(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
mul0(Cons(x, xs), y) → add0(mul0(xs, y), y)
add0(Cons(x, xs), y) → add0(xs, Cons(S, y))
mul0(Nil, y) → Nil
add0(Nil, y) → y
goal(xs, ys) → mul0(xs, ys)
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
mul0(Cons(x, xs), y) → add0(mul0(xs, y), y)
add0(Cons(x, xs), y) → add0(xs, Cons(S, y))
mul0(Nil, y) → Nil
add0(Nil, y) → y
goal(xs, ys) → mul0(xs, ys)
S is empty.
Rewrite Strategy: INNERMOST
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
Innermost TRS:
Rules:
mul0(Cons(x, xs), y) → add0(mul0(xs, y), y)
add0(Cons(x, xs), y) → add0(xs, Cons(S, y))
mul0(Nil, y) → Nil
add0(Nil, y) → y
goal(xs, ys) → mul0(xs, ys)
Types:
mul0 :: Cons:Nil → Cons:Nil → Cons:Nil
Cons :: S → Cons:Nil → Cons:Nil
add0 :: Cons:Nil → Cons:Nil → Cons:Nil
S :: S
Nil :: Cons:Nil
goal :: Cons:Nil → Cons:Nil → Cons:Nil
hole_Cons:Nil1_1 :: Cons:Nil
hole_S2_1 :: S
gen_Cons:Nil3_1 :: Nat → Cons:Nil
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
mul0,
add0They will be analysed ascendingly in the following order:
add0 < mul0
(6) Obligation:
Innermost TRS:
Rules:
mul0(
Cons(
x,
xs),
y) →
add0(
mul0(
xs,
y),
y)
add0(
Cons(
x,
xs),
y) →
add0(
xs,
Cons(
S,
y))
mul0(
Nil,
y) →
Niladd0(
Nil,
y) →
ygoal(
xs,
ys) →
mul0(
xs,
ys)
Types:
mul0 :: Cons:Nil → Cons:Nil → Cons:Nil
Cons :: S → Cons:Nil → Cons:Nil
add0 :: Cons:Nil → Cons:Nil → Cons:Nil
S :: S
Nil :: Cons:Nil
goal :: Cons:Nil → Cons:Nil → Cons:Nil
hole_Cons:Nil1_1 :: Cons:Nil
hole_S2_1 :: S
gen_Cons:Nil3_1 :: Nat → Cons:Nil
Generator Equations:
gen_Cons:Nil3_1(0) ⇔ Nil
gen_Cons:Nil3_1(+(x, 1)) ⇔ Cons(S, gen_Cons:Nil3_1(x))
The following defined symbols remain to be analysed:
add0, mul0
They will be analysed ascendingly in the following order:
add0 < mul0
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
add0(
gen_Cons:Nil3_1(
n5_1),
gen_Cons:Nil3_1(
b)) →
gen_Cons:Nil3_1(
+(
n5_1,
b)), rt ∈ Ω(1 + n5
1)
Induction Base:
add0(gen_Cons:Nil3_1(0), gen_Cons:Nil3_1(b)) →RΩ(1)
gen_Cons:Nil3_1(b)
Induction Step:
add0(gen_Cons:Nil3_1(+(n5_1, 1)), gen_Cons:Nil3_1(b)) →RΩ(1)
add0(gen_Cons:Nil3_1(n5_1), Cons(S, gen_Cons:Nil3_1(b))) →IH
gen_Cons:Nil3_1(+(+(b, 1), c6_1))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
Innermost TRS:
Rules:
mul0(
Cons(
x,
xs),
y) →
add0(
mul0(
xs,
y),
y)
add0(
Cons(
x,
xs),
y) →
add0(
xs,
Cons(
S,
y))
mul0(
Nil,
y) →
Niladd0(
Nil,
y) →
ygoal(
xs,
ys) →
mul0(
xs,
ys)
Types:
mul0 :: Cons:Nil → Cons:Nil → Cons:Nil
Cons :: S → Cons:Nil → Cons:Nil
add0 :: Cons:Nil → Cons:Nil → Cons:Nil
S :: S
Nil :: Cons:Nil
goal :: Cons:Nil → Cons:Nil → Cons:Nil
hole_Cons:Nil1_1 :: Cons:Nil
hole_S2_1 :: S
gen_Cons:Nil3_1 :: Nat → Cons:Nil
Lemmas:
add0(gen_Cons:Nil3_1(n5_1), gen_Cons:Nil3_1(b)) → gen_Cons:Nil3_1(+(n5_1, b)), rt ∈ Ω(1 + n51)
Generator Equations:
gen_Cons:Nil3_1(0) ⇔ Nil
gen_Cons:Nil3_1(+(x, 1)) ⇔ Cons(S, gen_Cons:Nil3_1(x))
The following defined symbols remain to be analysed:
mul0
(10) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
mul0(
gen_Cons:Nil3_1(
n468_1),
gen_Cons:Nil3_1(
b)) →
gen_Cons:Nil3_1(
*(
n468_1,
b)), rt ∈ Ω(1 + b·n468
12 + n468
1)
Induction Base:
mul0(gen_Cons:Nil3_1(0), gen_Cons:Nil3_1(b)) →RΩ(1)
Nil
Induction Step:
mul0(gen_Cons:Nil3_1(+(n468_1, 1)), gen_Cons:Nil3_1(b)) →RΩ(1)
add0(mul0(gen_Cons:Nil3_1(n468_1), gen_Cons:Nil3_1(b)), gen_Cons:Nil3_1(b)) →IH
add0(gen_Cons:Nil3_1(*(c469_1, b)), gen_Cons:Nil3_1(b)) →LΩ(1 + b·n4681)
gen_Cons:Nil3_1(+(*(n468_1, b), b))
We have rt ∈ Ω(n3) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n3).
(11) Complex Obligation (BEST)
(12) Obligation:
Innermost TRS:
Rules:
mul0(
Cons(
x,
xs),
y) →
add0(
mul0(
xs,
y),
y)
add0(
Cons(
x,
xs),
y) →
add0(
xs,
Cons(
S,
y))
mul0(
Nil,
y) →
Niladd0(
Nil,
y) →
ygoal(
xs,
ys) →
mul0(
xs,
ys)
Types:
mul0 :: Cons:Nil → Cons:Nil → Cons:Nil
Cons :: S → Cons:Nil → Cons:Nil
add0 :: Cons:Nil → Cons:Nil → Cons:Nil
S :: S
Nil :: Cons:Nil
goal :: Cons:Nil → Cons:Nil → Cons:Nil
hole_Cons:Nil1_1 :: Cons:Nil
hole_S2_1 :: S
gen_Cons:Nil3_1 :: Nat → Cons:Nil
Lemmas:
add0(gen_Cons:Nil3_1(n5_1), gen_Cons:Nil3_1(b)) → gen_Cons:Nil3_1(+(n5_1, b)), rt ∈ Ω(1 + n51)
mul0(gen_Cons:Nil3_1(n468_1), gen_Cons:Nil3_1(b)) → gen_Cons:Nil3_1(*(n468_1, b)), rt ∈ Ω(1 + b·n46812 + n4681)
Generator Equations:
gen_Cons:Nil3_1(0) ⇔ Nil
gen_Cons:Nil3_1(+(x, 1)) ⇔ Cons(S, gen_Cons:Nil3_1(x))
No more defined symbols left to analyse.
(13) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n3) was proven with the following lemma:
mul0(gen_Cons:Nil3_1(n468_1), gen_Cons:Nil3_1(b)) → gen_Cons:Nil3_1(*(n468_1, b)), rt ∈ Ω(1 + b·n46812 + n4681)
(14) BOUNDS(n^3, INF)
(15) Obligation:
Innermost TRS:
Rules:
mul0(
Cons(
x,
xs),
y) →
add0(
mul0(
xs,
y),
y)
add0(
Cons(
x,
xs),
y) →
add0(
xs,
Cons(
S,
y))
mul0(
Nil,
y) →
Niladd0(
Nil,
y) →
ygoal(
xs,
ys) →
mul0(
xs,
ys)
Types:
mul0 :: Cons:Nil → Cons:Nil → Cons:Nil
Cons :: S → Cons:Nil → Cons:Nil
add0 :: Cons:Nil → Cons:Nil → Cons:Nil
S :: S
Nil :: Cons:Nil
goal :: Cons:Nil → Cons:Nil → Cons:Nil
hole_Cons:Nil1_1 :: Cons:Nil
hole_S2_1 :: S
gen_Cons:Nil3_1 :: Nat → Cons:Nil
Lemmas:
add0(gen_Cons:Nil3_1(n5_1), gen_Cons:Nil3_1(b)) → gen_Cons:Nil3_1(+(n5_1, b)), rt ∈ Ω(1 + n51)
mul0(gen_Cons:Nil3_1(n468_1), gen_Cons:Nil3_1(b)) → gen_Cons:Nil3_1(*(n468_1, b)), rt ∈ Ω(1 + b·n46812 + n4681)
Generator Equations:
gen_Cons:Nil3_1(0) ⇔ Nil
gen_Cons:Nil3_1(+(x, 1)) ⇔ Cons(S, gen_Cons:Nil3_1(x))
No more defined symbols left to analyse.
(16) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n3) was proven with the following lemma:
mul0(gen_Cons:Nil3_1(n468_1), gen_Cons:Nil3_1(b)) → gen_Cons:Nil3_1(*(n468_1, b)), rt ∈ Ω(1 + b·n46812 + n4681)
(17) BOUNDS(n^3, INF)
(18) Obligation:
Innermost TRS:
Rules:
mul0(
Cons(
x,
xs),
y) →
add0(
mul0(
xs,
y),
y)
add0(
Cons(
x,
xs),
y) →
add0(
xs,
Cons(
S,
y))
mul0(
Nil,
y) →
Niladd0(
Nil,
y) →
ygoal(
xs,
ys) →
mul0(
xs,
ys)
Types:
mul0 :: Cons:Nil → Cons:Nil → Cons:Nil
Cons :: S → Cons:Nil → Cons:Nil
add0 :: Cons:Nil → Cons:Nil → Cons:Nil
S :: S
Nil :: Cons:Nil
goal :: Cons:Nil → Cons:Nil → Cons:Nil
hole_Cons:Nil1_1 :: Cons:Nil
hole_S2_1 :: S
gen_Cons:Nil3_1 :: Nat → Cons:Nil
Lemmas:
add0(gen_Cons:Nil3_1(n5_1), gen_Cons:Nil3_1(b)) → gen_Cons:Nil3_1(+(n5_1, b)), rt ∈ Ω(1 + n51)
Generator Equations:
gen_Cons:Nil3_1(0) ⇔ Nil
gen_Cons:Nil3_1(+(x, 1)) ⇔ Cons(S, gen_Cons:Nil3_1(x))
No more defined symbols left to analyse.
(19) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
add0(gen_Cons:Nil3_1(n5_1), gen_Cons:Nil3_1(b)) → gen_Cons:Nil3_1(+(n5_1, b)), rt ∈ Ω(1 + n51)
(20) BOUNDS(n^1, INF)