(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
lookup(Cons(x', xs'), Cons(x, xs)) → lookup(xs', xs)
lookup(Nil, Cons(x, xs)) → x
run(e, p) → intlookup(e, p)
intlookup(e, p) → intlookup(lookup(e, p), p)
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
lookup(Cons(x', xs'), Cons(x, xs)) → lookup(xs', xs)
lookup(Nil, Cons(x, xs)) → x
run(e, p) → intlookup(e, p)
intlookup(e, p) → intlookup(lookup(e, p), p)
S is empty.
Rewrite Strategy: INNERMOST
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
Innermost TRS:
Rules:
lookup(Cons(x', xs'), Cons(x, xs)) → lookup(xs', xs)
lookup(Nil, Cons(x, xs)) → x
run(e, p) → intlookup(e, p)
intlookup(e, p) → intlookup(lookup(e, p), p)
Types:
lookup :: Cons:Nil → Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
run :: Cons:Nil → Cons:Nil → run:intlookup
intlookup :: Cons:Nil → Cons:Nil → run:intlookup
hole_Cons:Nil1_0 :: Cons:Nil
hole_run:intlookup2_0 :: run:intlookup
gen_Cons:Nil3_0 :: Nat → Cons:Nil
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
lookup,
intlookupThey will be analysed ascendingly in the following order:
lookup < intlookup
(6) Obligation:
Innermost TRS:
Rules:
lookup(
Cons(
x',
xs'),
Cons(
x,
xs)) →
lookup(
xs',
xs)
lookup(
Nil,
Cons(
x,
xs)) →
xrun(
e,
p) →
intlookup(
e,
p)
intlookup(
e,
p) →
intlookup(
lookup(
e,
p),
p)
Types:
lookup :: Cons:Nil → Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
run :: Cons:Nil → Cons:Nil → run:intlookup
intlookup :: Cons:Nil → Cons:Nil → run:intlookup
hole_Cons:Nil1_0 :: Cons:Nil
hole_run:intlookup2_0 :: run:intlookup
gen_Cons:Nil3_0 :: Nat → Cons:Nil
Generator Equations:
gen_Cons:Nil3_0(0) ⇔ Nil
gen_Cons:Nil3_0(+(x, 1)) ⇔ Cons(Nil, gen_Cons:Nil3_0(x))
The following defined symbols remain to be analysed:
lookup, intlookup
They will be analysed ascendingly in the following order:
lookup < intlookup
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
lookup(
gen_Cons:Nil3_0(
n5_0),
gen_Cons:Nil3_0(
+(
1,
n5_0))) →
gen_Cons:Nil3_0(
0), rt ∈ Ω(1 + n5
0)
Induction Base:
lookup(gen_Cons:Nil3_0(0), gen_Cons:Nil3_0(+(1, 0))) →RΩ(1)
Nil
Induction Step:
lookup(gen_Cons:Nil3_0(+(n5_0, 1)), gen_Cons:Nil3_0(+(1, +(n5_0, 1)))) →RΩ(1)
lookup(gen_Cons:Nil3_0(n5_0), gen_Cons:Nil3_0(+(1, n5_0))) →IH
gen_Cons:Nil3_0(0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
Innermost TRS:
Rules:
lookup(
Cons(
x',
xs'),
Cons(
x,
xs)) →
lookup(
xs',
xs)
lookup(
Nil,
Cons(
x,
xs)) →
xrun(
e,
p) →
intlookup(
e,
p)
intlookup(
e,
p) →
intlookup(
lookup(
e,
p),
p)
Types:
lookup :: Cons:Nil → Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
run :: Cons:Nil → Cons:Nil → run:intlookup
intlookup :: Cons:Nil → Cons:Nil → run:intlookup
hole_Cons:Nil1_0 :: Cons:Nil
hole_run:intlookup2_0 :: run:intlookup
gen_Cons:Nil3_0 :: Nat → Cons:Nil
Lemmas:
lookup(gen_Cons:Nil3_0(n5_0), gen_Cons:Nil3_0(+(1, n5_0))) → gen_Cons:Nil3_0(0), rt ∈ Ω(1 + n50)
Generator Equations:
gen_Cons:Nil3_0(0) ⇔ Nil
gen_Cons:Nil3_0(+(x, 1)) ⇔ Cons(Nil, gen_Cons:Nil3_0(x))
The following defined symbols remain to be analysed:
intlookup
(10) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol intlookup.
(11) Obligation:
Innermost TRS:
Rules:
lookup(
Cons(
x',
xs'),
Cons(
x,
xs)) →
lookup(
xs',
xs)
lookup(
Nil,
Cons(
x,
xs)) →
xrun(
e,
p) →
intlookup(
e,
p)
intlookup(
e,
p) →
intlookup(
lookup(
e,
p),
p)
Types:
lookup :: Cons:Nil → Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
run :: Cons:Nil → Cons:Nil → run:intlookup
intlookup :: Cons:Nil → Cons:Nil → run:intlookup
hole_Cons:Nil1_0 :: Cons:Nil
hole_run:intlookup2_0 :: run:intlookup
gen_Cons:Nil3_0 :: Nat → Cons:Nil
Lemmas:
lookup(gen_Cons:Nil3_0(n5_0), gen_Cons:Nil3_0(+(1, n5_0))) → gen_Cons:Nil3_0(0), rt ∈ Ω(1 + n50)
Generator Equations:
gen_Cons:Nil3_0(0) ⇔ Nil
gen_Cons:Nil3_0(+(x, 1)) ⇔ Cons(Nil, gen_Cons:Nil3_0(x))
No more defined symbols left to analyse.
(12) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
lookup(gen_Cons:Nil3_0(n5_0), gen_Cons:Nil3_0(+(1, n5_0))) → gen_Cons:Nil3_0(0), rt ∈ Ω(1 + n50)
(13) BOUNDS(n^1, INF)
(14) Obligation:
Innermost TRS:
Rules:
lookup(
Cons(
x',
xs'),
Cons(
x,
xs)) →
lookup(
xs',
xs)
lookup(
Nil,
Cons(
x,
xs)) →
xrun(
e,
p) →
intlookup(
e,
p)
intlookup(
e,
p) →
intlookup(
lookup(
e,
p),
p)
Types:
lookup :: Cons:Nil → Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
run :: Cons:Nil → Cons:Nil → run:intlookup
intlookup :: Cons:Nil → Cons:Nil → run:intlookup
hole_Cons:Nil1_0 :: Cons:Nil
hole_run:intlookup2_0 :: run:intlookup
gen_Cons:Nil3_0 :: Nat → Cons:Nil
Lemmas:
lookup(gen_Cons:Nil3_0(n5_0), gen_Cons:Nil3_0(+(1, n5_0))) → gen_Cons:Nil3_0(0), rt ∈ Ω(1 + n50)
Generator Equations:
gen_Cons:Nil3_0(0) ⇔ Nil
gen_Cons:Nil3_0(+(x, 1)) ⇔ Cons(Nil, gen_Cons:Nil3_0(x))
No more defined symbols left to analyse.
(15) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
lookup(gen_Cons:Nil3_0(n5_0), gen_Cons:Nil3_0(+(1, n5_0))) → gen_Cons:Nil3_0(0), rt ∈ Ω(1 + n50)
(16) BOUNDS(n^1, INF)