*** 1 Progress [(O(1),O(n^1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
addlist(Cons(x,xs'),Cons(S(0()),xs)) -> Cons(S(x),addlist(xs',xs))
addlist(Cons(S(0()),xs'),Cons(x,xs)) -> Cons(S(x),addlist(xs',xs))
addlist(Nil(),ys) -> Nil()
goal(xs,ys) -> addlist(xs,ys)
notEmpty(Cons(x,xs)) -> True()
notEmpty(Nil()) -> False()
Weak DP Rules:
Weak TRS Rules:
Signature:
{addlist/2,goal/2,notEmpty/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0}
Obligation:
Innermost
basic terms: {addlist,goal,notEmpty}/{0,Cons,False,Nil,S,True}
Applied Processor:
Bounds {initialAutomaton = minimal, enrichment = match}
Proof:
The problem is match-bounded by 1.
The enriched problem is compatible with follwoing automaton.
0_0() -> 2
Cons_0(2,2) -> 2
Cons_1(3,4) -> 1
Cons_1(3,4) -> 4
False_0() -> 2
False_1() -> 1
Nil_0() -> 2
Nil_1() -> 1
Nil_1() -> 4
S_0(2) -> 2
S_1(2) -> 3
True_0() -> 2
True_1() -> 1
addlist_0(2,2) -> 1
addlist_1(2,2) -> 1
addlist_1(2,2) -> 4
goal_0(2,2) -> 1
notEmpty_0(2) -> 1
*** 1.1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
addlist(Cons(x,xs'),Cons(S(0()),xs)) -> Cons(S(x),addlist(xs',xs))
addlist(Cons(S(0()),xs'),Cons(x,xs)) -> Cons(S(x),addlist(xs',xs))
addlist(Nil(),ys) -> Nil()
goal(xs,ys) -> addlist(xs,ys)
notEmpty(Cons(x,xs)) -> True()
notEmpty(Nil()) -> False()
Signature:
{addlist/2,goal/2,notEmpty/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0}
Obligation:
Innermost
basic terms: {addlist,goal,notEmpty}/{0,Cons,False,Nil,S,True}
Applied Processor:
EmptyProcessor
Proof:
The problem is already closed. The intended complexity is O(1).