*** 1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        goal(x) -> list(x)
        list(Cons(x,xs)) -> list(xs)
        list(Nil()) -> True()
        list(Nil()) -> isEmpty[Match](Nil())
        notEmpty(Cons(x,xs)) -> True()
        notEmpty(Nil()) -> False()
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {goal/1,list/1,notEmpty/1} / {Cons/2,False/0,Nil/0,True/0,isEmpty[Match]/1}
      Obligation:
        Innermost
        basic terms: {goal,list,notEmpty}/{Cons,False,Nil,True,isEmpty[Match]}
    Applied Processor:
      Bounds {initialAutomaton = minimal, enrichment = match}
    Proof:
      The problem is match-bounded by 1.
      The enriched problem is compatible with follwoing automaton.
        Cons_0(2,2) -> 2
        False_0() -> 2
        False_1() -> 1
        Nil_0() -> 2
        Nil_1() -> 3
        True_0() -> 2
        True_1() -> 1
        goal_0(2) -> 1
        isEmpty[Match]_0(2) -> 2
        isEmpty[Match]_1(3) -> 1
        list_0(2) -> 1
        list_1(2) -> 1
        notEmpty_0(2) -> 1
*** 1.1 Progress [(O(1),O(1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        goal(x) -> list(x)
        list(Cons(x,xs)) -> list(xs)
        list(Nil()) -> True()
        list(Nil()) -> isEmpty[Match](Nil())
        notEmpty(Cons(x,xs)) -> True()
        notEmpty(Nil()) -> False()
      Signature:
        {goal/1,list/1,notEmpty/1} / {Cons/2,False/0,Nil/0,True/0,isEmpty[Match]/1}
      Obligation:
        Innermost
        basic terms: {goal,list,notEmpty}/{Cons,False,Nil,True,isEmpty[Match]}
    Applied Processor:
      EmptyProcessor
    Proof:
      The problem is already closed. The intended complexity is O(1).