*** 1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        even(Cons(x,Nil())) -> False()
        even(Cons(x',Cons(x,xs))) -> even(xs)
        even(Nil()) -> True()
        goal(x,y) -> and(lte(x,y),even(x))
        lte(Cons(x,xs),Nil()) -> False()
        lte(Cons(x',xs'),Cons(x,xs)) -> lte(xs',xs)
        lte(Nil(),y) -> True()
        notEmpty(Cons(x,xs)) -> True()
        notEmpty(Nil()) -> False()
      Weak DP Rules:
        
      Weak TRS Rules:
        and(False(),False()) -> False()
        and(False(),True()) -> False()
        and(True(),False()) -> False()
        and(True(),True()) -> True()
      Signature:
        {and/2,even/1,goal/2,lte/2,notEmpty/1} / {Cons/2,False/0,Nil/0,True/0}
      Obligation:
        Innermost
        basic terms: {and,even,goal,lte,notEmpty}/{Cons,False,Nil,True}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(and) = {1,2}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
              p(Cons) = [1] x2 + [0]          
             p(False) = [0]                   
               p(Nil) = [5]                   
              p(True) = [2]                   
               p(and) = [1] x1 + [1] x2 + [14]
              p(even) = [5] x1 + [1]          
              p(goal) = [9] x1 + [9] x2 + [2] 
               p(lte) = [4] x1 + [2] x2 + [0] 
          p(notEmpty) = [6] x1 + [1]          
        
        Following rules are strictly oriented:
          even(Cons(x,Nil())) = [26]         
                              > [0]          
                              = False()      
        
                  even(Nil()) = [26]         
                              > [2]          
                              = True()       
        
        lte(Cons(x,xs),Nil()) = [4] xs + [10]
                              > [0]          
                              = False()      
        
                 lte(Nil(),y) = [2] y + [20] 
                              > [2]          
                              = True()       
        
              notEmpty(Nil()) = [31]         
                              > [0]          
                              = False()      
        
        
        Following rules are (at-least) weakly oriented:
                and(False(),False()) =  [14]                  
                                     >= [0]                   
                                     =  False()               
        
                 and(False(),True()) =  [16]                  
                                     >= [0]                   
                                     =  False()               
        
                 and(True(),False()) =  [16]                  
                                     >= [0]                   
                                     =  False()               
        
                  and(True(),True()) =  [18]                  
                                     >= [2]                   
                                     =  True()                
        
           even(Cons(x',Cons(x,xs))) =  [5] xs + [1]          
                                     >= [5] xs + [1]          
                                     =  even(xs)              
        
                           goal(x,y) =  [9] x + [9] y + [2]   
                                     >= [9] x + [2] y + [15]  
                                     =  and(lte(x,y),even(x)) 
        
        lte(Cons(x',xs'),Cons(x,xs)) =  [2] xs + [4] xs' + [0]
                                     >= [2] xs + [4] xs' + [0]
                                     =  lte(xs',xs)           
        
                notEmpty(Cons(x,xs)) =  [6] xs + [1]          
                                     >= [2]                   
                                     =  True()                
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        even(Cons(x',Cons(x,xs))) -> even(xs)
        goal(x,y) -> and(lte(x,y),even(x))
        lte(Cons(x',xs'),Cons(x,xs)) -> lte(xs',xs)
        notEmpty(Cons(x,xs)) -> True()
      Weak DP Rules:
        
      Weak TRS Rules:
        and(False(),False()) -> False()
        and(False(),True()) -> False()
        and(True(),False()) -> False()
        and(True(),True()) -> True()
        even(Cons(x,Nil())) -> False()
        even(Nil()) -> True()
        lte(Cons(x,xs),Nil()) -> False()
        lte(Nil(),y) -> True()
        notEmpty(Nil()) -> False()
      Signature:
        {and/2,even/1,goal/2,lte/2,notEmpty/1} / {Cons/2,False/0,Nil/0,True/0}
      Obligation:
        Innermost
        basic terms: {and,even,goal,lte,notEmpty}/{Cons,False,Nil,True}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(and) = {1,2}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
              p(Cons) = [1] x1 + [9]         
             p(False) = [8]                  
               p(Nil) = [12]                 
              p(True) = [7]                  
               p(and) = [1] x1 + [1] x2 + [2]
              p(even) = [8]                  
              p(goal) = [1] x1 + [8]         
               p(lte) = [11]                 
          p(notEmpty) = [2] x1 + [0]         
        
        Following rules are strictly oriented:
        notEmpty(Cons(x,xs)) = [2] x + [18]
                             > [7]         
                             = True()      
        
        
        Following rules are (at-least) weakly oriented:
                and(False(),False()) =  [18]                 
                                     >= [8]                  
                                     =  False()              
        
                 and(False(),True()) =  [17]                 
                                     >= [8]                  
                                     =  False()              
        
                 and(True(),False()) =  [17]                 
                                     >= [8]                  
                                     =  False()              
        
                  and(True(),True()) =  [16]                 
                                     >= [7]                  
                                     =  True()               
        
                 even(Cons(x,Nil())) =  [8]                  
                                     >= [8]                  
                                     =  False()              
        
           even(Cons(x',Cons(x,xs))) =  [8]                  
                                     >= [8]                  
                                     =  even(xs)             
        
                         even(Nil()) =  [8]                  
                                     >= [7]                  
                                     =  True()               
        
                           goal(x,y) =  [1] x + [8]          
                                     >= [21]                 
                                     =  and(lte(x,y),even(x))
        
               lte(Cons(x,xs),Nil()) =  [11]                 
                                     >= [8]                  
                                     =  False()              
        
        lte(Cons(x',xs'),Cons(x,xs)) =  [11]                 
                                     >= [11]                 
                                     =  lte(xs',xs)          
        
                        lte(Nil(),y) =  [11]                 
                                     >= [7]                  
                                     =  True()               
        
                     notEmpty(Nil()) =  [24]                 
                                     >= [8]                  
                                     =  False()              
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        even(Cons(x',Cons(x,xs))) -> even(xs)
        goal(x,y) -> and(lte(x,y),even(x))
        lte(Cons(x',xs'),Cons(x,xs)) -> lte(xs',xs)
      Weak DP Rules:
        
      Weak TRS Rules:
        and(False(),False()) -> False()
        and(False(),True()) -> False()
        and(True(),False()) -> False()
        and(True(),True()) -> True()
        even(Cons(x,Nil())) -> False()
        even(Nil()) -> True()
        lte(Cons(x,xs),Nil()) -> False()
        lte(Nil(),y) -> True()
        notEmpty(Cons(x,xs)) -> True()
        notEmpty(Nil()) -> False()
      Signature:
        {and/2,even/1,goal/2,lte/2,notEmpty/1} / {Cons/2,False/0,Nil/0,True/0}
      Obligation:
        Innermost
        basic terms: {and,even,goal,lte,notEmpty}/{Cons,False,Nil,True}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(and) = {1,2}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
              p(Cons) = [1] x1 + [1] x2 + [2]
             p(False) = [2]                  
               p(Nil) = [2]                  
              p(True) = [12]                 
               p(and) = [1] x1 + [1] x2 + [4]
              p(even) = [4] x1 + [6]         
              p(goal) = [9] x1 + [3] x2 + [1]
               p(lte) = [5] x1 + [12]        
          p(notEmpty) = [12]                 
        
        Following rules are strictly oriented:
           even(Cons(x',Cons(x,xs))) = [4] x + [4] x' + [4] xs + [22]
                                     > [4] xs + [6]                  
                                     = even(xs)                      
        
        lte(Cons(x',xs'),Cons(x,xs)) = [5] x' + [5] xs' + [22]       
                                     > [5] xs' + [12]                
                                     = lte(xs',xs)                   
        
        
        Following rules are (at-least) weakly oriented:
         and(False(),False()) =  [8]                  
                              >= [2]                  
                              =  False()              
        
          and(False(),True()) =  [18]                 
                              >= [2]                  
                              =  False()              
        
          and(True(),False()) =  [18]                 
                              >= [2]                  
                              =  False()              
        
           and(True(),True()) =  [28]                 
                              >= [12]                 
                              =  True()               
        
          even(Cons(x,Nil())) =  [4] x + [22]         
                              >= [2]                  
                              =  False()              
        
                  even(Nil()) =  [14]                 
                              >= [12]                 
                              =  True()               
        
                    goal(x,y) =  [9] x + [3] y + [1]  
                              >= [9] x + [22]         
                              =  and(lte(x,y),even(x))
        
        lte(Cons(x,xs),Nil()) =  [5] x + [5] xs + [22]
                              >= [2]                  
                              =  False()              
        
                 lte(Nil(),y) =  [22]                 
                              >= [12]                 
                              =  True()               
        
         notEmpty(Cons(x,xs)) =  [12]                 
                              >= [12]                 
                              =  True()               
        
              notEmpty(Nil()) =  [12]                 
                              >= [2]                  
                              =  False()              
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        goal(x,y) -> and(lte(x,y),even(x))
      Weak DP Rules:
        
      Weak TRS Rules:
        and(False(),False()) -> False()
        and(False(),True()) -> False()
        and(True(),False()) -> False()
        and(True(),True()) -> True()
        even(Cons(x,Nil())) -> False()
        even(Cons(x',Cons(x,xs))) -> even(xs)
        even(Nil()) -> True()
        lte(Cons(x,xs),Nil()) -> False()
        lte(Cons(x',xs'),Cons(x,xs)) -> lte(xs',xs)
        lte(Nil(),y) -> True()
        notEmpty(Cons(x,xs)) -> True()
        notEmpty(Nil()) -> False()
      Signature:
        {and/2,even/1,goal/2,lte/2,notEmpty/1} / {Cons/2,False/0,Nil/0,True/0}
      Obligation:
        Innermost
        basic terms: {and,even,goal,lte,notEmpty}/{Cons,False,Nil,True}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(and) = {1,2}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
              p(Cons) = [1] x1 + [1] x2 + [1] 
             p(False) = [0]                   
               p(Nil) = [3]                   
              p(True) = [8]                   
               p(and) = [1] x1 + [1] x2 + [1] 
              p(even) = [4] x1 + [4]          
              p(goal) = [10] x1 + [8] x2 + [8]
               p(lte) = [2] x1 + [3] x2 + [2] 
          p(notEmpty) = [8] x1 + [6]          
        
        Following rules are strictly oriented:
        goal(x,y) = [10] x + [8] y + [8] 
                  > [6] x + [3] y + [7]  
                  = and(lte(x,y),even(x))
        
        
        Following rules are (at-least) weakly oriented:
                and(False(),False()) =  [1]                                    
                                     >= [0]                                    
                                     =  False()                                
        
                 and(False(),True()) =  [9]                                    
                                     >= [0]                                    
                                     =  False()                                
        
                 and(True(),False()) =  [9]                                    
                                     >= [0]                                    
                                     =  False()                                
        
                  and(True(),True()) =  [17]                                   
                                     >= [8]                                    
                                     =  True()                                 
        
                 even(Cons(x,Nil())) =  [4] x + [20]                           
                                     >= [0]                                    
                                     =  False()                                
        
           even(Cons(x',Cons(x,xs))) =  [4] x + [4] x' + [4] xs + [12]         
                                     >= [4] xs + [4]                           
                                     =  even(xs)                               
        
                         even(Nil()) =  [16]                                   
                                     >= [8]                                    
                                     =  True()                                 
        
               lte(Cons(x,xs),Nil()) =  [2] x + [2] xs + [13]                  
                                     >= [0]                                    
                                     =  False()                                
        
        lte(Cons(x',xs'),Cons(x,xs)) =  [3] x + [2] x' + [3] xs + [2] xs' + [7]
                                     >= [3] xs + [2] xs' + [2]                 
                                     =  lte(xs',xs)                            
        
                        lte(Nil(),y) =  [3] y + [8]                            
                                     >= [8]                                    
                                     =  True()                                 
        
                notEmpty(Cons(x,xs)) =  [8] x + [8] xs + [14]                  
                                     >= [8]                                    
                                     =  True()                                 
        
                     notEmpty(Nil()) =  [30]                                   
                                     >= [0]                                    
                                     =  False()                                
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1 Progress [(O(1),O(1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        and(False(),False()) -> False()
        and(False(),True()) -> False()
        and(True(),False()) -> False()
        and(True(),True()) -> True()
        even(Cons(x,Nil())) -> False()
        even(Cons(x',Cons(x,xs))) -> even(xs)
        even(Nil()) -> True()
        goal(x,y) -> and(lte(x,y),even(x))
        lte(Cons(x,xs),Nil()) -> False()
        lte(Cons(x',xs'),Cons(x,xs)) -> lte(xs',xs)
        lte(Nil(),y) -> True()
        notEmpty(Cons(x,xs)) -> True()
        notEmpty(Nil()) -> False()
      Signature:
        {and/2,even/1,goal/2,lte/2,notEmpty/1} / {Cons/2,False/0,Nil/0,True/0}
      Obligation:
        Innermost
        basic terms: {and,even,goal,lte,notEmpty}/{Cons,False,Nil,True}
    Applied Processor:
      EmptyProcessor
    Proof:
      The problem is already closed. The intended complexity is O(1).