*** 1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        @(Cons(x,xs),ys) -> Cons(x,@(xs,ys))
        @(Nil(),ys) -> ys
        equal(Capture(),Capture()) -> True()
        equal(Capture(),Swap()) -> False()
        equal(Swap(),Capture()) -> False()
        equal(Swap(),Swap()) -> True()
        game(p1,p2,Cons(Swap(),xs)) -> game(p2,p1,xs)
        game(p1,p2,Nil()) -> @(p1,p2)
        game(p1,Cons(x',xs'),Cons(Capture(),xs)) -> game(Cons(x',p1),xs',xs)
        goal(p1,p2,moves) -> game(p1,p2,moves)
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {@/2,equal/2,game/3,goal/3} / {Capture/0,Cons/2,False/0,Nil/0,Swap/0,True/0}
      Obligation:
        Innermost
        basic terms: {@,equal,game,goal}/{Capture,Cons,False,Nil,Swap,True}
    Applied Processor:
      Bounds {initialAutomaton = minimal, enrichment = match}
    Proof:
      The problem is match-bounded by 2.
      The enriched problem is compatible with follwoing automaton.
        @_0(2,2) -> 1
        @_1(2,2) -> 1
        @_1(2,2) -> 3
        @_2(2,2) -> 4
        Capture_0() -> 1
        Capture_0() -> 2
        Capture_0() -> 3
        Capture_0() -> 4
        Cons_0(2,2) -> 1
        Cons_0(2,2) -> 2
        Cons_0(2,2) -> 3
        Cons_0(2,2) -> 4
        Cons_1(2,2) -> 1
        Cons_1(2,2) -> 2
        Cons_1(2,2) -> 3
        Cons_1(2,2) -> 4
        Cons_1(2,3) -> 1
        Cons_1(2,3) -> 3
        Cons_1(2,3) -> 4
        Cons_2(2,4) -> 1
        Cons_2(2,4) -> 3
        Cons_2(2,4) -> 4
        False_0() -> 1
        False_0() -> 2
        False_0() -> 3
        False_0() -> 4
        False_1() -> 1
        Nil_0() -> 1
        Nil_0() -> 2
        Nil_0() -> 3
        Nil_0() -> 4
        Swap_0() -> 1
        Swap_0() -> 2
        Swap_0() -> 3
        Swap_0() -> 4
        True_0() -> 1
        True_0() -> 2
        True_0() -> 3
        True_0() -> 4
        True_1() -> 1
        equal_0(2,2) -> 1
        game_0(2,2,2) -> 1
        game_1(2,2,2) -> 1
        goal_0(2,2,2) -> 1
        2 -> 1
        2 -> 3
        2 -> 4
*** 1.1 Progress [(O(1),O(1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        @(Cons(x,xs),ys) -> Cons(x,@(xs,ys))
        @(Nil(),ys) -> ys
        equal(Capture(),Capture()) -> True()
        equal(Capture(),Swap()) -> False()
        equal(Swap(),Capture()) -> False()
        equal(Swap(),Swap()) -> True()
        game(p1,p2,Cons(Swap(),xs)) -> game(p2,p1,xs)
        game(p1,p2,Nil()) -> @(p1,p2)
        game(p1,Cons(x',xs'),Cons(Capture(),xs)) -> game(Cons(x',p1),xs',xs)
        goal(p1,p2,moves) -> game(p1,p2,moves)
      Signature:
        {@/2,equal/2,game/3,goal/3} / {Capture/0,Cons/2,False/0,Nil/0,Swap/0,True/0}
      Obligation:
        Innermost
        basic terms: {@,equal,game,goal}/{Capture,Cons,False,Nil,Swap,True}
    Applied Processor:
      EmptyProcessor
    Proof:
      The problem is already closed. The intended complexity is O(1).