*** 1 Progress [(O(1),O(n^1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: goal(x) -> list(x) list(Cons(x,xs)) -> list(xs) list(Nil()) -> True() list(Nil()) -> isEmpty[Match](Nil()) notEmpty(Cons(x,xs)) -> True() notEmpty(Nil()) -> False() Weak DP Rules: Weak TRS Rules: Signature: {goal/1,list/1,notEmpty/1} / {Cons/2,False/0,Nil/0,True/0,isEmpty[Match]/1} Obligation: Innermost basic terms: {goal,list,notEmpty}/{Cons,False,Nil,True,isEmpty[Match]} Applied Processor: Bounds {initialAutomaton = minimal, enrichment = match} Proof: The problem is match-bounded by 1. The enriched problem is compatible with follwoing automaton. Cons_0(2,2) -> 2 False_0() -> 2 False_1() -> 1 Nil_0() -> 2 Nil_1() -> 3 True_0() -> 2 True_1() -> 1 goal_0(2) -> 1 isEmpty[Match]_0(2) -> 2 isEmpty[Match]_1(3) -> 1 list_0(2) -> 1 list_1(2) -> 1 notEmpty_0(2) -> 1 *** 1.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: goal(x) -> list(x) list(Cons(x,xs)) -> list(xs) list(Nil()) -> True() list(Nil()) -> isEmpty[Match](Nil()) notEmpty(Cons(x,xs)) -> True() notEmpty(Nil()) -> False() Signature: {goal/1,list/1,notEmpty/1} / {Cons/2,False/0,Nil/0,True/0,isEmpty[Match]/1} Obligation: Innermost basic terms: {goal,list,notEmpty}/{Cons,False,Nil,True,isEmpty[Match]} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1).