(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
odd(Cons(x, xs)) → even(xs)
odd(Nil) → False
even(Cons(x, xs)) → odd(xs)
notEmpty(Cons(x, xs)) → True
notEmpty(Nil) → False
even(Nil) → True
evenodd(x) → even(x)
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
odd(Cons(x, xs)) → even(xs)
odd(Nil) → False
even(Cons(x, xs)) → odd(xs)
notEmpty(Cons(x, xs)) → True
notEmpty(Nil) → False
even(Nil) → True
evenodd(x) → even(x)
S is empty.
Rewrite Strategy: INNERMOST
(3) SlicingProof (LOWER BOUND(ID) transformation)
Sliced the following arguments:
Cons/0
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
odd(Cons(xs)) → even(xs)
odd(Nil) → False
even(Cons(xs)) → odd(xs)
notEmpty(Cons(xs)) → True
notEmpty(Nil) → False
even(Nil) → True
evenodd(x) → even(x)
S is empty.
Rewrite Strategy: INNERMOST
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
Innermost TRS:
Rules:
odd(Cons(xs)) → even(xs)
odd(Nil) → False
even(Cons(xs)) → odd(xs)
notEmpty(Cons(xs)) → True
notEmpty(Nil) → False
even(Nil) → True
evenodd(x) → even(x)
Types:
odd :: Cons:Nil → False:True
Cons :: Cons:Nil → Cons:Nil
even :: Cons:Nil → False:True
Nil :: Cons:Nil
False :: False:True
notEmpty :: Cons:Nil → False:True
True :: False:True
evenodd :: Cons:Nil → False:True
hole_False:True1_0 :: False:True
hole_Cons:Nil2_0 :: Cons:Nil
gen_Cons:Nil3_0 :: Nat → Cons:Nil
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
odd,
evenThey will be analysed ascendingly in the following order:
odd = even
(8) Obligation:
Innermost TRS:
Rules:
odd(
Cons(
xs)) →
even(
xs)
odd(
Nil) →
Falseeven(
Cons(
xs)) →
odd(
xs)
notEmpty(
Cons(
xs)) →
TruenotEmpty(
Nil) →
Falseeven(
Nil) →
Trueevenodd(
x) →
even(
x)
Types:
odd :: Cons:Nil → False:True
Cons :: Cons:Nil → Cons:Nil
even :: Cons:Nil → False:True
Nil :: Cons:Nil
False :: False:True
notEmpty :: Cons:Nil → False:True
True :: False:True
evenodd :: Cons:Nil → False:True
hole_False:True1_0 :: False:True
hole_Cons:Nil2_0 :: Cons:Nil
gen_Cons:Nil3_0 :: Nat → Cons:Nil
Generator Equations:
gen_Cons:Nil3_0(0) ⇔ Nil
gen_Cons:Nil3_0(+(x, 1)) ⇔ Cons(gen_Cons:Nil3_0(x))
The following defined symbols remain to be analysed:
even, odd
They will be analysed ascendingly in the following order:
odd = even
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
even(
gen_Cons:Nil3_0(
*(
2,
n5_0))) →
True, rt ∈ Ω(1 + n5
0)
Induction Base:
even(gen_Cons:Nil3_0(*(2, 0))) →RΩ(1)
True
Induction Step:
even(gen_Cons:Nil3_0(*(2, +(n5_0, 1)))) →RΩ(1)
odd(gen_Cons:Nil3_0(+(1, *(2, n5_0)))) →RΩ(1)
even(gen_Cons:Nil3_0(*(2, n5_0))) →IH
True
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
Innermost TRS:
Rules:
odd(
Cons(
xs)) →
even(
xs)
odd(
Nil) →
Falseeven(
Cons(
xs)) →
odd(
xs)
notEmpty(
Cons(
xs)) →
TruenotEmpty(
Nil) →
Falseeven(
Nil) →
Trueevenodd(
x) →
even(
x)
Types:
odd :: Cons:Nil → False:True
Cons :: Cons:Nil → Cons:Nil
even :: Cons:Nil → False:True
Nil :: Cons:Nil
False :: False:True
notEmpty :: Cons:Nil → False:True
True :: False:True
evenodd :: Cons:Nil → False:True
hole_False:True1_0 :: False:True
hole_Cons:Nil2_0 :: Cons:Nil
gen_Cons:Nil3_0 :: Nat → Cons:Nil
Lemmas:
even(gen_Cons:Nil3_0(*(2, n5_0))) → True, rt ∈ Ω(1 + n50)
Generator Equations:
gen_Cons:Nil3_0(0) ⇔ Nil
gen_Cons:Nil3_0(+(x, 1)) ⇔ Cons(gen_Cons:Nil3_0(x))
The following defined symbols remain to be analysed:
odd
They will be analysed ascendingly in the following order:
odd = even
(12) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol odd.
(13) Obligation:
Innermost TRS:
Rules:
odd(
Cons(
xs)) →
even(
xs)
odd(
Nil) →
Falseeven(
Cons(
xs)) →
odd(
xs)
notEmpty(
Cons(
xs)) →
TruenotEmpty(
Nil) →
Falseeven(
Nil) →
Trueevenodd(
x) →
even(
x)
Types:
odd :: Cons:Nil → False:True
Cons :: Cons:Nil → Cons:Nil
even :: Cons:Nil → False:True
Nil :: Cons:Nil
False :: False:True
notEmpty :: Cons:Nil → False:True
True :: False:True
evenodd :: Cons:Nil → False:True
hole_False:True1_0 :: False:True
hole_Cons:Nil2_0 :: Cons:Nil
gen_Cons:Nil3_0 :: Nat → Cons:Nil
Lemmas:
even(gen_Cons:Nil3_0(*(2, n5_0))) → True, rt ∈ Ω(1 + n50)
Generator Equations:
gen_Cons:Nil3_0(0) ⇔ Nil
gen_Cons:Nil3_0(+(x, 1)) ⇔ Cons(gen_Cons:Nil3_0(x))
No more defined symbols left to analyse.
(14) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
even(gen_Cons:Nil3_0(*(2, n5_0))) → True, rt ∈ Ω(1 + n50)
(15) BOUNDS(n^1, INF)
(16) Obligation:
Innermost TRS:
Rules:
odd(
Cons(
xs)) →
even(
xs)
odd(
Nil) →
Falseeven(
Cons(
xs)) →
odd(
xs)
notEmpty(
Cons(
xs)) →
TruenotEmpty(
Nil) →
Falseeven(
Nil) →
Trueevenodd(
x) →
even(
x)
Types:
odd :: Cons:Nil → False:True
Cons :: Cons:Nil → Cons:Nil
even :: Cons:Nil → False:True
Nil :: Cons:Nil
False :: False:True
notEmpty :: Cons:Nil → False:True
True :: False:True
evenodd :: Cons:Nil → False:True
hole_False:True1_0 :: False:True
hole_Cons:Nil2_0 :: Cons:Nil
gen_Cons:Nil3_0 :: Nat → Cons:Nil
Lemmas:
even(gen_Cons:Nil3_0(*(2, n5_0))) → True, rt ∈ Ω(1 + n50)
Generator Equations:
gen_Cons:Nil3_0(0) ⇔ Nil
gen_Cons:Nil3_0(+(x, 1)) ⇔ Cons(gen_Cons:Nil3_0(x))
No more defined symbols left to analyse.
(17) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
even(gen_Cons:Nil3_0(*(2, n5_0))) → True, rt ∈ Ω(1 + n50)
(18) BOUNDS(n^1, INF)