(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
@(Cons(x, xs), ys) → Cons(x, @(xs, ys))
@(Nil, ys) → ys
game(p1, Cons(x', xs'), Cons(Capture, xs)) → game(Cons(x', p1), xs', xs)
game(p1, p2, Cons(Swap, xs)) → game(p2, p1, xs)
equal(Capture, Capture) → True
equal(Capture, Swap) → False
equal(Swap, Capture) → False
equal(Swap, Swap) → True
game(p1, p2, Nil) → @(p1, p2)
goal(p1, p2, moves) → game(p1, p2, moves)
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
@(Cons(x, xs), ys) → Cons(x, @(xs, ys))
@(Nil, ys) → ys
game(p1, Cons(x', xs'), Cons(Capture, xs)) → game(Cons(x', p1), xs', xs)
game(p1, p2, Cons(Swap, xs)) → game(p2, p1, xs)
equal(Capture, Capture) → True
equal(Capture, Swap) → False
equal(Swap, Capture) → False
equal(Swap, Swap) → True
game(p1, p2, Nil) → @(p1, p2)
goal(p1, p2, moves) → game(p1, p2, moves)
S is empty.
Rewrite Strategy: INNERMOST
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
Innermost TRS:
Rules:
@(Cons(x, xs), ys) → Cons(x, @(xs, ys))
@(Nil, ys) → ys
game(p1, Cons(x', xs'), Cons(Capture, xs)) → game(Cons(x', p1), xs', xs)
game(p1, p2, Cons(Swap, xs)) → game(p2, p1, xs)
equal(Capture, Capture) → True
equal(Capture, Swap) → False
equal(Swap, Capture) → False
equal(Swap, Swap) → True
game(p1, p2, Nil) → @(p1, p2)
goal(p1, p2, moves) → game(p1, p2, moves)
Types:
@ :: Cons:Nil → Cons:Nil → Cons:Nil
Cons :: Capture:Swap → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
game :: Cons:Nil → Cons:Nil → Cons:Nil → Cons:Nil
Capture :: Capture:Swap
Swap :: Capture:Swap
equal :: Capture:Swap → Capture:Swap → True:False
True :: True:False
False :: True:False
goal :: Cons:Nil → Cons:Nil → Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
hole_Capture:Swap2_0 :: Capture:Swap
hole_True:False3_0 :: True:False
gen_Cons:Nil4_0 :: Nat → Cons:Nil
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
@,
gameThey will be analysed ascendingly in the following order:
@ < game
(6) Obligation:
Innermost TRS:
Rules:
@(
Cons(
x,
xs),
ys) →
Cons(
x,
@(
xs,
ys))
@(
Nil,
ys) →
ysgame(
p1,
Cons(
x',
xs'),
Cons(
Capture,
xs)) →
game(
Cons(
x',
p1),
xs',
xs)
game(
p1,
p2,
Cons(
Swap,
xs)) →
game(
p2,
p1,
xs)
equal(
Capture,
Capture) →
Trueequal(
Capture,
Swap) →
Falseequal(
Swap,
Capture) →
Falseequal(
Swap,
Swap) →
Truegame(
p1,
p2,
Nil) →
@(
p1,
p2)
goal(
p1,
p2,
moves) →
game(
p1,
p2,
moves)
Types:
@ :: Cons:Nil → Cons:Nil → Cons:Nil
Cons :: Capture:Swap → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
game :: Cons:Nil → Cons:Nil → Cons:Nil → Cons:Nil
Capture :: Capture:Swap
Swap :: Capture:Swap
equal :: Capture:Swap → Capture:Swap → True:False
True :: True:False
False :: True:False
goal :: Cons:Nil → Cons:Nil → Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
hole_Capture:Swap2_0 :: Capture:Swap
hole_True:False3_0 :: True:False
gen_Cons:Nil4_0 :: Nat → Cons:Nil
Generator Equations:
gen_Cons:Nil4_0(0) ⇔ Nil
gen_Cons:Nil4_0(+(x, 1)) ⇔ Cons(Capture, gen_Cons:Nil4_0(x))
The following defined symbols remain to be analysed:
@, game
They will be analysed ascendingly in the following order:
@ < game
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
@(
gen_Cons:Nil4_0(
n6_0),
gen_Cons:Nil4_0(
b)) →
gen_Cons:Nil4_0(
+(
n6_0,
b)), rt ∈ Ω(1 + n6
0)
Induction Base:
@(gen_Cons:Nil4_0(0), gen_Cons:Nil4_0(b)) →RΩ(1)
gen_Cons:Nil4_0(b)
Induction Step:
@(gen_Cons:Nil4_0(+(n6_0, 1)), gen_Cons:Nil4_0(b)) →RΩ(1)
Cons(Capture, @(gen_Cons:Nil4_0(n6_0), gen_Cons:Nil4_0(b))) →IH
Cons(Capture, gen_Cons:Nil4_0(+(b, c7_0)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
Innermost TRS:
Rules:
@(
Cons(
x,
xs),
ys) →
Cons(
x,
@(
xs,
ys))
@(
Nil,
ys) →
ysgame(
p1,
Cons(
x',
xs'),
Cons(
Capture,
xs)) →
game(
Cons(
x',
p1),
xs',
xs)
game(
p1,
p2,
Cons(
Swap,
xs)) →
game(
p2,
p1,
xs)
equal(
Capture,
Capture) →
Trueequal(
Capture,
Swap) →
Falseequal(
Swap,
Capture) →
Falseequal(
Swap,
Swap) →
Truegame(
p1,
p2,
Nil) →
@(
p1,
p2)
goal(
p1,
p2,
moves) →
game(
p1,
p2,
moves)
Types:
@ :: Cons:Nil → Cons:Nil → Cons:Nil
Cons :: Capture:Swap → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
game :: Cons:Nil → Cons:Nil → Cons:Nil → Cons:Nil
Capture :: Capture:Swap
Swap :: Capture:Swap
equal :: Capture:Swap → Capture:Swap → True:False
True :: True:False
False :: True:False
goal :: Cons:Nil → Cons:Nil → Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
hole_Capture:Swap2_0 :: Capture:Swap
hole_True:False3_0 :: True:False
gen_Cons:Nil4_0 :: Nat → Cons:Nil
Lemmas:
@(gen_Cons:Nil4_0(n6_0), gen_Cons:Nil4_0(b)) → gen_Cons:Nil4_0(+(n6_0, b)), rt ∈ Ω(1 + n60)
Generator Equations:
gen_Cons:Nil4_0(0) ⇔ Nil
gen_Cons:Nil4_0(+(x, 1)) ⇔ Cons(Capture, gen_Cons:Nil4_0(x))
The following defined symbols remain to be analysed:
game
(10) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol game.
(11) Obligation:
Innermost TRS:
Rules:
@(
Cons(
x,
xs),
ys) →
Cons(
x,
@(
xs,
ys))
@(
Nil,
ys) →
ysgame(
p1,
Cons(
x',
xs'),
Cons(
Capture,
xs)) →
game(
Cons(
x',
p1),
xs',
xs)
game(
p1,
p2,
Cons(
Swap,
xs)) →
game(
p2,
p1,
xs)
equal(
Capture,
Capture) →
Trueequal(
Capture,
Swap) →
Falseequal(
Swap,
Capture) →
Falseequal(
Swap,
Swap) →
Truegame(
p1,
p2,
Nil) →
@(
p1,
p2)
goal(
p1,
p2,
moves) →
game(
p1,
p2,
moves)
Types:
@ :: Cons:Nil → Cons:Nil → Cons:Nil
Cons :: Capture:Swap → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
game :: Cons:Nil → Cons:Nil → Cons:Nil → Cons:Nil
Capture :: Capture:Swap
Swap :: Capture:Swap
equal :: Capture:Swap → Capture:Swap → True:False
True :: True:False
False :: True:False
goal :: Cons:Nil → Cons:Nil → Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
hole_Capture:Swap2_0 :: Capture:Swap
hole_True:False3_0 :: True:False
gen_Cons:Nil4_0 :: Nat → Cons:Nil
Lemmas:
@(gen_Cons:Nil4_0(n6_0), gen_Cons:Nil4_0(b)) → gen_Cons:Nil4_0(+(n6_0, b)), rt ∈ Ω(1 + n60)
Generator Equations:
gen_Cons:Nil4_0(0) ⇔ Nil
gen_Cons:Nil4_0(+(x, 1)) ⇔ Cons(Capture, gen_Cons:Nil4_0(x))
No more defined symbols left to analyse.
(12) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
@(gen_Cons:Nil4_0(n6_0), gen_Cons:Nil4_0(b)) → gen_Cons:Nil4_0(+(n6_0, b)), rt ∈ Ω(1 + n60)
(13) BOUNDS(n^1, INF)
(14) Obligation:
Innermost TRS:
Rules:
@(
Cons(
x,
xs),
ys) →
Cons(
x,
@(
xs,
ys))
@(
Nil,
ys) →
ysgame(
p1,
Cons(
x',
xs'),
Cons(
Capture,
xs)) →
game(
Cons(
x',
p1),
xs',
xs)
game(
p1,
p2,
Cons(
Swap,
xs)) →
game(
p2,
p1,
xs)
equal(
Capture,
Capture) →
Trueequal(
Capture,
Swap) →
Falseequal(
Swap,
Capture) →
Falseequal(
Swap,
Swap) →
Truegame(
p1,
p2,
Nil) →
@(
p1,
p2)
goal(
p1,
p2,
moves) →
game(
p1,
p2,
moves)
Types:
@ :: Cons:Nil → Cons:Nil → Cons:Nil
Cons :: Capture:Swap → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
game :: Cons:Nil → Cons:Nil → Cons:Nil → Cons:Nil
Capture :: Capture:Swap
Swap :: Capture:Swap
equal :: Capture:Swap → Capture:Swap → True:False
True :: True:False
False :: True:False
goal :: Cons:Nil → Cons:Nil → Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
hole_Capture:Swap2_0 :: Capture:Swap
hole_True:False3_0 :: True:False
gen_Cons:Nil4_0 :: Nat → Cons:Nil
Lemmas:
@(gen_Cons:Nil4_0(n6_0), gen_Cons:Nil4_0(b)) → gen_Cons:Nil4_0(+(n6_0, b)), rt ∈ Ω(1 + n60)
Generator Equations:
gen_Cons:Nil4_0(0) ⇔ Nil
gen_Cons:Nil4_0(+(x, 1)) ⇔ Cons(Capture, gen_Cons:Nil4_0(x))
No more defined symbols left to analyse.
(15) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
@(gen_Cons:Nil4_0(n6_0), gen_Cons:Nil4_0(b)) → gen_Cons:Nil4_0(+(n6_0, b)), rt ∈ Ω(1 + n60)
(16) BOUNDS(n^1, INF)