*** 1 Progress [(O(1),O(n^1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: even(Cons(x,Nil())) -> False() even(Cons(x',Cons(x,xs))) -> even(xs) even(Nil()) -> True() goal(x,y) -> and(lte(x,y),even(x)) lte(Cons(x,xs),Nil()) -> False() lte(Cons(x',xs'),Cons(x,xs)) -> lte(xs',xs) lte(Nil(),y) -> True() notEmpty(Cons(x,xs)) -> True() notEmpty(Nil()) -> False() Weak DP Rules: Weak TRS Rules: and(False(),False()) -> False() and(False(),True()) -> False() and(True(),False()) -> False() and(True(),True()) -> True() Signature: {and/2,even/1,goal/2,lte/2,notEmpty/1} / {Cons/2,False/0,Nil/0,True/0} Obligation: Innermost basic terms: {and,even,goal,lte,notEmpty}/{Cons,False,Nil,True} Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} Proof: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(and) = {1,2} Following symbols are considered usable: {} TcT has computed the following interpretation: p(Cons) = [1] x2 + [0] p(False) = [0] p(Nil) = [5] p(True) = [2] p(and) = [1] x1 + [1] x2 + [14] p(even) = [5] x1 + [1] p(goal) = [9] x1 + [9] x2 + [2] p(lte) = [4] x1 + [2] x2 + [0] p(notEmpty) = [6] x1 + [1] Following rules are strictly oriented: even(Cons(x,Nil())) = [26] > [0] = False() even(Nil()) = [26] > [2] = True() lte(Cons(x,xs),Nil()) = [4] xs + [10] > [0] = False() lte(Nil(),y) = [2] y + [20] > [2] = True() notEmpty(Nil()) = [31] > [0] = False() Following rules are (at-least) weakly oriented: and(False(),False()) = [14] >= [0] = False() and(False(),True()) = [16] >= [0] = False() and(True(),False()) = [16] >= [0] = False() and(True(),True()) = [18] >= [2] = True() even(Cons(x',Cons(x,xs))) = [5] xs + [1] >= [5] xs + [1] = even(xs) goal(x,y) = [9] x + [9] y + [2] >= [9] x + [2] y + [15] = and(lte(x,y),even(x)) lte(Cons(x',xs'),Cons(x,xs)) = [2] xs + [4] xs' + [0] >= [2] xs + [4] xs' + [0] = lte(xs',xs) notEmpty(Cons(x,xs)) = [6] xs + [1] >= [2] = True() Further, it can be verified that all rules not oriented are covered by the weightgap condition. *** 1.1 Progress [(O(1),O(n^1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: even(Cons(x',Cons(x,xs))) -> even(xs) goal(x,y) -> and(lte(x,y),even(x)) lte(Cons(x',xs'),Cons(x,xs)) -> lte(xs',xs) notEmpty(Cons(x,xs)) -> True() Weak DP Rules: Weak TRS Rules: and(False(),False()) -> False() and(False(),True()) -> False() and(True(),False()) -> False() and(True(),True()) -> True() even(Cons(x,Nil())) -> False() even(Nil()) -> True() lte(Cons(x,xs),Nil()) -> False() lte(Nil(),y) -> True() notEmpty(Nil()) -> False() Signature: {and/2,even/1,goal/2,lte/2,notEmpty/1} / {Cons/2,False/0,Nil/0,True/0} Obligation: Innermost basic terms: {and,even,goal,lte,notEmpty}/{Cons,False,Nil,True} Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} Proof: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(and) = {1,2} Following symbols are considered usable: {} TcT has computed the following interpretation: p(Cons) = [1] x1 + [9] p(False) = [8] p(Nil) = [12] p(True) = [7] p(and) = [1] x1 + [1] x2 + [2] p(even) = [8] p(goal) = [1] x1 + [8] p(lte) = [11] p(notEmpty) = [2] x1 + [0] Following rules are strictly oriented: notEmpty(Cons(x,xs)) = [2] x + [18] > [7] = True() Following rules are (at-least) weakly oriented: and(False(),False()) = [18] >= [8] = False() and(False(),True()) = [17] >= [8] = False() and(True(),False()) = [17] >= [8] = False() and(True(),True()) = [16] >= [7] = True() even(Cons(x,Nil())) = [8] >= [8] = False() even(Cons(x',Cons(x,xs))) = [8] >= [8] = even(xs) even(Nil()) = [8] >= [7] = True() goal(x,y) = [1] x + [8] >= [21] = and(lte(x,y),even(x)) lte(Cons(x,xs),Nil()) = [11] >= [8] = False() lte(Cons(x',xs'),Cons(x,xs)) = [11] >= [11] = lte(xs',xs) lte(Nil(),y) = [11] >= [7] = True() notEmpty(Nil()) = [24] >= [8] = False() Further, it can be verified that all rules not oriented are covered by the weightgap condition. *** 1.1.1 Progress [(O(1),O(n^1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: even(Cons(x',Cons(x,xs))) -> even(xs) goal(x,y) -> and(lte(x,y),even(x)) lte(Cons(x',xs'),Cons(x,xs)) -> lte(xs',xs) Weak DP Rules: Weak TRS Rules: and(False(),False()) -> False() and(False(),True()) -> False() and(True(),False()) -> False() and(True(),True()) -> True() even(Cons(x,Nil())) -> False() even(Nil()) -> True() lte(Cons(x,xs),Nil()) -> False() lte(Nil(),y) -> True() notEmpty(Cons(x,xs)) -> True() notEmpty(Nil()) -> False() Signature: {and/2,even/1,goal/2,lte/2,notEmpty/1} / {Cons/2,False/0,Nil/0,True/0} Obligation: Innermost basic terms: {and,even,goal,lte,notEmpty}/{Cons,False,Nil,True} Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} Proof: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(and) = {1,2} Following symbols are considered usable: {} TcT has computed the following interpretation: p(Cons) = [1] x1 + [1] x2 + [2] p(False) = [2] p(Nil) = [2] p(True) = [12] p(and) = [1] x1 + [1] x2 + [4] p(even) = [4] x1 + [6] p(goal) = [9] x1 + [3] x2 + [1] p(lte) = [5] x1 + [12] p(notEmpty) = [12] Following rules are strictly oriented: even(Cons(x',Cons(x,xs))) = [4] x + [4] x' + [4] xs + [22] > [4] xs + [6] = even(xs) lte(Cons(x',xs'),Cons(x,xs)) = [5] x' + [5] xs' + [22] > [5] xs' + [12] = lte(xs',xs) Following rules are (at-least) weakly oriented: and(False(),False()) = [8] >= [2] = False() and(False(),True()) = [18] >= [2] = False() and(True(),False()) = [18] >= [2] = False() and(True(),True()) = [28] >= [12] = True() even(Cons(x,Nil())) = [4] x + [22] >= [2] = False() even(Nil()) = [14] >= [12] = True() goal(x,y) = [9] x + [3] y + [1] >= [9] x + [22] = and(lte(x,y),even(x)) lte(Cons(x,xs),Nil()) = [5] x + [5] xs + [22] >= [2] = False() lte(Nil(),y) = [22] >= [12] = True() notEmpty(Cons(x,xs)) = [12] >= [12] = True() notEmpty(Nil()) = [12] >= [2] = False() Further, it can be verified that all rules not oriented are covered by the weightgap condition. *** 1.1.1.1 Progress [(O(1),O(n^1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: goal(x,y) -> and(lte(x,y),even(x)) Weak DP Rules: Weak TRS Rules: and(False(),False()) -> False() and(False(),True()) -> False() and(True(),False()) -> False() and(True(),True()) -> True() even(Cons(x,Nil())) -> False() even(Cons(x',Cons(x,xs))) -> even(xs) even(Nil()) -> True() lte(Cons(x,xs),Nil()) -> False() lte(Cons(x',xs'),Cons(x,xs)) -> lte(xs',xs) lte(Nil(),y) -> True() notEmpty(Cons(x,xs)) -> True() notEmpty(Nil()) -> False() Signature: {and/2,even/1,goal/2,lte/2,notEmpty/1} / {Cons/2,False/0,Nil/0,True/0} Obligation: Innermost basic terms: {and,even,goal,lte,notEmpty}/{Cons,False,Nil,True} Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} Proof: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(and) = {1,2} Following symbols are considered usable: {} TcT has computed the following interpretation: p(Cons) = [1] x1 + [1] x2 + [1] p(False) = [0] p(Nil) = [3] p(True) = [8] p(and) = [1] x1 + [1] x2 + [1] p(even) = [4] x1 + [4] p(goal) = [10] x1 + [8] x2 + [8] p(lte) = [2] x1 + [3] x2 + [2] p(notEmpty) = [8] x1 + [6] Following rules are strictly oriented: goal(x,y) = [10] x + [8] y + [8] > [6] x + [3] y + [7] = and(lte(x,y),even(x)) Following rules are (at-least) weakly oriented: and(False(),False()) = [1] >= [0] = False() and(False(),True()) = [9] >= [0] = False() and(True(),False()) = [9] >= [0] = False() and(True(),True()) = [17] >= [8] = True() even(Cons(x,Nil())) = [4] x + [20] >= [0] = False() even(Cons(x',Cons(x,xs))) = [4] x + [4] x' + [4] xs + [12] >= [4] xs + [4] = even(xs) even(Nil()) = [16] >= [8] = True() lte(Cons(x,xs),Nil()) = [2] x + [2] xs + [13] >= [0] = False() lte(Cons(x',xs'),Cons(x,xs)) = [3] x + [2] x' + [3] xs + [2] xs' + [7] >= [3] xs + [2] xs' + [2] = lte(xs',xs) lte(Nil(),y) = [3] y + [8] >= [8] = True() notEmpty(Cons(x,xs)) = [8] x + [8] xs + [14] >= [8] = True() notEmpty(Nil()) = [30] >= [0] = False() Further, it can be verified that all rules not oriented are covered by the weightgap condition. *** 1.1.1.1.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: and(False(),False()) -> False() and(False(),True()) -> False() and(True(),False()) -> False() and(True(),True()) -> True() even(Cons(x,Nil())) -> False() even(Cons(x',Cons(x,xs))) -> even(xs) even(Nil()) -> True() goal(x,y) -> and(lte(x,y),even(x)) lte(Cons(x,xs),Nil()) -> False() lte(Cons(x',xs'),Cons(x,xs)) -> lte(xs',xs) lte(Nil(),y) -> True() notEmpty(Cons(x,xs)) -> True() notEmpty(Nil()) -> False() Signature: {and/2,even/1,goal/2,lte/2,notEmpty/1} / {Cons/2,False/0,Nil/0,True/0} Obligation: Innermost basic terms: {and,even,goal,lte,notEmpty}/{Cons,False,Nil,True} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1).