*** 1 Progress [(O(1),O(n^1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
goal(x) -> list(x)
list(Cons(x,xs)) -> list(xs)
list(Nil()) -> True()
list(Nil()) -> isEmpty[Match](Nil())
notEmpty(Cons(x,xs)) -> True()
notEmpty(Nil()) -> False()
Weak DP Rules:
Weak TRS Rules:
Signature:
{goal/1,list/1,notEmpty/1} / {Cons/2,False/0,Nil/0,True/0,isEmpty[Match]/1}
Obligation:
Innermost
basic terms: {goal,list,notEmpty}/{Cons,False,Nil,True,isEmpty[Match]}
Applied Processor:
Bounds {initialAutomaton = minimal, enrichment = match}
Proof:
The problem is match-bounded by 1.
The enriched problem is compatible with follwoing automaton.
Cons_0(2,2) -> 2
False_0() -> 2
False_1() -> 1
Nil_0() -> 2
Nil_1() -> 3
True_0() -> 2
True_1() -> 1
goal_0(2) -> 1
isEmpty[Match]_0(2) -> 2
isEmpty[Match]_1(3) -> 1
list_0(2) -> 1
list_1(2) -> 1
notEmpty_0(2) -> 1
*** 1.1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
goal(x) -> list(x)
list(Cons(x,xs)) -> list(xs)
list(Nil()) -> True()
list(Nil()) -> isEmpty[Match](Nil())
notEmpty(Cons(x,xs)) -> True()
notEmpty(Nil()) -> False()
Signature:
{goal/1,list/1,notEmpty/1} / {Cons/2,False/0,Nil/0,True/0,isEmpty[Match]/1}
Obligation:
Innermost
basic terms: {goal,list,notEmpty}/{Cons,False,Nil,True,isEmpty[Match]}
Applied Processor:
EmptyProcessor
Proof:
The problem is already closed. The intended complexity is O(1).