*** 1 Progress [(O(1),O(n^1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: addlist(Cons(x,xs'),Cons(S(0()),xs)) -> Cons(S(x),addlist(xs',xs)) addlist(Cons(S(0()),xs'),Cons(x,xs)) -> Cons(S(x),addlist(xs',xs)) addlist(Nil(),ys) -> Nil() goal(xs,ys) -> addlist(xs,ys) notEmpty(Cons(x,xs)) -> True() notEmpty(Nil()) -> False() Weak DP Rules: Weak TRS Rules: Signature: {addlist/2,goal/2,notEmpty/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0} Obligation: Innermost basic terms: {addlist,goal,notEmpty}/{0,Cons,False,Nil,S,True} Applied Processor: Bounds {initialAutomaton = minimal, enrichment = match} Proof: The problem is match-bounded by 1. The enriched problem is compatible with follwoing automaton. 0_0() -> 2 Cons_0(2,2) -> 2 Cons_1(3,4) -> 1 Cons_1(3,4) -> 4 False_0() -> 2 False_1() -> 1 Nil_0() -> 2 Nil_1() -> 1 Nil_1() -> 4 S_0(2) -> 2 S_1(2) -> 3 True_0() -> 2 True_1() -> 1 addlist_0(2,2) -> 1 addlist_1(2,2) -> 1 addlist_1(2,2) -> 4 goal_0(2,2) -> 1 notEmpty_0(2) -> 1 *** 1.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: addlist(Cons(x,xs'),Cons(S(0()),xs)) -> Cons(S(x),addlist(xs',xs)) addlist(Cons(S(0()),xs'),Cons(x,xs)) -> Cons(S(x),addlist(xs',xs)) addlist(Nil(),ys) -> Nil() goal(xs,ys) -> addlist(xs,ys) notEmpty(Cons(x,xs)) -> True() notEmpty(Nil()) -> False() Signature: {addlist/2,goal/2,notEmpty/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0} Obligation: Innermost basic terms: {addlist,goal,notEmpty}/{0,Cons,False,Nil,S,True} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1).