We are left with following problem, upon which TcT provides the certificate YES(?,O(n^1)). Strict Trs: { @(Cons(x, xs), ys) -> Cons(x, @(xs, ys)) , @(Nil(), ys) -> ys , game(p1, p2, Cons(Swap(), xs)) -> game(p2, p1, xs) , game(p1, p2, Nil()) -> @(p1, p2) , game(p1, Cons(x', xs'), Cons(Capture(), xs)) -> game(Cons(x', p1), xs', xs) , equal(Capture(), Capture()) -> True() , equal(Capture(), Swap()) -> False() , equal(Swap(), Capture()) -> False() , equal(Swap(), Swap()) -> True() , goal(p1, p2, moves) -> game(p1, p2, moves) } Obligation: innermost runtime complexity Answer: YES(?,O(n^1)) The problem is match-bounded by 2. The enriched problem is compatible with the following automaton. { @_0(2, 2) -> 1 , @_1(2, 2) -> 1 , @_1(2, 2) -> 3 , @_2(2, 2) -> 4 , Cons_0(2, 2) -> 1 , Cons_0(2, 2) -> 2 , Cons_0(2, 2) -> 3 , Cons_0(2, 2) -> 4 , Cons_1(2, 2) -> 1 , Cons_1(2, 2) -> 2 , Cons_1(2, 2) -> 3 , Cons_1(2, 2) -> 4 , Cons_1(2, 3) -> 1 , Cons_1(2, 3) -> 3 , Cons_1(2, 3) -> 4 , Cons_2(2, 4) -> 1 , Cons_2(2, 4) -> 3 , Cons_2(2, 4) -> 4 , Nil_0() -> 1 , Nil_0() -> 2 , Nil_0() -> 3 , Nil_0() -> 4 , game_0(2, 2, 2) -> 1 , game_1(2, 2, 2) -> 1 , Capture_0() -> 1 , Capture_0() -> 2 , Capture_0() -> 3 , Capture_0() -> 4 , Swap_0() -> 1 , Swap_0() -> 2 , Swap_0() -> 3 , Swap_0() -> 4 , equal_0(2, 2) -> 1 , True_0() -> 1 , True_0() -> 2 , True_0() -> 3 , True_0() -> 4 , True_1() -> 1 , False_0() -> 1 , False_0() -> 2 , False_0() -> 3 , False_0() -> 4 , False_1() -> 1 , goal_0(2, 2, 2) -> 1 } Hurray, we answered YES(?,O(n^1))