*** 1 Progress [(?,O(n^3))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: add0(Cons(x,xs),y) -> add0(xs,Cons(S(),y)) add0(Nil(),y) -> y goal(xs,ys) -> mul0(xs,ys) mul0(Cons(x,xs),y) -> add0(mul0(xs,y),y) mul0(Nil(),y) -> Nil() Weak DP Rules: Weak TRS Rules: Signature: {add0/2,goal/2,mul0/2} / {Cons/2,Nil/0,S/0} Obligation: Innermost basic terms: {add0,goal,mul0}/{Cons,Nil,S} Applied Processor: DependencyPairs {dpKind_ = DT} Proof: We add the following dependency tuples: Strict DPs add0#(Cons(x,xs),y) -> c_1(add0#(xs,Cons(S(),y))) add0#(Nil(),y) -> c_2() goal#(xs,ys) -> c_3(mul0#(xs,ys)) mul0#(Cons(x,xs),y) -> c_4(add0#(mul0(xs,y),y),mul0#(xs,y)) mul0#(Nil(),y) -> c_5() Weak DPs and mark the set of starting terms. *** 1.1 Progress [(?,O(n^3))] *** Considered Problem: Strict DP Rules: add0#(Cons(x,xs),y) -> c_1(add0#(xs,Cons(S(),y))) add0#(Nil(),y) -> c_2() goal#(xs,ys) -> c_3(mul0#(xs,ys)) mul0#(Cons(x,xs),y) -> c_4(add0#(mul0(xs,y),y),mul0#(xs,y)) mul0#(Nil(),y) -> c_5() Strict TRS Rules: Weak DP Rules: Weak TRS Rules: add0(Cons(x,xs),y) -> add0(xs,Cons(S(),y)) add0(Nil(),y) -> y goal(xs,ys) -> mul0(xs,ys) mul0(Cons(x,xs),y) -> add0(mul0(xs,y),y) mul0(Nil(),y) -> Nil() Signature: {add0/2,goal/2,mul0/2,add0#/2,goal#/2,mul0#/2} / {Cons/2,Nil/0,S/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0} Obligation: Innermost basic terms: {add0#,goal#,mul0#}/{Cons,Nil,S} Applied Processor: UsableRules Proof: We replace rewrite rules by usable rules: add0(Cons(x,xs),y) -> add0(xs,Cons(S(),y)) add0(Nil(),y) -> y mul0(Cons(x,xs),y) -> add0(mul0(xs,y),y) mul0(Nil(),y) -> Nil() add0#(Cons(x,xs),y) -> c_1(add0#(xs,Cons(S(),y))) add0#(Nil(),y) -> c_2() goal#(xs,ys) -> c_3(mul0#(xs,ys)) mul0#(Cons(x,xs),y) -> c_4(add0#(mul0(xs,y),y),mul0#(xs,y)) mul0#(Nil(),y) -> c_5() *** 1.1.1 Progress [(?,O(n^3))] *** Considered Problem: Strict DP Rules: add0#(Cons(x,xs),y) -> c_1(add0#(xs,Cons(S(),y))) add0#(Nil(),y) -> c_2() goal#(xs,ys) -> c_3(mul0#(xs,ys)) mul0#(Cons(x,xs),y) -> c_4(add0#(mul0(xs,y),y),mul0#(xs,y)) mul0#(Nil(),y) -> c_5() Strict TRS Rules: Weak DP Rules: Weak TRS Rules: add0(Cons(x,xs),y) -> add0(xs,Cons(S(),y)) add0(Nil(),y) -> y mul0(Cons(x,xs),y) -> add0(mul0(xs,y),y) mul0(Nil(),y) -> Nil() Signature: {add0/2,goal/2,mul0/2,add0#/2,goal#/2,mul0#/2} / {Cons/2,Nil/0,S/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0} Obligation: Innermost basic terms: {add0#,goal#,mul0#}/{Cons,Nil,S} Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} Proof: We estimate the number of application of {2,5} by application of Pre({2,5}) = {1,3,4}. Here rules are labelled as follows: 1: add0#(Cons(x,xs),y) -> c_1(add0#(xs,Cons(S(),y))) 2: add0#(Nil(),y) -> c_2() 3: goal#(xs,ys) -> c_3(mul0#(xs ,ys)) 4: mul0#(Cons(x,xs),y) -> c_4(add0#(mul0(xs,y),y) ,mul0#(xs,y)) 5: mul0#(Nil(),y) -> c_5() *** 1.1.1.1 Progress [(?,O(n^3))] *** Considered Problem: Strict DP Rules: add0#(Cons(x,xs),y) -> c_1(add0#(xs,Cons(S(),y))) goal#(xs,ys) -> c_3(mul0#(xs,ys)) mul0#(Cons(x,xs),y) -> c_4(add0#(mul0(xs,y),y),mul0#(xs,y)) Strict TRS Rules: Weak DP Rules: add0#(Nil(),y) -> c_2() mul0#(Nil(),y) -> c_5() Weak TRS Rules: add0(Cons(x,xs),y) -> add0(xs,Cons(S(),y)) add0(Nil(),y) -> y mul0(Cons(x,xs),y) -> add0(mul0(xs,y),y) mul0(Nil(),y) -> Nil() Signature: {add0/2,goal/2,mul0/2,add0#/2,goal#/2,mul0#/2} / {Cons/2,Nil/0,S/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0} Obligation: Innermost basic terms: {add0#,goal#,mul0#}/{Cons,Nil,S} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:add0#(Cons(x,xs),y) -> c_1(add0#(xs,Cons(S(),y))) -->_1 add0#(Nil(),y) -> c_2():4 -->_1 add0#(Cons(x,xs),y) -> c_1(add0#(xs,Cons(S(),y))):1 2:S:goal#(xs,ys) -> c_3(mul0#(xs,ys)) -->_1 mul0#(Cons(x,xs),y) -> c_4(add0#(mul0(xs,y),y),mul0#(xs,y)):3 -->_1 mul0#(Nil(),y) -> c_5():5 3:S:mul0#(Cons(x,xs),y) -> c_4(add0#(mul0(xs,y),y),mul0#(xs,y)) -->_2 mul0#(Nil(),y) -> c_5():5 -->_1 add0#(Nil(),y) -> c_2():4 -->_2 mul0#(Cons(x,xs),y) -> c_4(add0#(mul0(xs,y),y),mul0#(xs,y)):3 -->_1 add0#(Cons(x,xs),y) -> c_1(add0#(xs,Cons(S(),y))):1 4:W:add0#(Nil(),y) -> c_2() 5:W:mul0#(Nil(),y) -> c_5() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 5: mul0#(Nil(),y) -> c_5() 4: add0#(Nil(),y) -> c_2() *** 1.1.1.1.1 Progress [(?,O(n^3))] *** Considered Problem: Strict DP Rules: add0#(Cons(x,xs),y) -> c_1(add0#(xs,Cons(S(),y))) goal#(xs,ys) -> c_3(mul0#(xs,ys)) mul0#(Cons(x,xs),y) -> c_4(add0#(mul0(xs,y),y),mul0#(xs,y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: add0(Cons(x,xs),y) -> add0(xs,Cons(S(),y)) add0(Nil(),y) -> y mul0(Cons(x,xs),y) -> add0(mul0(xs,y),y) mul0(Nil(),y) -> Nil() Signature: {add0/2,goal/2,mul0/2,add0#/2,goal#/2,mul0#/2} / {Cons/2,Nil/0,S/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0} Obligation: Innermost basic terms: {add0#,goal#,mul0#}/{Cons,Nil,S} Applied Processor: RemoveHeads Proof: Consider the dependency graph 1:S:add0#(Cons(x,xs),y) -> c_1(add0#(xs,Cons(S(),y))) -->_1 add0#(Cons(x,xs),y) -> c_1(add0#(xs,Cons(S(),y))):1 2:S:goal#(xs,ys) -> c_3(mul0#(xs,ys)) -->_1 mul0#(Cons(x,xs),y) -> c_4(add0#(mul0(xs,y),y),mul0#(xs,y)):3 3:S:mul0#(Cons(x,xs),y) -> c_4(add0#(mul0(xs,y),y),mul0#(xs,y)) -->_2 mul0#(Cons(x,xs),y) -> c_4(add0#(mul0(xs,y),y),mul0#(xs,y)):3 -->_1 add0#(Cons(x,xs),y) -> c_1(add0#(xs,Cons(S(),y))):1 Following roots of the dependency graph are removed, as the considered set of starting terms is closed under reduction with respect to these rules (modulo compound contexts). [(2,goal#(xs,ys) -> c_3(mul0#(xs,ys)))] *** 1.1.1.1.1.1 Progress [(?,O(n^3))] *** Considered Problem: Strict DP Rules: add0#(Cons(x,xs),y) -> c_1(add0#(xs,Cons(S(),y))) mul0#(Cons(x,xs),y) -> c_4(add0#(mul0(xs,y),y),mul0#(xs,y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: add0(Cons(x,xs),y) -> add0(xs,Cons(S(),y)) add0(Nil(),y) -> y mul0(Cons(x,xs),y) -> add0(mul0(xs,y),y) mul0(Nil(),y) -> Nil() Signature: {add0/2,goal/2,mul0/2,add0#/2,goal#/2,mul0#/2} / {Cons/2,Nil/0,S/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0} Obligation: Innermost basic terms: {add0#,goal#,mul0#}/{Cons,Nil,S} Applied Processor: Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd} Proof: We analyse the complexity of following sub-problems (R) and (S). Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component. Problem (R) Strict DP Rules: add0#(Cons(x,xs),y) -> c_1(add0#(xs,Cons(S(),y))) Strict TRS Rules: Weak DP Rules: mul0#(Cons(x,xs),y) -> c_4(add0#(mul0(xs,y),y),mul0#(xs,y)) Weak TRS Rules: add0(Cons(x,xs),y) -> add0(xs,Cons(S(),y)) add0(Nil(),y) -> y mul0(Cons(x,xs),y) -> add0(mul0(xs,y),y) mul0(Nil(),y) -> Nil() Signature: {add0/2,goal/2,mul0/2,add0#/2,goal#/2,mul0#/2} / {Cons/2,Nil/0,S/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0} Obligation: Innermost basic terms: {add0#,goal#,mul0#}/{Cons,Nil,S} Problem (S) Strict DP Rules: mul0#(Cons(x,xs),y) -> c_4(add0#(mul0(xs,y),y),mul0#(xs,y)) Strict TRS Rules: Weak DP Rules: add0#(Cons(x,xs),y) -> c_1(add0#(xs,Cons(S(),y))) Weak TRS Rules: add0(Cons(x,xs),y) -> add0(xs,Cons(S(),y)) add0(Nil(),y) -> y mul0(Cons(x,xs),y) -> add0(mul0(xs,y),y) mul0(Nil(),y) -> Nil() Signature: {add0/2,goal/2,mul0/2,add0#/2,goal#/2,mul0#/2} / {Cons/2,Nil/0,S/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0} Obligation: Innermost basic terms: {add0#,goal#,mul0#}/{Cons,Nil,S} *** 1.1.1.1.1.1.1 Progress [(?,O(n^3))] *** Considered Problem: Strict DP Rules: add0#(Cons(x,xs),y) -> c_1(add0#(xs,Cons(S(),y))) Strict TRS Rules: Weak DP Rules: mul0#(Cons(x,xs),y) -> c_4(add0#(mul0(xs,y),y),mul0#(xs,y)) Weak TRS Rules: add0(Cons(x,xs),y) -> add0(xs,Cons(S(),y)) add0(Nil(),y) -> y mul0(Cons(x,xs),y) -> add0(mul0(xs,y),y) mul0(Nil(),y) -> Nil() Signature: {add0/2,goal/2,mul0/2,add0#/2,goal#/2,mul0#/2} / {Cons/2,Nil/0,S/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0} Obligation: Innermost basic terms: {add0#,goal#,mul0#}/{Cons,Nil,S} Applied Processor: DecomposeDG {onSelection = all below first cut in WDG, onUpper = Just someStrategy, onLower = Nothing} Proof: We decompose the input problem according to the dependency graph into the upper component mul0#(Cons(x,xs),y) -> c_4(add0#(mul0(xs,y),y),mul0#(xs,y)) and a lower component add0#(Cons(x,xs),y) -> c_1(add0#(xs,Cons(S(),y))) Further, following extension rules are added to the lower component. mul0#(Cons(x,xs),y) -> add0#(mul0(xs,y),y) mul0#(Cons(x,xs),y) -> mul0#(xs,y) *** 1.1.1.1.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: mul0#(Cons(x,xs),y) -> c_4(add0#(mul0(xs,y),y),mul0#(xs,y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: add0(Cons(x,xs),y) -> add0(xs,Cons(S(),y)) add0(Nil(),y) -> y mul0(Cons(x,xs),y) -> add0(mul0(xs,y),y) mul0(Nil(),y) -> Nil() Signature: {add0/2,goal/2,mul0/2,add0#/2,goal#/2,mul0#/2} / {Cons/2,Nil/0,S/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0} Obligation: Innermost basic terms: {add0#,goal#,mul0#}/{Cons,Nil,S} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: mul0#(Cons(x,xs),y) -> c_4(add0#(mul0(xs,y),y) ,mul0#(xs,y)) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: mul0#(Cons(x,xs),y) -> c_4(add0#(mul0(xs,y),y),mul0#(xs,y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: add0(Cons(x,xs),y) -> add0(xs,Cons(S(),y)) add0(Nil(),y) -> y mul0(Cons(x,xs),y) -> add0(mul0(xs,y),y) mul0(Nil(),y) -> Nil() Signature: {add0/2,goal/2,mul0/2,add0#/2,goal#/2,mul0#/2} / {Cons/2,Nil/0,S/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0} Obligation: Innermost basic terms: {add0#,goal#,mul0#}/{Cons,Nil,S} Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_4) = {1,2} Following symbols are considered usable: {add0#,goal#,mul0#} TcT has computed the following interpretation: p(Cons) = [1] x1 + [1] x2 + [4] p(Nil) = [0] p(S) = [11] p(add0) = [2] x2 + [0] p(goal) = [4] x1 + [2] x2 + [1] p(mul0) = [0] p(add0#) = [0] p(goal#) = [2] x1 + [1] x2 + [1] p(mul0#) = [1] x1 + [4] x2 + [0] p(c_1) = [2] x1 + [2] p(c_2) = [1] p(c_3) = [1] x1 + [2] p(c_4) = [2] x1 + [1] x2 + [0] p(c_5) = [1] Following rules are strictly oriented: mul0#(Cons(x,xs),y) = [1] x + [1] xs + [4] y + [4] > [1] xs + [4] y + [0] = c_4(add0#(mul0(xs,y),y) ,mul0#(xs,y)) Following rules are (at-least) weakly oriented: *** 1.1.1.1.1.1.1.1.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: mul0#(Cons(x,xs),y) -> c_4(add0#(mul0(xs,y),y),mul0#(xs,y)) Weak TRS Rules: add0(Cons(x,xs),y) -> add0(xs,Cons(S(),y)) add0(Nil(),y) -> y mul0(Cons(x,xs),y) -> add0(mul0(xs,y),y) mul0(Nil(),y) -> Nil() Signature: {add0/2,goal/2,mul0/2,add0#/2,goal#/2,mul0#/2} / {Cons/2,Nil/0,S/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0} Obligation: Innermost basic terms: {add0#,goal#,mul0#}/{Cons,Nil,S} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.1.1.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: mul0#(Cons(x,xs),y) -> c_4(add0#(mul0(xs,y),y),mul0#(xs,y)) Weak TRS Rules: add0(Cons(x,xs),y) -> add0(xs,Cons(S(),y)) add0(Nil(),y) -> y mul0(Cons(x,xs),y) -> add0(mul0(xs,y),y) mul0(Nil(),y) -> Nil() Signature: {add0/2,goal/2,mul0/2,add0#/2,goal#/2,mul0#/2} / {Cons/2,Nil/0,S/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0} Obligation: Innermost basic terms: {add0#,goal#,mul0#}/{Cons,Nil,S} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:mul0#(Cons(x,xs),y) -> c_4(add0#(mul0(xs,y),y),mul0#(xs,y)) -->_2 mul0#(Cons(x,xs),y) -> c_4(add0#(mul0(xs,y),y),mul0#(xs,y)):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: mul0#(Cons(x,xs),y) -> c_4(add0#(mul0(xs,y),y) ,mul0#(xs,y)) *** 1.1.1.1.1.1.1.1.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: add0(Cons(x,xs),y) -> add0(xs,Cons(S(),y)) add0(Nil(),y) -> y mul0(Cons(x,xs),y) -> add0(mul0(xs,y),y) mul0(Nil(),y) -> Nil() Signature: {add0/2,goal/2,mul0/2,add0#/2,goal#/2,mul0#/2} / {Cons/2,Nil/0,S/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0} Obligation: Innermost basic terms: {add0#,goal#,mul0#}/{Cons,Nil,S} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1). *** 1.1.1.1.1.1.1.2 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: add0#(Cons(x,xs),y) -> c_1(add0#(xs,Cons(S(),y))) Strict TRS Rules: Weak DP Rules: mul0#(Cons(x,xs),y) -> add0#(mul0(xs,y),y) mul0#(Cons(x,xs),y) -> mul0#(xs,y) Weak TRS Rules: add0(Cons(x,xs),y) -> add0(xs,Cons(S(),y)) add0(Nil(),y) -> y mul0(Cons(x,xs),y) -> add0(mul0(xs,y),y) mul0(Nil(),y) -> Nil() Signature: {add0/2,goal/2,mul0/2,add0#/2,goal#/2,mul0#/2} / {Cons/2,Nil/0,S/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0} Obligation: Innermost basic terms: {add0#,goal#,mul0#}/{Cons,Nil,S} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: add0#(Cons(x,xs),y) -> c_1(add0#(xs,Cons(S(),y))) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.1.1.2.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: add0#(Cons(x,xs),y) -> c_1(add0#(xs,Cons(S(),y))) Strict TRS Rules: Weak DP Rules: mul0#(Cons(x,xs),y) -> add0#(mul0(xs,y),y) mul0#(Cons(x,xs),y) -> mul0#(xs,y) Weak TRS Rules: add0(Cons(x,xs),y) -> add0(xs,Cons(S(),y)) add0(Nil(),y) -> y mul0(Cons(x,xs),y) -> add0(mul0(xs,y),y) mul0(Nil(),y) -> Nil() Signature: {add0/2,goal/2,mul0/2,add0#/2,goal#/2,mul0#/2} / {Cons/2,Nil/0,S/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0} Obligation: Innermost basic terms: {add0#,goal#,mul0#}/{Cons,Nil,S} Applied Processor: NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a polynomial interpretation of kind constructor-based(mixed(2)): The following argument positions are considered usable: uargs(c_1) = {1} Following symbols are considered usable: {add0,mul0,add0#,goal#,mul0#} TcT has computed the following interpretation: p(Cons) = 1 + x1 + x2 p(Nil) = 0 p(S) = 0 p(add0) = 3 + x1 + x2 p(goal) = 1 + 2*x1 + 2*x1^2 + x2 p(mul0) = x1*x2 + 3*x1^2 p(add0#) = 3 + x1 p(goal#) = x1 + 4*x1*x2 + x1^2 + 2*x2 + x2^2 p(mul0#) = x1 + 4*x1*x2 + 4*x1^2 p(c_1) = x1 p(c_2) = 1 p(c_3) = 0 p(c_4) = 0 p(c_5) = 1 Following rules are strictly oriented: add0#(Cons(x,xs),y) = 4 + x + xs > 3 + xs = c_1(add0#(xs,Cons(S(),y))) Following rules are (at-least) weakly oriented: mul0#(Cons(x,xs),y) = 5 + 9*x + 8*x*xs + 4*x*y + 4*x^2 + 9*xs + 4*xs*y + 4*xs^2 + 4*y >= 3 + xs*y + 3*xs^2 = add0#(mul0(xs,y),y) mul0#(Cons(x,xs),y) = 5 + 9*x + 8*x*xs + 4*x*y + 4*x^2 + 9*xs + 4*xs*y + 4*xs^2 + 4*y >= xs + 4*xs*y + 4*xs^2 = mul0#(xs,y) add0(Cons(x,xs),y) = 4 + x + xs + y >= 4 + xs + y = add0(xs,Cons(S(),y)) add0(Nil(),y) = 3 + y >= y = y mul0(Cons(x,xs),y) = 3 + 6*x + 6*x*xs + x*y + 3*x^2 + 6*xs + xs*y + 3*xs^2 + y >= 3 + xs*y + 3*xs^2 + y = add0(mul0(xs,y),y) mul0(Nil(),y) = 0 >= 0 = Nil() *** 1.1.1.1.1.1.1.2.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: add0#(Cons(x,xs),y) -> c_1(add0#(xs,Cons(S(),y))) mul0#(Cons(x,xs),y) -> add0#(mul0(xs,y),y) mul0#(Cons(x,xs),y) -> mul0#(xs,y) Weak TRS Rules: add0(Cons(x,xs),y) -> add0(xs,Cons(S(),y)) add0(Nil(),y) -> y mul0(Cons(x,xs),y) -> add0(mul0(xs,y),y) mul0(Nil(),y) -> Nil() Signature: {add0/2,goal/2,mul0/2,add0#/2,goal#/2,mul0#/2} / {Cons/2,Nil/0,S/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0} Obligation: Innermost basic terms: {add0#,goal#,mul0#}/{Cons,Nil,S} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.1.2.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: add0#(Cons(x,xs),y) -> c_1(add0#(xs,Cons(S(),y))) mul0#(Cons(x,xs),y) -> add0#(mul0(xs,y),y) mul0#(Cons(x,xs),y) -> mul0#(xs,y) Weak TRS Rules: add0(Cons(x,xs),y) -> add0(xs,Cons(S(),y)) add0(Nil(),y) -> y mul0(Cons(x,xs),y) -> add0(mul0(xs,y),y) mul0(Nil(),y) -> Nil() Signature: {add0/2,goal/2,mul0/2,add0#/2,goal#/2,mul0#/2} / {Cons/2,Nil/0,S/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0} Obligation: Innermost basic terms: {add0#,goal#,mul0#}/{Cons,Nil,S} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:add0#(Cons(x,xs),y) -> c_1(add0#(xs,Cons(S(),y))) -->_1 add0#(Cons(x,xs),y) -> c_1(add0#(xs,Cons(S(),y))):1 2:W:mul0#(Cons(x,xs),y) -> add0#(mul0(xs,y),y) -->_1 add0#(Cons(x,xs),y) -> c_1(add0#(xs,Cons(S(),y))):1 3:W:mul0#(Cons(x,xs),y) -> mul0#(xs,y) -->_1 mul0#(Cons(x,xs),y) -> mul0#(xs,y):3 -->_1 mul0#(Cons(x,xs),y) -> add0#(mul0(xs,y),y):2 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 3: mul0#(Cons(x,xs),y) -> mul0#(xs ,y) 2: mul0#(Cons(x,xs),y) -> add0#(mul0(xs,y),y) 1: add0#(Cons(x,xs),y) -> c_1(add0#(xs,Cons(S(),y))) *** 1.1.1.1.1.1.1.2.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: add0(Cons(x,xs),y) -> add0(xs,Cons(S(),y)) add0(Nil(),y) -> y mul0(Cons(x,xs),y) -> add0(mul0(xs,y),y) mul0(Nil(),y) -> Nil() Signature: {add0/2,goal/2,mul0/2,add0#/2,goal#/2,mul0#/2} / {Cons/2,Nil/0,S/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0} Obligation: Innermost basic terms: {add0#,goal#,mul0#}/{Cons,Nil,S} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1). *** 1.1.1.1.1.1.2 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: mul0#(Cons(x,xs),y) -> c_4(add0#(mul0(xs,y),y),mul0#(xs,y)) Strict TRS Rules: Weak DP Rules: add0#(Cons(x,xs),y) -> c_1(add0#(xs,Cons(S(),y))) Weak TRS Rules: add0(Cons(x,xs),y) -> add0(xs,Cons(S(),y)) add0(Nil(),y) -> y mul0(Cons(x,xs),y) -> add0(mul0(xs,y),y) mul0(Nil(),y) -> Nil() Signature: {add0/2,goal/2,mul0/2,add0#/2,goal#/2,mul0#/2} / {Cons/2,Nil/0,S/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0} Obligation: Innermost basic terms: {add0#,goal#,mul0#}/{Cons,Nil,S} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:mul0#(Cons(x,xs),y) -> c_4(add0#(mul0(xs,y),y),mul0#(xs,y)) -->_1 add0#(Cons(x,xs),y) -> c_1(add0#(xs,Cons(S(),y))):2 -->_2 mul0#(Cons(x,xs),y) -> c_4(add0#(mul0(xs,y),y),mul0#(xs,y)):1 2:W:add0#(Cons(x,xs),y) -> c_1(add0#(xs,Cons(S(),y))) -->_1 add0#(Cons(x,xs),y) -> c_1(add0#(xs,Cons(S(),y))):2 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 2: add0#(Cons(x,xs),y) -> c_1(add0#(xs,Cons(S(),y))) *** 1.1.1.1.1.1.2.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: mul0#(Cons(x,xs),y) -> c_4(add0#(mul0(xs,y),y),mul0#(xs,y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: add0(Cons(x,xs),y) -> add0(xs,Cons(S(),y)) add0(Nil(),y) -> y mul0(Cons(x,xs),y) -> add0(mul0(xs,y),y) mul0(Nil(),y) -> Nil() Signature: {add0/2,goal/2,mul0/2,add0#/2,goal#/2,mul0#/2} / {Cons/2,Nil/0,S/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0} Obligation: Innermost basic terms: {add0#,goal#,mul0#}/{Cons,Nil,S} Applied Processor: SimplifyRHS Proof: Consider the dependency graph 1:S:mul0#(Cons(x,xs),y) -> c_4(add0#(mul0(xs,y),y),mul0#(xs,y)) -->_2 mul0#(Cons(x,xs),y) -> c_4(add0#(mul0(xs,y),y),mul0#(xs,y)):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: mul0#(Cons(x,xs),y) -> c_4(mul0#(xs,y)) *** 1.1.1.1.1.1.2.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: mul0#(Cons(x,xs),y) -> c_4(mul0#(xs,y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: add0(Cons(x,xs),y) -> add0(xs,Cons(S(),y)) add0(Nil(),y) -> y mul0(Cons(x,xs),y) -> add0(mul0(xs,y),y) mul0(Nil(),y) -> Nil() Signature: {add0/2,goal/2,mul0/2,add0#/2,goal#/2,mul0#/2} / {Cons/2,Nil/0,S/0,c_1/1,c_2/0,c_3/1,c_4/1,c_5/0} Obligation: Innermost basic terms: {add0#,goal#,mul0#}/{Cons,Nil,S} Applied Processor: UsableRules Proof: We replace rewrite rules by usable rules: mul0#(Cons(x,xs),y) -> c_4(mul0#(xs,y)) *** 1.1.1.1.1.1.2.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: mul0#(Cons(x,xs),y) -> c_4(mul0#(xs,y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {add0/2,goal/2,mul0/2,add0#/2,goal#/2,mul0#/2} / {Cons/2,Nil/0,S/0,c_1/1,c_2/0,c_3/1,c_4/1,c_5/0} Obligation: Innermost basic terms: {add0#,goal#,mul0#}/{Cons,Nil,S} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: mul0#(Cons(x,xs),y) -> c_4(mul0#(xs,y)) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.1.2.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: mul0#(Cons(x,xs),y) -> c_4(mul0#(xs,y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {add0/2,goal/2,mul0/2,add0#/2,goal#/2,mul0#/2} / {Cons/2,Nil/0,S/0,c_1/1,c_2/0,c_3/1,c_4/1,c_5/0} Obligation: Innermost basic terms: {add0#,goal#,mul0#}/{Cons,Nil,S} Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_4) = {1} Following symbols are considered usable: {add0#,goal#,mul0#} TcT has computed the following interpretation: p(Cons) = [1] x2 + [8] p(Nil) = [1] p(S) = [1] p(add0) = [1] x1 + [0] p(goal) = [8] x1 + [1] x2 + [1] p(mul0) = [0] p(add0#) = [1] p(goal#) = [1] x1 + [1] x2 + [1] p(mul0#) = [2] x1 + [2] x2 + [0] p(c_1) = [2] x1 + [1] p(c_2) = [1] p(c_3) = [0] p(c_4) = [1] x1 + [15] p(c_5) = [2] Following rules are strictly oriented: mul0#(Cons(x,xs),y) = [2] xs + [2] y + [16] > [2] xs + [2] y + [15] = c_4(mul0#(xs,y)) Following rules are (at-least) weakly oriented: *** 1.1.1.1.1.1.2.1.1.1.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: mul0#(Cons(x,xs),y) -> c_4(mul0#(xs,y)) Weak TRS Rules: Signature: {add0/2,goal/2,mul0/2,add0#/2,goal#/2,mul0#/2} / {Cons/2,Nil/0,S/0,c_1/1,c_2/0,c_3/1,c_4/1,c_5/0} Obligation: Innermost basic terms: {add0#,goal#,mul0#}/{Cons,Nil,S} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.2.1.1.1.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: mul0#(Cons(x,xs),y) -> c_4(mul0#(xs,y)) Weak TRS Rules: Signature: {add0/2,goal/2,mul0/2,add0#/2,goal#/2,mul0#/2} / {Cons/2,Nil/0,S/0,c_1/1,c_2/0,c_3/1,c_4/1,c_5/0} Obligation: Innermost basic terms: {add0#,goal#,mul0#}/{Cons,Nil,S} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:mul0#(Cons(x,xs),y) -> c_4(mul0#(xs,y)) -->_1 mul0#(Cons(x,xs),y) -> c_4(mul0#(xs,y)):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: mul0#(Cons(x,xs),y) -> c_4(mul0#(xs,y)) *** 1.1.1.1.1.1.2.1.1.1.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {add0/2,goal/2,mul0/2,add0#/2,goal#/2,mul0#/2} / {Cons/2,Nil/0,S/0,c_1/1,c_2/0,c_3/1,c_4/1,c_5/0} Obligation: Innermost basic terms: {add0#,goal#,mul0#}/{Cons,Nil,S} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1).