,goal/1,naiverev/1,notEmpty/1,app#/2,goal#/1,naiverev#/1,notEmpty#/1} / {Cons/2,False/0,Nil/0,True/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0,c_6/0,c_7/0} Obligation: Innermost basic terms: {app#,goal#,naiverev#,notEmpty#}/{Cons,False,Nil,True} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1). *** 1.1.1.1.1.1.2 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs)) Strict TRS Rules: Weak DP Rules: app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)) Weak TRS Rules: app(Cons(x,xs),ys) -> Cons(x,app(xs,ys)) app(Nil(),ys) -> ys naiverev(Cons(x,xs)) -> app(naiverev(xs),Cons(x,Nil())) naiverev(Nil()) -> Nil() Signature: {app/2,goal/1,naiverev/1,notEmpty/1,app#/2,goal#/1,naiverev#/1,notEmpty#/1} / {Cons/2,False/0,Nil/0,True/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0,c_6/0,c_7/0} Obligation: Innermost basic terms: {app#,goal#,naiverev#,notEmpty#}/{Cons,False,Nil,True} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs)) -->_1 app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)):2 -->_2 naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs)):1 2:W:app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)) -->_1 app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)):2 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 2: app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)) *** 1.1.1.1.1.1.2.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: app(Cons(x,xs),ys) -> Cons(x,app(xs,ys)) app(Nil(),ys) -> ys naiverev(Cons(x,xs)) -> app(naiverev(xs),Cons(x,Nil())) naiverev(Nil()) -> Nil() Signature: {app/2,goal/1,naiverev/1,notEmpty/1,app#/2,goal#/1,naiverev#/1,notEmpty#/1} / {Cons/2,False/0,Nil/0,True/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0,c_6/0,c_7/0} Obligation: Innermost basic terms: {app#,goal#,naiverev#,notEmpty#}/{Cons,False,Nil,True} Applied Processor: SimplifyRHS Proof: Consider the dependency graph 1:S:naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs)) -->_2 naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs)):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: naiverev#(Cons(x,xs)) -> c_4(naiverev#(xs)) *** 1.1.1.1.1.1.2.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: naiverev#(Cons(x,xs)) -> c_4(naiverev#(xs)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: app(Cons(x,xs),ys) -> Cons(x,app(xs,ys)) app(Nil(),ys) -> ys naiverev(Cons(x,xs)) -> app(naiverev(xs),Cons(x,Nil())) naiverev(Nil()) -> Nil() Signature: {app/2,goal/1,naiverev/1,notEmpty/1,app#/2,goal#/1,naiverev#/1,notEmpty#/1} / {Cons/2,False/0,Nil/0,True/0,c_1/1,c_2/0,c_3/1,c_4/1,c_5/0,c_6/0,c_7/0} Obligation: Innermost basic terms: {app#,goal#,naiverev#,notEmpty#}/{Cons,False,Nil,True} Applied Processor: UsableRules Proof: We replace rewrite rules by usable rules: naiverev#(Cons(x,xs)) -> c_4(naiverev#(xs)) *** 1.1.1.1.1.1.2.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: naiverev#(Cons(x,xs)) -> c_4(naiverev#(xs)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {app/2,goal/1,naiverev/1,notEmpty/1,app#/2,goal#/1,naiverev#/1,notEmpty#/1} / {Cons/2,False/0,Nil/0,True/0,c_1/1,c_2/0,c_3/1,c_4/1,c_5/0,c_6/0,c_7/0} Obligation: Innermost basic terms: {app#,goal#,naiverev#,notEmpty#}/{Cons,False,Nil,True} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: naiverev#(Cons(x,xs)) -> c_4(naiverev#(xs)) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.1.2.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: naiverev#(Cons(x,xs)) -> c_4(naiverev#(xs)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {app/2,goal/1,naiverev/1,notEmpty/1,app#/2,goal#/1,naiverev#/1,notEmpty#/1} / {Cons/2,False/0,Nil/0,True/0,c_1/1,c_2/0,c_3/1,c_4/1,c_5/0,c_6/0,c_7/0} Obligation: Innermost basic terms: {app#,goal#,naiverev#,notEmpty#}/{Cons,False,Nil,True} Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_4) = {1} Following symbols are considered usable: {app#,goal#,naiverev#,notEmpty#} TcT has computed the following interpretation: p(Cons) = [1] x2 + [5] p(False) = [2] p(Nil) = [0] p(True) = [0] p(app) = [8] x2 + [0] p(goal) = [1] x1 + [0] p(naiverev) = [1] x1 + [0] p(notEmpty) = [1] x1 + [1] p(app#) = [2] x2 + [0] p(goal#) = [1] p(naiverev#) = [4] x1 + [1] p(notEmpty#) = [2] x1 + [2] p(c_1) = [1] x1 + [1] p(c_2) = [1] p(c_3) = [1] x1 + [2] p(c_4) = [1] x1 + [15] p(c_5) = [1] p(c_6) = [1] p(c_7) = [1] Following rules are strictly oriented: naiverev#(Cons(x,xs)) = [4] xs + [21] > [4] xs + [16] = c_4(naiverev#(xs)) Following rules are (at-least) weakly oriented: *** 1.1.1.1.1.1.2.1.1.1.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: naiverev#(Cons(x,xs)) -> c_4(naiverev#(xs)) Weak TRS Rules: Signature: {app/2,goal/1,naiverev/1,notEmpty/1,app#/2,goal#/1,naiverev#/1,notEmpty#/1} / {Cons/2,False/0,Nil/0,True/0,c_1/1,c_2/0,c_3/1,c_4/1,c_5/0,c_6/0,c_7/0} Obligation: Innermost basic terms: {app#,goal#,naiverev#,notEmpty#}/{Cons,False,Nil,True} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.2.1.1.1.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: naiverev#(Cons(x,xs)) -> c_4(naiverev#(xs)) Weak TRS Rules: Signature: {app/2,goal/1,naiverev/1,notEmpty/1,app#/2,goal#/1,naiverev#/1,notEmpty#/1} / {Cons/2,False/0,Nil/0,True/0,c_1/1,c_2/0,c_3/1,c_4/1,c_5/0,c_6/0,c_7/0} Obligation: Innermost basic terms: {app#,goal#,naiverev#,notEmpty#}/{Cons,False,Nil,True} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:naiverev#(Cons(x,xs)) -> c_4(naiverev#(xs)) -->_1 naiverev#(Cons(x,xs)) -> c_4(naiverev#(xs)):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: naiverev#(Cons(x,xs)) -> c_4(naiverev#(xs)) *** 1.1.1.1.1.1.2.1.1.1.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {app/2,goal/1,naiverev/1,notEmpty/1,app#/2,goal#/1,naiverev#/1,notEmpty#/1} / {Cons/2,False/0,Nil/0,True/0,c_1/1,c_2/0,c_3/1,c_4/1,c_5/0,c_6/0,c_7/0} Obligation: Innermost basic terms: {app#,goal#,naiverev#,notEmpty#}/{Cons,False,Nil,True} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1).