(0) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
lte(Cons(x', xs'), Cons(x, xs)) → lte(xs', xs)
lte(Cons(x, xs), Nil) → False
even(Cons(x, Nil)) → False
even(Cons(x', Cons(x, xs))) → even(xs)
notEmpty(Cons(x, xs)) → True
notEmpty(Nil) → False
lte(Nil, y) → True
even(Nil) → True
goal(x, y) → and(lte(x, y), even(x))
The (relative) TRS S consists of the following rules:
and(False, False) → False
and(True, False) → False
and(False, True) → False
and(True, True) → True
Rewrite Strategy: INNERMOST
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
lte(Cons(x', xs'), Cons(x, xs)) →+ lte(xs', xs)
gives rise to a decreasing loop by considering the right hand sides subterm at position [].
The pumping substitution is [xs' / Cons(x', xs'), xs / Cons(x, xs)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)