(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
naiverev(Cons(x, xs)) → app(naiverev(xs), Cons(x, Nil))
app(Cons(x, xs), ys) → Cons(x, app(xs, ys))
notEmpty(Cons(x, xs)) → True
notEmpty(Nil) → False
naiverev(Nil) → Nil
app(Nil, ys) → ys
goal(xs) → naiverev(xs)
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
naiverev(Cons(x, xs)) → app(naiverev(xs), Cons(x, Nil))
app(Cons(x, xs), ys) → Cons(x, app(xs, ys))
notEmpty(Cons(x, xs)) → True
notEmpty(Nil) → False
naiverev(Nil) → Nil
app(Nil, ys) → ys
goal(xs) → naiverev(xs)
S is empty.
Rewrite Strategy: INNERMOST
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
Innermost TRS:
Rules:
naiverev(Cons(x, xs)) → app(naiverev(xs), Cons(x, Nil))
app(Cons(x, xs), ys) → Cons(x, app(xs, ys))
notEmpty(Cons(x, xs)) → True
notEmpty(Nil) → False
naiverev(Nil) → Nil
app(Nil, ys) → ys
goal(xs) → naiverev(xs)
Types:
naiverev :: Cons:Nil → Cons:Nil
Cons :: a → Cons:Nil → Cons:Nil
app :: Cons:Nil → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
notEmpty :: Cons:Nil → True:False
True :: True:False
False :: True:False
goal :: Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
hole_a2_0 :: a
hole_True:False3_0 :: True:False
gen_Cons:Nil4_0 :: Nat → Cons:Nil
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
naiverev,
appThey will be analysed ascendingly in the following order:
app < naiverev
(6) Obligation:
Innermost TRS:
Rules:
naiverev(
Cons(
x,
xs)) →
app(
naiverev(
xs),
Cons(
x,
Nil))
app(
Cons(
x,
xs),
ys) →
Cons(
x,
app(
xs,
ys))
notEmpty(
Cons(
x,
xs)) →
TruenotEmpty(
Nil) →
Falsenaiverev(
Nil) →
Nilapp(
Nil,
ys) →
ysgoal(
xs) →
naiverev(
xs)
Types:
naiverev :: Cons:Nil → Cons:Nil
Cons :: a → Cons:Nil → Cons:Nil
app :: Cons:Nil → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
notEmpty :: Cons:Nil → True:False
True :: True:False
False :: True:False
goal :: Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
hole_a2_0 :: a
hole_True:False3_0 :: True:False
gen_Cons:Nil4_0 :: Nat → Cons:Nil
Generator Equations:
gen_Cons:Nil4_0(0) ⇔ Nil
gen_Cons:Nil4_0(+(x, 1)) ⇔ Cons(hole_a2_0, gen_Cons:Nil4_0(x))
The following defined symbols remain to be analysed:
app, naiverev
They will be analysed ascendingly in the following order:
app < naiverev
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
app(
gen_Cons:Nil4_0(
n6_0),
gen_Cons:Nil4_0(
b)) →
gen_Cons:Nil4_0(
+(
n6_0,
b)), rt ∈ Ω(1 + n6
0)
Induction Base:
app(gen_Cons:Nil4_0(0), gen_Cons:Nil4_0(b)) →RΩ(1)
gen_Cons:Nil4_0(b)
Induction Step:
app(gen_Cons:Nil4_0(+(n6_0, 1)), gen_Cons:Nil4_0(b)) →RΩ(1)
Cons(hole_a2_0, app(gen_Cons:Nil4_0(n6_0), gen_Cons:Nil4_0(b))) →IH
Cons(hole_a2_0, gen_Cons:Nil4_0(+(b, c7_0)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
Innermost TRS:
Rules:
naiverev(
Cons(
x,
xs)) →
app(
naiverev(
xs),
Cons(
x,
Nil))
app(
Cons(
x,
xs),
ys) →
Cons(
x,
app(
xs,
ys))
notEmpty(
Cons(
x,
xs)) →
TruenotEmpty(
Nil) →
Falsenaiverev(
Nil) →
Nilapp(
Nil,
ys) →
ysgoal(
xs) →
naiverev(
xs)
Types:
naiverev :: Cons:Nil → Cons:Nil
Cons :: a → Cons:Nil → Cons:Nil
app :: Cons:Nil → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
notEmpty :: Cons:Nil → True:False
True :: True:False
False :: True:False
goal :: Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
hole_a2_0 :: a
hole_True:False3_0 :: True:False
gen_Cons:Nil4_0 :: Nat → Cons:Nil
Lemmas:
app(gen_Cons:Nil4_0(n6_0), gen_Cons:Nil4_0(b)) → gen_Cons:Nil4_0(+(n6_0, b)), rt ∈ Ω(1 + n60)
Generator Equations:
gen_Cons:Nil4_0(0) ⇔ Nil
gen_Cons:Nil4_0(+(x, 1)) ⇔ Cons(hole_a2_0, gen_Cons:Nil4_0(x))
The following defined symbols remain to be analysed:
naiverev
(10) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
naiverev(
gen_Cons:Nil4_0(
n509_0)) →
gen_Cons:Nil4_0(
n509_0), rt ∈ Ω(1 + n509
0 + n509
02)
Induction Base:
naiverev(gen_Cons:Nil4_0(0)) →RΩ(1)
Nil
Induction Step:
naiverev(gen_Cons:Nil4_0(+(n509_0, 1))) →RΩ(1)
app(naiverev(gen_Cons:Nil4_0(n509_0)), Cons(hole_a2_0, Nil)) →IH
app(gen_Cons:Nil4_0(c510_0), Cons(hole_a2_0, Nil)) →LΩ(1 + n5090)
gen_Cons:Nil4_0(+(n509_0, +(0, 1)))
We have rt ∈ Ω(n2) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n2).
(11) Complex Obligation (BEST)
(12) Obligation:
Innermost TRS:
Rules:
naiverev(
Cons(
x,
xs)) →
app(
naiverev(
xs),
Cons(
x,
Nil))
app(
Cons(
x,
xs),
ys) →
Cons(
x,
app(
xs,
ys))
notEmpty(
Cons(
x,
xs)) →
TruenotEmpty(
Nil) →
Falsenaiverev(
Nil) →
Nilapp(
Nil,
ys) →
ysgoal(
xs) →
naiverev(
xs)
Types:
naiverev :: Cons:Nil → Cons:Nil
Cons :: a → Cons:Nil → Cons:Nil
app :: Cons:Nil → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
notEmpty :: Cons:Nil → True:False
True :: True:False
False :: True:False
goal :: Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
hole_a2_0 :: a
hole_True:False3_0 :: True:False
gen_Cons:Nil4_0 :: Nat → Cons:Nil
Lemmas:
app(gen_Cons:Nil4_0(n6_0), gen_Cons:Nil4_0(b)) → gen_Cons:Nil4_0(+(n6_0, b)), rt ∈ Ω(1 + n60)
naiverev(gen_Cons:Nil4_0(n509_0)) → gen_Cons:Nil4_0(n509_0), rt ∈ Ω(1 + n5090 + n50902)
Generator Equations:
gen_Cons:Nil4_0(0) ⇔ Nil
gen_Cons:Nil4_0(+(x, 1)) ⇔ Cons(hole_a2_0, gen_Cons:Nil4_0(x))
No more defined symbols left to analyse.
(13) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n2) was proven with the following lemma:
naiverev(gen_Cons:Nil4_0(n509_0)) → gen_Cons:Nil4_0(n509_0), rt ∈ Ω(1 + n5090 + n50902)
(14) BOUNDS(n^2, INF)
(15) Obligation:
Innermost TRS:
Rules:
naiverev(
Cons(
x,
xs)) →
app(
naiverev(
xs),
Cons(
x,
Nil))
app(
Cons(
x,
xs),
ys) →
Cons(
x,
app(
xs,
ys))
notEmpty(
Cons(
x,
xs)) →
TruenotEmpty(
Nil) →
Falsenaiverev(
Nil) →
Nilapp(
Nil,
ys) →
ysgoal(
xs) →
naiverev(
xs)
Types:
naiverev :: Cons:Nil → Cons:Nil
Cons :: a → Cons:Nil → Cons:Nil
app :: Cons:Nil → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
notEmpty :: Cons:Nil → True:False
True :: True:False
False :: True:False
goal :: Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
hole_a2_0 :: a
hole_True:False3_0 :: True:False
gen_Cons:Nil4_0 :: Nat → Cons:Nil
Lemmas:
app(gen_Cons:Nil4_0(n6_0), gen_Cons:Nil4_0(b)) → gen_Cons:Nil4_0(+(n6_0, b)), rt ∈ Ω(1 + n60)
naiverev(gen_Cons:Nil4_0(n509_0)) → gen_Cons:Nil4_0(n509_0), rt ∈ Ω(1 + n5090 + n50902)
Generator Equations:
gen_Cons:Nil4_0(0) ⇔ Nil
gen_Cons:Nil4_0(+(x, 1)) ⇔ Cons(hole_a2_0, gen_Cons:Nil4_0(x))
No more defined symbols left to analyse.
(16) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n2) was proven with the following lemma:
naiverev(gen_Cons:Nil4_0(n509_0)) → gen_Cons:Nil4_0(n509_0), rt ∈ Ω(1 + n5090 + n50902)
(17) BOUNDS(n^2, INF)
(18) Obligation:
Innermost TRS:
Rules:
naiverev(
Cons(
x,
xs)) →
app(
naiverev(
xs),
Cons(
x,
Nil))
app(
Cons(
x,
xs),
ys) →
Cons(
x,
app(
xs,
ys))
notEmpty(
Cons(
x,
xs)) →
TruenotEmpty(
Nil) →
Falsenaiverev(
Nil) →
Nilapp(
Nil,
ys) →
ysgoal(
xs) →
naiverev(
xs)
Types:
naiverev :: Cons:Nil → Cons:Nil
Cons :: a → Cons:Nil → Cons:Nil
app :: Cons:Nil → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
notEmpty :: Cons:Nil → True:False
True :: True:False
False :: True:False
goal :: Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
hole_a2_0 :: a
hole_True:False3_0 :: True:False
gen_Cons:Nil4_0 :: Nat → Cons:Nil
Lemmas:
app(gen_Cons:Nil4_0(n6_0), gen_Cons:Nil4_0(b)) → gen_Cons:Nil4_0(+(n6_0, b)), rt ∈ Ω(1 + n60)
Generator Equations:
gen_Cons:Nil4_0(0) ⇔ Nil
gen_Cons:Nil4_0(+(x, 1)) ⇔ Cons(hole_a2_0, gen_Cons:Nil4_0(x))
No more defined symbols left to analyse.
(19) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
app(gen_Cons:Nil4_0(n6_0), gen_Cons:Nil4_0(b)) → gen_Cons:Nil4_0(+(n6_0, b)), rt ∈ Ω(1 + n60)
(20) BOUNDS(n^1, INF)