(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
odd(Cons(x, xs)) → even(xs)
odd(Nil) → False
even(Cons(x, xs)) → odd(xs)
notEmpty(Cons(x, xs)) → True
notEmpty(Nil) → False
even(Nil) → True
evenodd(x) → even(x)
Rewrite Strategy: INNERMOST
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
odd(Cons(x, Cons(x3_0, xs4_0))) →+ odd(xs4_0)
gives rise to a decreasing loop by considering the right hand sides subterm at position [].
The pumping substitution is [xs4_0 / Cons(x, Cons(x3_0, xs4_0))].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
odd(Cons(x, xs)) → even(xs)
odd(Nil) → False
even(Cons(x, xs)) → odd(xs)
notEmpty(Cons(x, xs)) → True
notEmpty(Nil) → False
even(Nil) → True
evenodd(x) → even(x)
S is empty.
Rewrite Strategy: INNERMOST
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
Innermost TRS:
Rules:
odd(Cons(x, xs)) → even(xs)
odd(Nil) → False
even(Cons(x, xs)) → odd(xs)
notEmpty(Cons(x, xs)) → True
notEmpty(Nil) → False
even(Nil) → True
evenodd(x) → even(x)
Types:
odd :: Cons:Nil → False:True
Cons :: a → Cons:Nil → Cons:Nil
even :: Cons:Nil → False:True
Nil :: Cons:Nil
False :: False:True
notEmpty :: Cons:Nil → False:True
True :: False:True
evenodd :: Cons:Nil → False:True
hole_False:True1_0 :: False:True
hole_Cons:Nil2_0 :: Cons:Nil
hole_a3_0 :: a
gen_Cons:Nil4_0 :: Nat → Cons:Nil
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
odd,
evenThey will be analysed ascendingly in the following order:
odd = even
(8) Obligation:
Innermost TRS:
Rules:
odd(
Cons(
x,
xs)) →
even(
xs)
odd(
Nil) →
Falseeven(
Cons(
x,
xs)) →
odd(
xs)
notEmpty(
Cons(
x,
xs)) →
TruenotEmpty(
Nil) →
Falseeven(
Nil) →
Trueevenodd(
x) →
even(
x)
Types:
odd :: Cons:Nil → False:True
Cons :: a → Cons:Nil → Cons:Nil
even :: Cons:Nil → False:True
Nil :: Cons:Nil
False :: False:True
notEmpty :: Cons:Nil → False:True
True :: False:True
evenodd :: Cons:Nil → False:True
hole_False:True1_0 :: False:True
hole_Cons:Nil2_0 :: Cons:Nil
hole_a3_0 :: a
gen_Cons:Nil4_0 :: Nat → Cons:Nil
Generator Equations:
gen_Cons:Nil4_0(0) ⇔ Nil
gen_Cons:Nil4_0(+(x, 1)) ⇔ Cons(hole_a3_0, gen_Cons:Nil4_0(x))
The following defined symbols remain to be analysed:
even, odd
They will be analysed ascendingly in the following order:
odd = even
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
even(
gen_Cons:Nil4_0(
*(
2,
n6_0))) →
True, rt ∈ Ω(1 + n6
0)
Induction Base:
even(gen_Cons:Nil4_0(*(2, 0))) →RΩ(1)
True
Induction Step:
even(gen_Cons:Nil4_0(*(2, +(n6_0, 1)))) →RΩ(1)
odd(gen_Cons:Nil4_0(+(1, *(2, n6_0)))) →RΩ(1)
even(gen_Cons:Nil4_0(*(2, n6_0))) →IH
True
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
Innermost TRS:
Rules:
odd(
Cons(
x,
xs)) →
even(
xs)
odd(
Nil) →
Falseeven(
Cons(
x,
xs)) →
odd(
xs)
notEmpty(
Cons(
x,
xs)) →
TruenotEmpty(
Nil) →
Falseeven(
Nil) →
Trueevenodd(
x) →
even(
x)
Types:
odd :: Cons:Nil → False:True
Cons :: a → Cons:Nil → Cons:Nil
even :: Cons:Nil → False:True
Nil :: Cons:Nil
False :: False:True
notEmpty :: Cons:Nil → False:True
True :: False:True
evenodd :: Cons:Nil → False:True
hole_False:True1_0 :: False:True
hole_Cons:Nil2_0 :: Cons:Nil
hole_a3_0 :: a
gen_Cons:Nil4_0 :: Nat → Cons:Nil
Lemmas:
even(gen_Cons:Nil4_0(*(2, n6_0))) → True, rt ∈ Ω(1 + n60)
Generator Equations:
gen_Cons:Nil4_0(0) ⇔ Nil
gen_Cons:Nil4_0(+(x, 1)) ⇔ Cons(hole_a3_0, gen_Cons:Nil4_0(x))
The following defined symbols remain to be analysed:
odd
They will be analysed ascendingly in the following order:
odd = even
(12) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol odd.
(13) Obligation:
Innermost TRS:
Rules:
odd(
Cons(
x,
xs)) →
even(
xs)
odd(
Nil) →
Falseeven(
Cons(
x,
xs)) →
odd(
xs)
notEmpty(
Cons(
x,
xs)) →
TruenotEmpty(
Nil) →
Falseeven(
Nil) →
Trueevenodd(
x) →
even(
x)
Types:
odd :: Cons:Nil → False:True
Cons :: a → Cons:Nil → Cons:Nil
even :: Cons:Nil → False:True
Nil :: Cons:Nil
False :: False:True
notEmpty :: Cons:Nil → False:True
True :: False:True
evenodd :: Cons:Nil → False:True
hole_False:True1_0 :: False:True
hole_Cons:Nil2_0 :: Cons:Nil
hole_a3_0 :: a
gen_Cons:Nil4_0 :: Nat → Cons:Nil
Lemmas:
even(gen_Cons:Nil4_0(*(2, n6_0))) → True, rt ∈ Ω(1 + n60)
Generator Equations:
gen_Cons:Nil4_0(0) ⇔ Nil
gen_Cons:Nil4_0(+(x, 1)) ⇔ Cons(hole_a3_0, gen_Cons:Nil4_0(x))
No more defined symbols left to analyse.
(14) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
even(gen_Cons:Nil4_0(*(2, n6_0))) → True, rt ∈ Ω(1 + n60)
(15) BOUNDS(n^1, INF)
(16) Obligation:
Innermost TRS:
Rules:
odd(
Cons(
x,
xs)) →
even(
xs)
odd(
Nil) →
Falseeven(
Cons(
x,
xs)) →
odd(
xs)
notEmpty(
Cons(
x,
xs)) →
TruenotEmpty(
Nil) →
Falseeven(
Nil) →
Trueevenodd(
x) →
even(
x)
Types:
odd :: Cons:Nil → False:True
Cons :: a → Cons:Nil → Cons:Nil
even :: Cons:Nil → False:True
Nil :: Cons:Nil
False :: False:True
notEmpty :: Cons:Nil → False:True
True :: False:True
evenodd :: Cons:Nil → False:True
hole_False:True1_0 :: False:True
hole_Cons:Nil2_0 :: Cons:Nil
hole_a3_0 :: a
gen_Cons:Nil4_0 :: Nat → Cons:Nil
Lemmas:
even(gen_Cons:Nil4_0(*(2, n6_0))) → True, rt ∈ Ω(1 + n60)
Generator Equations:
gen_Cons:Nil4_0(0) ⇔ Nil
gen_Cons:Nil4_0(+(x, 1)) ⇔ Cons(hole_a3_0, gen_Cons:Nil4_0(x))
No more defined symbols left to analyse.
(17) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
even(gen_Cons:Nil4_0(*(2, n6_0))) → True, rt ∈ Ω(1 + n60)
(18) BOUNDS(n^1, INF)