*** 1 Progress [(?,O(n^3))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        add0(Cons(x,xs),y) -> add0(xs,Cons(S(),y))
        add0(Nil(),y) -> y
        goal(xs,ys) -> mul0(xs,ys)
        mul0(Cons(x,xs),y) -> add0(mul0(xs,y),y)
        mul0(Nil(),y) -> Nil()
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {add0/2,goal/2,mul0/2} / {Cons/2,Nil/0,S/0}
      Obligation:
        Innermost
        basic terms: {add0,goal,mul0}/{Cons,Nil,S}
    Applied Processor:
      DependencyPairs {dpKind_ = DT}
    Proof:
      We add the following dependency tuples:
      
      Strict DPs
        add0#(Cons(x,xs),y) -> c_1(add0#(xs,Cons(S(),y)))
        add0#(Nil(),y) -> c_2()
        goal#(xs,ys) -> c_3(mul0#(xs,ys))
        mul0#(Cons(x,xs),y) -> c_4(add0#(mul0(xs,y),y),mul0#(xs,y))
        mul0#(Nil(),y) -> c_5()
      Weak DPs
        
      
      and mark the set of starting terms.
*** 1.1 Progress [(?,O(n^3))]  ***
    Considered Problem:
      Strict DP Rules:
        add0#(Cons(x,xs),y) -> c_1(add0#(xs,Cons(S(),y)))
        add0#(Nil(),y) -> c_2()
        goal#(xs,ys) -> c_3(mul0#(xs,ys))
        mul0#(Cons(x,xs),y) -> c_4(add0#(mul0(xs,y),y),mul0#(xs,y))
        mul0#(Nil(),y) -> c_5()
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        add0(Cons(x,xs),y) -> add0(xs,Cons(S(),y))
        add0(Nil(),y) -> y
        goal(xs,ys) -> mul0(xs,ys)
        mul0(Cons(x,xs),y) -> add0(mul0(xs,y),y)
        mul0(Nil(),y) -> Nil()
      Signature:
        {add0/2,goal/2,mul0/2,add0#/2,goal#/2,mul0#/2} / {Cons/2,Nil/0,S/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0}
      Obligation:
        Innermost
        basic terms: {add0#,goal#,mul0#}/{Cons,Nil,S}
    Applied Processor:
      UsableRules
    Proof:
      We replace rewrite rules by usable rules:
        add0(Cons(x,xs),y) -> add0(xs,Cons(S(),y))
        add0(Nil(),y) -> y
        mul0(Cons(x,xs),y) -> add0(mul0(xs,y),y)
        mul0(Nil(),y) -> Nil()
        add0#(Cons(x,xs),y) -> c_1(add0#(xs,Cons(S(),y)))
        add0#(Nil(),y) -> c_2()
        goal#(xs,ys) -> c_3(mul0#(xs,ys))
        mul0#(Cons(x,xs),y) -> c_4(add0#(mul0(xs,y),y),mul0#(xs,y))
        mul0#(Nil(),y) -> c_5()
*** 1.1.1 Progress [(?,O(n^3))]  ***
    Considered Problem:
      Strict DP Rules:
        add0#(Cons(x,xs),y) -> c_1(add0#(xs,Cons(S(),y)))
        add0#(Nil(),y) -> c_2()
        goal#(xs,ys) -> c_3(mul0#(xs,ys))
        mul0#(Cons(x,xs),y) -> c_4(add0#(mul0(xs,y),y),mul0#(xs,y))
        mul0#(Nil(),y) -> c_5()
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        add0(Cons(x,xs),y) -> add0(xs,Cons(S(),y))
        add0(Nil(),y) -> y
        mul0(Cons(x,xs),y) -> add0(mul0(xs,y),y)
        mul0(Nil(),y) -> Nil()
      Signature:
        {add0/2,goal/2,mul0/2,add0#/2,goal#/2,mul0#/2} / {Cons/2,Nil/0,S/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0}
      Obligation:
        Innermost
        basic terms: {add0#,goal#,mul0#}/{Cons,Nil,S}
    Applied Processor:
      PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    Proof:
      We estimate the number of application of
        {2,5}
      by application of
        Pre({2,5}) = {1,3,4}.
      Here rules are labelled as follows:
        1: add0#(Cons(x,xs),y) ->        
             c_1(add0#(xs,Cons(S(),y)))  
        2: add0#(Nil(),y) -> c_2()       
        3: goal#(xs,ys) -> c_3(mul0#(xs  
                                    ,ys))
        4: mul0#(Cons(x,xs),y) ->        
             c_4(add0#(mul0(xs,y),y)     
                ,mul0#(xs,y))            
        5: mul0#(Nil(),y) -> c_5()       
*** 1.1.1.1 Progress [(?,O(n^3))]  ***
    Considered Problem:
      Strict DP Rules:
        add0#(Cons(x,xs),y) -> c_1(add0#(xs,Cons(S(),y)))
        goal#(xs,ys) -> c_3(mul0#(xs,ys))
        mul0#(Cons(x,xs),y) -> c_4(add0#(mul0(xs,y),y),mul0#(xs,y))
      Strict TRS Rules:
        
      Weak DP Rules:
        add0#(Nil(),y) -> c_2()
        mul0#(Nil(),y) -> c_5()
      Weak TRS Rules:
        add0(Cons(x,xs),y) -> add0(xs,Cons(S(),y))
        add0(Nil(),y) -> y
        mul0(Cons(x,xs),y) -> add0(mul0(xs,y),y)
        mul0(Nil(),y) -> Nil()
      Signature:
        {add0/2,goal/2,mul0/2,add0#/2,goal#/2,mul0#/2} / {Cons/2,Nil/0,S/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0}
      Obligation:
        Innermost
        basic terms: {add0#,goal#,mul0#}/{Cons,Nil,S}
    Applied Processor:
      RemoveWeakSuffixes
    Proof:
      Consider the dependency graph
        1:S:add0#(Cons(x,xs),y) -> c_1(add0#(xs,Cons(S(),y)))
           -->_1 add0#(Nil(),y) -> c_2():4
           -->_1 add0#(Cons(x,xs),y) -> c_1(add0#(xs,Cons(S(),y))):1
        
        2:S:goal#(xs,ys) -> c_3(mul0#(xs,ys))
           -->_1 mul0#(Cons(x,xs),y) -> c_4(add0#(mul0(xs,y),y),mul0#(xs,y)):3
           -->_1 mul0#(Nil(),y) -> c_5():5
        
        3:S:mul0#(Cons(x,xs),y) -> c_4(add0#(mul0(xs,y),y),mul0#(xs,y))
           -->_2 mul0#(Nil(),y) -> c_5():5
           -->_1 add0#(Nil(),y) -> c_2():4
           -->_2 mul0#(Cons(x,xs),y) -> c_4(add0#(mul0(xs,y),y),mul0#(xs,y)):3
           -->_1 add0#(Cons(x,xs),y) -> c_1(add0#(xs,Cons(S(),y))):1
        
        4:W:add0#(Nil(),y) -> c_2()
           
        
        5:W:mul0#(Nil(),y) -> c_5()
           
        
      The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
        5: mul0#(Nil(),y) -> c_5()
        4: add0#(Nil(),y) -> c_2()
*** 1.1.1.1.1 Progress [(?,O(n^3))]  ***
    Considered Problem:
      Strict DP Rules:
        add0#(Cons(x,xs),y) -> c_1(add0#(xs,Cons(S(),y)))
        goal#(xs,ys) -> c_3(mul0#(xs,ys))
        mul0#(Cons(x,xs),y) -> c_4(add0#(mul0(xs,y),y),mul0#(xs,y))
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        add0(Cons(x,xs),y) -> add0(xs,Cons(S(),y))
        add0(Nil(),y) -> y
        mul0(Cons(x,xs),y) -> add0(mul0(xs,y),y)
        mul0(Nil(),y) -> Nil()
      Signature:
        {add0/2,goal/2,mul0/2,add0#/2,goal#/2,mul0#/2} / {Cons/2,Nil/0,S/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0}
      Obligation:
        Innermost
        basic terms: {add0#,goal#,mul0#}/{Cons,Nil,S}
    Applied Processor:
      RemoveHeads
    Proof:
      Consider the dependency graph
      
      1:S:add0#(Cons(x,xs),y) -> c_1(add0#(xs,Cons(S(),y)))
         -->_1 add0#(Cons(x,xs),y) -> c_1(add0#(xs,Cons(S(),y))):1
      
      2:S:goal#(xs,ys) -> c_3(mul0#(xs,ys))
         -->_1 mul0#(Cons(x,xs),y) -> c_4(add0#(mul0(xs,y),y),mul0#(xs,y)):3
      
      3:S:mul0#(Cons(x,xs),y) -> c_4(add0#(mul0(xs,y),y),mul0#(xs,y))
         -->_2 mul0#(Cons(x,xs),y) -> c_4(add0#(mul0(xs,y),y),mul0#(xs,y)):3
         -->_1 add0#(Cons(x,xs),y) -> c_1(add0#(xs,Cons(S(),y))):1
      
      
      Following roots of the dependency graph are removed, as the considered set of starting terms is closed under reduction with respect to these rules (modulo compound contexts).
      
      [(2,goal#(xs,ys) -> c_3(mul0#(xs,ys)))]
*** 1.1.1.1.1.1 Progress [(?,O(n^3))]  ***
    Considered Problem:
      Strict DP Rules:
        add0#(Cons(x,xs),y) -> c_1(add0#(xs,Cons(S(),y)))
        mul0#(Cons(x,xs),y) -> c_4(add0#(mul0(xs,y),y),mul0#(xs,y))
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        add0(Cons(x,xs),y) -> add0(xs,Cons(S(),y))
        add0(Nil(),y) -> y
        mul0(Cons(x,xs),y) -> add0(mul0(xs,y),y)
        mul0(Nil(),y) -> Nil()
      Signature:
        {add0/2,goal/2,mul0/2,add0#/2,goal#/2,mul0#/2} / {Cons/2,Nil/0,S/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0}
      Obligation:
        Innermost
        basic terms: {add0#,goal#,mul0#}/{Cons,Nil,S}
    Applied Processor:
      Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd}
    Proof:
      We analyse the complexity of following sub-problems (R) and (S).
      Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component.
      
      Problem (R)
        Strict DP Rules:
          add0#(Cons(x,xs),y) -> c_1(add0#(xs,Cons(S(),y)))
        Strict TRS Rules:
          
        Weak DP Rules:
          mul0#(Cons(x,xs),y) -> c_4(add0#(mul0(xs,y),y),mul0#(xs,y))
        Weak TRS Rules:
          add0(Cons(x,xs),y) -> add0(xs,Cons(S(),y))
          add0(Nil(),y) -> y
          mul0(Cons(x,xs),y) -> add0(mul0(xs,y),y)
          mul0(Nil(),y) -> Nil()
        Signature:
          {add0/2,goal/2,mul0/2,add0#/2,goal#/2,mul0#/2} / {Cons/2,Nil/0,S/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0}
        Obligation:
          Innermost
          basic terms: {add0#,goal#,mul0#}/{Cons,Nil,S}
      
      Problem (S)
        Strict DP Rules:
          mul0#(Cons(x,xs),y) -> c_4(add0#(mul0(xs,y),y),mul0#(xs,y))
        Strict TRS Rules:
          
        Weak DP Rules:
          add0#(Cons(x,xs),y) -> c_1(add0#(xs,Cons(S(),y)))
        Weak TRS Rules:
          add0(Cons(x,xs),y) -> add0(xs,Cons(S(),y))
          add0(Nil(),y) -> y
          mul0(Cons(x,xs),y) -> add0(mul0(xs,y),y)
          mul0(Nil(),y) -> Nil()
        Signature:
          {add0/2,goal/2,mul0/2,add0#/2,goal#/2,mul0#/2} / {Cons/2,Nil/0,S/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0}
        Obligation:
          Innermost
          basic terms: {add0#,goal#,mul0#}/{Cons,Nil,S}
  *** 1.1.1.1.1.1.1 Progress [(?,O(n^3))]  ***
      Considered Problem:
        Strict DP Rules:
          add0#(Cons(x,xs),y) -> c_1(add0#(xs,Cons(S(),y)))
        Strict TRS Rules:
          
        Weak DP Rules:
          mul0#(Cons(x,xs),y) -> c_4(add0#(mul0(xs,y),y),mul0#(xs,y))
        Weak TRS Rules:
          add0(Cons(x,xs),y) -> add0(xs,Cons(S(),y))
          add0(Nil(),y) -> y
          mul0(Cons(x,xs),y) -> add0(mul0(xs,y),y)
          mul0(Nil(),y) -> Nil()
        Signature:
          {add0/2,goal/2,mul0/2,add0#/2,goal#/2,mul0#/2} / {Cons/2,Nil/0,S/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0}
        Obligation:
          Innermost
          basic terms: {add0#,goal#,mul0#}/{Cons,Nil,S}
      Applied Processor:
        DecomposeDG {onSelection = all below first cut in WDG, onUpper = Just someStrategy, onLower = Nothing}
      Proof:
        We decompose the input problem according to the dependency graph into the upper component
          mul0#(Cons(x,xs),y) -> c_4(add0#(mul0(xs,y),y),mul0#(xs,y))
        and a lower component
          add0#(Cons(x,xs),y) -> c_1(add0#(xs,Cons(S(),y)))
        Further, following extension rules are added to the lower component.
          mul0#(Cons(x,xs),y) -> add0#(mul0(xs,y),y)
          mul0#(Cons(x,xs),y) -> mul0#(xs,y)
    *** 1.1.1.1.1.1.1.1 Progress [(?,O(n^1))]  ***
        Considered Problem:
          Strict DP Rules:
            mul0#(Cons(x,xs),y) -> c_4(add0#(mul0(xs,y),y),mul0#(xs,y))
          Strict TRS Rules:
            
          Weak DP Rules:
            
          Weak TRS Rules:
            add0(Cons(x,xs),y) -> add0(xs,Cons(S(),y))
            add0(Nil(),y) -> y
            mul0(Cons(x,xs),y) -> add0(mul0(xs,y),y)
            mul0(Nil(),y) -> Nil()
          Signature:
            {add0/2,goal/2,mul0/2,add0#/2,goal#/2,mul0#/2} / {Cons/2,Nil/0,S/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0}
          Obligation:
            Innermost
            basic terms: {add0#,goal#,mul0#}/{Cons,Nil,S}
        Applied Processor:
          PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
        Proof:
          We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
            1: mul0#(Cons(x,xs),y) ->   
                 c_4(add0#(mul0(xs,y),y)
                    ,mul0#(xs,y))       
            
          The strictly oriented rules are moved into the weak component.
      *** 1.1.1.1.1.1.1.1.1 Progress [(?,O(n^1))]  ***
          Considered Problem:
            Strict DP Rules:
              mul0#(Cons(x,xs),y) -> c_4(add0#(mul0(xs,y),y),mul0#(xs,y))
            Strict TRS Rules:
              
            Weak DP Rules:
              
            Weak TRS Rules:
              add0(Cons(x,xs),y) -> add0(xs,Cons(S(),y))
              add0(Nil(),y) -> y
              mul0(Cons(x,xs),y) -> add0(mul0(xs,y),y)
              mul0(Nil(),y) -> Nil()
            Signature:
              {add0/2,goal/2,mul0/2,add0#/2,goal#/2,mul0#/2} / {Cons/2,Nil/0,S/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0}
            Obligation:
              Innermost
              basic terms: {add0#,goal#,mul0#}/{Cons,Nil,S}
          Applied Processor:
            NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
          Proof:
            We apply a matrix interpretation of kind constructor based matrix interpretation:
            The following argument positions are considered usable:
              uargs(c_4) = {1,2}
            
            Following symbols are considered usable:
              {add0#,goal#,mul0#}
            TcT has computed the following interpretation:
               p(Cons) = [1] x1 + [1] x2 + [4]
                p(Nil) = [0]                  
                  p(S) = [11]                 
               p(add0) = [2] x2 + [0]         
               p(goal) = [4] x1 + [2] x2 + [1]
               p(mul0) = [0]                  
              p(add0#) = [0]                  
              p(goal#) = [2] x1 + [1] x2 + [1]
              p(mul0#) = [1] x1 + [4] x2 + [0]
                p(c_1) = [2] x1 + [2]         
                p(c_2) = [1]                  
                p(c_3) = [1] x1 + [2]         
                p(c_4) = [2] x1 + [1] x2 + [0]
                p(c_5) = [1]                  
            
            Following rules are strictly oriented:
            mul0#(Cons(x,xs),y) = [1] x + [1] xs + [4] y + [4]
                                > [1] xs + [4] y + [0]        
                                = c_4(add0#(mul0(xs,y),y)     
                                     ,mul0#(xs,y))            
            
            
            Following rules are (at-least) weakly oriented:
            
      *** 1.1.1.1.1.1.1.1.1.1 Progress [(?,O(1))]  ***
          Considered Problem:
            Strict DP Rules:
              
            Strict TRS Rules:
              
            Weak DP Rules:
              mul0#(Cons(x,xs),y) -> c_4(add0#(mul0(xs,y),y),mul0#(xs,y))
            Weak TRS Rules:
              add0(Cons(x,xs),y) -> add0(xs,Cons(S(),y))
              add0(Nil(),y) -> y
              mul0(Cons(x,xs),y) -> add0(mul0(xs,y),y)
              mul0(Nil(),y) -> Nil()
            Signature:
              {add0/2,goal/2,mul0/2,add0#/2,goal#/2,mul0#/2} / {Cons/2,Nil/0,S/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0}
            Obligation:
              Innermost
              basic terms: {add0#,goal#,mul0#}/{Cons,Nil,S}
          Applied Processor:
            Assumption
          Proof:
            ()
      
      *** 1.1.1.1.1.1.1.1.2 Progress [(O(1),O(1))]  ***
          Considered Problem:
            Strict DP Rules:
              
            Strict TRS Rules:
              
            Weak DP Rules:
              mul0#(Cons(x,xs),y) -> c_4(add0#(mul0(xs,y),y),mul0#(xs,y))
            Weak TRS Rules:
              add0(Cons(x,xs),y) -> add0(xs,Cons(S(),y))
              add0(Nil(),y) -> y
              mul0(Cons(x,xs),y) -> add0(mul0(xs,y),y)
              mul0(Nil(),y) -> Nil()
            Signature:
              {add0/2,goal/2,mul0/2,add0#/2,goal#/2,mul0#/2} / {Cons/2,Nil/0,S/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0}
            Obligation:
              Innermost
              basic terms: {add0#,goal#,mul0#}/{Cons,Nil,S}
          Applied Processor:
            RemoveWeakSuffixes
          Proof:
            Consider the dependency graph
              1:W:mul0#(Cons(x,xs),y) -> c_4(add0#(mul0(xs,y),y),mul0#(xs,y))
                 -->_2 mul0#(Cons(x,xs),y) -> c_4(add0#(mul0(xs,y),y),mul0#(xs,y)):1
              
            The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
              1: mul0#(Cons(x,xs),y) ->   
                   c_4(add0#(mul0(xs,y),y)
                      ,mul0#(xs,y))       
      *** 1.1.1.1.1.1.1.1.2.1 Progress [(O(1),O(1))]  ***
          Considered Problem:
            Strict DP Rules:
              
            Strict TRS Rules:
              
            Weak DP Rules:
              
            Weak TRS Rules:
              add0(Cons(x,xs),y) -> add0(xs,Cons(S(),y))
              add0(Nil(),y) -> y
              mul0(Cons(x,xs),y) -> add0(mul0(xs,y),y)
              mul0(Nil(),y) -> Nil()
            Signature:
              {add0/2,goal/2,mul0/2,add0#/2,goal#/2,mul0#/2} / {Cons/2,Nil/0,S/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0}
            Obligation:
              Innermost
              basic terms: {add0#,goal#,mul0#}/{Cons,Nil,S}
          Applied Processor:
            EmptyProcessor
          Proof:
            The problem is already closed. The intended complexity is O(1).
      
    *** 1.1.1.1.1.1.1.2 Progress [(?,O(n^2))]  ***
        Considered Problem:
          Strict DP Rules:
            add0#(Cons(x,xs),y) -> c_1(add0#(xs,Cons(S(),y)))
          Strict TRS Rules:
            
          Weak DP Rules:
            mul0#(Cons(x,xs),y) -> add0#(mul0(xs,y),y)
            mul0#(Cons(x,xs),y) -> mul0#(xs,y)
          Weak TRS Rules:
            add0(Cons(x,xs),y) -> add0(xs,Cons(S(),y))
            add0(Nil(),y) -> y
            mul0(Cons(x,xs),y) -> add0(mul0(xs,y),y)
            mul0(Nil(),y) -> Nil()
          Signature:
            {add0/2,goal/2,mul0/2,add0#/2,goal#/2,mul0#/2} / {Cons/2,Nil/0,S/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0}
          Obligation:
            Innermost
            basic terms: {add0#,goal#,mul0#}/{Cons,Nil,S}
        Applied Processor:
          PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
        Proof:
          We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
            1: add0#(Cons(x,xs),y) ->      
                 c_1(add0#(xs,Cons(S(),y)))
            
          The strictly oriented rules are moved into the weak component.
      *** 1.1.1.1.1.1.1.2.1 Progress [(?,O(n^2))]  ***
          Considered Problem:
            Strict DP Rules:
              add0#(Cons(x,xs),y) -> c_1(add0#(xs,Cons(S(),y)))
            Strict TRS Rules:
              
            Weak DP Rules:
              mul0#(Cons(x,xs),y) -> add0#(mul0(xs,y),y)
              mul0#(Cons(x,xs),y) -> mul0#(xs,y)
            Weak TRS Rules:
              add0(Cons(x,xs),y) -> add0(xs,Cons(S(),y))
              add0(Nil(),y) -> y
              mul0(Cons(x,xs),y) -> add0(mul0(xs,y),y)
              mul0(Nil(),y) -> Nil()
            Signature:
              {add0/2,goal/2,mul0/2,add0#/2,goal#/2,mul0#/2} / {Cons/2,Nil/0,S/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0}
            Obligation:
              Innermost
              basic terms: {add0#,goal#,mul0#}/{Cons,Nil,S}
          Applied Processor:
            NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
          Proof:
            We apply a polynomial interpretation of kind constructor-based(mixed(2)):
            The following argument positions are considered usable:
              uargs(c_1) = {1}
            
            Following symbols are considered usable:
              {add0,mul0,add0#,goal#,mul0#}
            TcT has computed the following interpretation:
               p(Cons) = 1 + x1 + x2                      
                p(Nil) = 0                                
                  p(S) = 0                                
               p(add0) = 3 + x1 + x2                      
               p(goal) = 1 + 2*x1 + 2*x1^2 + x2           
               p(mul0) = x1*x2 + 3*x1^2                   
              p(add0#) = 3 + x1                           
              p(goal#) = x1 + 4*x1*x2 + x1^2 + 2*x2 + x2^2
              p(mul0#) = x1 + 4*x1*x2 + 4*x1^2            
                p(c_1) = x1                               
                p(c_2) = 1                                
                p(c_3) = 0                                
                p(c_4) = 0                                
                p(c_5) = 1                                
            
            Following rules are strictly oriented:
            add0#(Cons(x,xs),y) = 4 + x + xs                
                                > 3 + xs                    
                                = c_1(add0#(xs,Cons(S(),y)))
            
            
            Following rules are (at-least) weakly oriented:
            mul0#(Cons(x,xs),y) =  5 + 9*x + 8*x*xs + 4*x*y + 4*x^2 + 9*xs + 4*xs*y + 4*xs^2 + 4*y
                                >= 3 + xs*y + 3*xs^2                                              
                                =  add0#(mul0(xs,y),y)                                            
            
            mul0#(Cons(x,xs),y) =  5 + 9*x + 8*x*xs + 4*x*y + 4*x^2 + 9*xs + 4*xs*y + 4*xs^2 + 4*y
                                >= xs + 4*xs*y + 4*xs^2                                           
                                =  mul0#(xs,y)                                                    
            
             add0(Cons(x,xs),y) =  4 + x + xs + y                                                 
                                >= 4 + xs + y                                                     
                                =  add0(xs,Cons(S(),y))                                           
            
                  add0(Nil(),y) =  3 + y                                                          
                                >= y                                                              
                                =  y                                                              
            
             mul0(Cons(x,xs),y) =  3 + 6*x + 6*x*xs + x*y + 3*x^2 + 6*xs + xs*y + 3*xs^2 + y      
                                >= 3 + xs*y + 3*xs^2 + y                                          
                                =  add0(mul0(xs,y),y)                                             
            
                  mul0(Nil(),y) =  0                                                              
                                >= 0                                                              
                                =  Nil()                                                          
            
      *** 1.1.1.1.1.1.1.2.1.1 Progress [(?,O(1))]  ***
          Considered Problem:
            Strict DP Rules:
              
            Strict TRS Rules:
              
            Weak DP Rules:
              add0#(Cons(x,xs),y) -> c_1(add0#(xs,Cons(S(),y)))
              mul0#(Cons(x,xs),y) -> add0#(mul0(xs,y),y)
              mul0#(Cons(x,xs),y) -> mul0#(xs,y)
            Weak TRS Rules:
              add0(Cons(x,xs),y) -> add0(xs,Cons(S(),y))
              add0(Nil(),y) -> y
              mul0(Cons(x,xs),y) -> add0(mul0(xs,y),y)
              mul0(Nil(),y) -> Nil()
            Signature:
              {add0/2,goal/2,mul0/2,add0#/2,goal#/2,mul0#/2} / {Cons/2,Nil/0,S/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0}
            Obligation:
              Innermost
              basic terms: {add0#,goal#,mul0#}/{Cons,Nil,S}
          Applied Processor:
            Assumption
          Proof:
            ()
      
      *** 1.1.1.1.1.1.1.2.2 Progress [(O(1),O(1))]  ***
          Considered Problem:
            Strict DP Rules:
              
            Strict TRS Rules:
              
            Weak DP Rules:
              add0#(Cons(x,xs),y) -> c_1(add0#(xs,Cons(S(),y)))
              mul0#(Cons(x,xs),y) -> add0#(mul0(xs,y),y)
              mul0#(Cons(x,xs),y) -> mul0#(xs,y)
            Weak TRS Rules:
              add0(Cons(x,xs),y) -> add0(xs,Cons(S(),y))
              add0(Nil(),y) -> y
              mul0(Cons(x,xs),y) -> add0(mul0(xs,y),y)
              mul0(Nil(),y) -> Nil()
            Signature:
              {add0/2,goal/2,mul0/2,add0#/2,goal#/2,mul0#/2} / {Cons/2,Nil/0,S/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0}
            Obligation:
              Innermost
              basic terms: {add0#,goal#,mul0#}/{Cons,Nil,S}
          Applied Processor:
            RemoveWeakSuffixes
          Proof:
            Consider the dependency graph
              1:W:add0#(Cons(x,xs),y) -> c_1(add0#(xs,Cons(S(),y)))
                 -->_1 add0#(Cons(x,xs),y) -> c_1(add0#(xs,Cons(S(),y))):1
              
              2:W:mul0#(Cons(x,xs),y) -> add0#(mul0(xs,y),y)
                 -->_1 add0#(Cons(x,xs),y) -> c_1(add0#(xs,Cons(S(),y))):1
              
              3:W:mul0#(Cons(x,xs),y) -> mul0#(xs,y)
                 -->_1 mul0#(Cons(x,xs),y) -> mul0#(xs,y):3
                 -->_1 mul0#(Cons(x,xs),y) -> add0#(mul0(xs,y),y):2
              
            The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
              3: mul0#(Cons(x,xs),y) -> mul0#(xs
                                             ,y)
              2: mul0#(Cons(x,xs),y) ->         
                   add0#(mul0(xs,y),y)          
              1: add0#(Cons(x,xs),y) ->         
                   c_1(add0#(xs,Cons(S(),y)))   
      *** 1.1.1.1.1.1.1.2.2.1 Progress [(O(1),O(1))]  ***
          Considered Problem:
            Strict DP Rules:
              
            Strict TRS Rules:
              
            Weak DP Rules:
              
            Weak TRS Rules:
              add0(Cons(x,xs),y) -> add0(xs,Cons(S(),y))
              add0(Nil(),y) -> y
              mul0(Cons(x,xs),y) -> add0(mul0(xs,y),y)
              mul0(Nil(),y) -> Nil()
            Signature:
              {add0/2,goal/2,mul0/2,add0#/2,goal#/2,mul0#/2} / {Cons/2,Nil/0,S/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0}
            Obligation:
              Innermost
              basic terms: {add0#,goal#,mul0#}/{Cons,Nil,S}
          Applied Processor:
            EmptyProcessor
          Proof:
            The problem is already closed. The intended complexity is O(1).
      
  *** 1.1.1.1.1.1.2 Progress [(?,O(n^1))]  ***
      Considered Problem:
        Strict DP Rules:
          mul0#(Cons(x,xs),y) -> c_4(add0#(mul0(xs,y),y),mul0#(xs,y))
        Strict TRS Rules:
          
        Weak DP Rules:
          add0#(Cons(x,xs),y) -> c_1(add0#(xs,Cons(S(),y)))
        Weak TRS Rules:
          add0(Cons(x,xs),y) -> add0(xs,Cons(S(),y))
          add0(Nil(),y) -> y
          mul0(Cons(x,xs),y) -> add0(mul0(xs,y),y)
          mul0(Nil(),y) -> Nil()
        Signature:
          {add0/2,goal/2,mul0/2,add0#/2,goal#/2,mul0#/2} / {Cons/2,Nil/0,S/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0}
        Obligation:
          Innermost
          basic terms: {add0#,goal#,mul0#}/{Cons,Nil,S}
      Applied Processor:
        RemoveWeakSuffixes
      Proof:
        Consider the dependency graph
          1:S:mul0#(Cons(x,xs),y) -> c_4(add0#(mul0(xs,y),y),mul0#(xs,y))
             -->_1 add0#(Cons(x,xs),y) -> c_1(add0#(xs,Cons(S(),y))):2
             -->_2 mul0#(Cons(x,xs),y) -> c_4(add0#(mul0(xs,y),y),mul0#(xs,y)):1
          
          2:W:add0#(Cons(x,xs),y) -> c_1(add0#(xs,Cons(S(),y)))
             -->_1 add0#(Cons(x,xs),y) -> c_1(add0#(xs,Cons(S(),y))):2
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          2: add0#(Cons(x,xs),y) ->      
               c_1(add0#(xs,Cons(S(),y)))
  *** 1.1.1.1.1.1.2.1 Progress [(?,O(n^1))]  ***
      Considered Problem:
        Strict DP Rules:
          mul0#(Cons(x,xs),y) -> c_4(add0#(mul0(xs,y),y),mul0#(xs,y))
        Strict TRS Rules:
          
        Weak DP Rules:
          
        Weak TRS Rules:
          add0(Cons(x,xs),y) -> add0(xs,Cons(S(),y))
          add0(Nil(),y) -> y
          mul0(Cons(x,xs),y) -> add0(mul0(xs,y),y)
          mul0(Nil(),y) -> Nil()
        Signature:
          {add0/2,goal/2,mul0/2,add0#/2,goal#/2,mul0#/2} / {Cons/2,Nil/0,S/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0}
        Obligation:
          Innermost
          basic terms: {add0#,goal#,mul0#}/{Cons,Nil,S}
      Applied Processor:
        SimplifyRHS
      Proof:
        Consider the dependency graph
          1:S:mul0#(Cons(x,xs),y) -> c_4(add0#(mul0(xs,y),y),mul0#(xs,y))
             -->_2 mul0#(Cons(x,xs),y) -> c_4(add0#(mul0(xs,y),y),mul0#(xs,y)):1
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          mul0#(Cons(x,xs),y) -> c_4(mul0#(xs,y))
  *** 1.1.1.1.1.1.2.1.1 Progress [(?,O(n^1))]  ***
      Considered Problem:
        Strict DP Rules:
          mul0#(Cons(x,xs),y) -> c_4(mul0#(xs,y))
        Strict TRS Rules:
          
        Weak DP Rules:
          
        Weak TRS Rules:
          add0(Cons(x,xs),y) -> add0(xs,Cons(S(),y))
          add0(Nil(),y) -> y
          mul0(Cons(x,xs),y) -> add0(mul0(xs,y),y)
          mul0(Nil(),y) -> Nil()
        Signature:
          {add0/2,goal/2,mul0/2,add0#/2,goal#/2,mul0#/2} / {Cons/2,Nil/0,S/0,c_1/1,c_2/0,c_3/1,c_4/1,c_5/0}
        Obligation:
          Innermost
          basic terms: {add0#,goal#,mul0#}/{Cons,Nil,S}
      Applied Processor:
        UsableRules
      Proof:
        We replace rewrite rules by usable rules:
          mul0#(Cons(x,xs),y) -> c_4(mul0#(xs,y))
  *** 1.1.1.1.1.1.2.1.1.1 Progress [(?,O(n^1))]  ***
      Considered Problem:
        Strict DP Rules:
          mul0#(Cons(x,xs),y) -> c_4(mul0#(xs,y))
        Strict TRS Rules:
          
        Weak DP Rules:
          
        Weak TRS Rules:
          
        Signature:
          {add0/2,goal/2,mul0/2,add0#/2,goal#/2,mul0#/2} / {Cons/2,Nil/0,S/0,c_1/1,c_2/0,c_3/1,c_4/1,c_5/0}
        Obligation:
          Innermost
          basic terms: {add0#,goal#,mul0#}/{Cons,Nil,S}
      Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
      Proof:
        We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
          1: mul0#(Cons(x,xs),y) ->
               c_4(mul0#(xs,y))    
          
        The strictly oriented rules are moved into the weak component.
    *** 1.1.1.1.1.1.2.1.1.1.1 Progress [(?,O(n^1))]  ***
        Considered Problem:
          Strict DP Rules:
            mul0#(Cons(x,xs),y) -> c_4(mul0#(xs,y))
          Strict TRS Rules:
            
          Weak DP Rules:
            
          Weak TRS Rules:
            
          Signature:
            {add0/2,goal/2,mul0/2,add0#/2,goal#/2,mul0#/2} / {Cons/2,Nil/0,S/0,c_1/1,c_2/0,c_3/1,c_4/1,c_5/0}
          Obligation:
            Innermost
            basic terms: {add0#,goal#,mul0#}/{Cons,Nil,S}
        Applied Processor:
          NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
        Proof:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(c_4) = {1}
          
          Following symbols are considered usable:
            {add0#,goal#,mul0#}
          TcT has computed the following interpretation:
             p(Cons) = [1] x2 + [8]         
              p(Nil) = [1]                  
                p(S) = [1]                  
             p(add0) = [1] x1 + [0]         
             p(goal) = [8] x1 + [1] x2 + [1]
             p(mul0) = [0]                  
            p(add0#) = [1]                  
            p(goal#) = [1] x1 + [1] x2 + [1]
            p(mul0#) = [2] x1 + [2] x2 + [0]
              p(c_1) = [2] x1 + [1]         
              p(c_2) = [1]                  
              p(c_3) = [0]                  
              p(c_4) = [1] x1 + [15]        
              p(c_5) = [2]                  
          
          Following rules are strictly oriented:
          mul0#(Cons(x,xs),y) = [2] xs + [2] y + [16]
                              > [2] xs + [2] y + [15]
                              = c_4(mul0#(xs,y))     
          
          
          Following rules are (at-least) weakly oriented:
          
    *** 1.1.1.1.1.1.2.1.1.1.1.1 Progress [(?,O(1))]  ***
        Considered Problem:
          Strict DP Rules:
            
          Strict TRS Rules:
            
          Weak DP Rules:
            mul0#(Cons(x,xs),y) -> c_4(mul0#(xs,y))
          Weak TRS Rules:
            
          Signature:
            {add0/2,goal/2,mul0/2,add0#/2,goal#/2,mul0#/2} / {Cons/2,Nil/0,S/0,c_1/1,c_2/0,c_3/1,c_4/1,c_5/0}
          Obligation:
            Innermost
            basic terms: {add0#,goal#,mul0#}/{Cons,Nil,S}
        Applied Processor:
          Assumption
        Proof:
          ()
    
    *** 1.1.1.1.1.1.2.1.1.1.2 Progress [(O(1),O(1))]  ***
        Considered Problem:
          Strict DP Rules:
            
          Strict TRS Rules:
            
          Weak DP Rules:
            mul0#(Cons(x,xs),y) -> c_4(mul0#(xs,y))
          Weak TRS Rules:
            
          Signature:
            {add0/2,goal/2,mul0/2,add0#/2,goal#/2,mul0#/2} / {Cons/2,Nil/0,S/0,c_1/1,c_2/0,c_3/1,c_4/1,c_5/0}
          Obligation:
            Innermost
            basic terms: {add0#,goal#,mul0#}/{Cons,Nil,S}
        Applied Processor:
          RemoveWeakSuffixes
        Proof:
          Consider the dependency graph
            1:W:mul0#(Cons(x,xs),y) -> c_4(mul0#(xs,y))
               -->_1 mul0#(Cons(x,xs),y) -> c_4(mul0#(xs,y)):1
            
          The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
            1: mul0#(Cons(x,xs),y) ->
                 c_4(mul0#(xs,y))    
    *** 1.1.1.1.1.1.2.1.1.1.2.1 Progress [(O(1),O(1))]  ***
        Considered Problem:
          Strict DP Rules:
            
          Strict TRS Rules:
            
          Weak DP Rules:
            
          Weak TRS Rules:
            
          Signature:
            {add0/2,goal/2,mul0/2,add0#/2,goal#/2,mul0#/2} / {Cons/2,Nil/0,S/0,c_1/1,c_2/0,c_3/1,c_4/1,c_5/0}
          Obligation:
            Innermost
            basic terms: {add0#,goal#,mul0#}/{Cons,Nil,S}
        Applied Processor:
          EmptyProcessor
        Proof:
          The problem is already closed. The intended complexity is O(1).