(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
add0(x', Cons(x, xs)) → add0(Cons(Cons(Nil, Nil), x'), xs)
notEmpty(Cons(x, xs)) → True
notEmpty(Nil) → False
add0(x, Nil) → x
goal(x, y) → add0(x, y)
Rewrite Strategy: INNERMOST
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
add0(x', Cons(x, xs)) →+ add0(Cons(Cons(Nil, Nil), x'), xs)
gives rise to a decreasing loop by considering the right hand sides subterm at position [].
The pumping substitution is [xs / Cons(x, xs)].
The result substitution is [x' / Cons(Cons(Nil, Nil), x')].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
add0(x', Cons(x, xs)) → add0(Cons(Cons(Nil, Nil), x'), xs)
notEmpty(Cons(x, xs)) → True
notEmpty(Nil) → False
add0(x, Nil) → x
goal(x, y) → add0(x, y)
S is empty.
Rewrite Strategy: INNERMOST
(5) SlicingProof (LOWER BOUND(ID) transformation)
Sliced the following arguments:
Cons/0
(6) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
add0(x', Cons(xs)) → add0(Cons(x'), xs)
notEmpty(Cons(xs)) → True
notEmpty(Nil) → False
add0(x, Nil) → x
goal(x, y) → add0(x, y)
S is empty.
Rewrite Strategy: INNERMOST
(7) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(8) Obligation:
Innermost TRS:
Rules:
add0(x', Cons(xs)) → add0(Cons(x'), xs)
notEmpty(Cons(xs)) → True
notEmpty(Nil) → False
add0(x, Nil) → x
goal(x, y) → add0(x, y)
Types:
add0 :: Cons:Nil → Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil
notEmpty :: Cons:Nil → True:False
True :: True:False
Nil :: Cons:Nil
False :: True:False
goal :: Cons:Nil → Cons:Nil → Cons:Nil
hole_Cons:Nil1_1 :: Cons:Nil
hole_True:False2_1 :: True:False
gen_Cons:Nil3_1 :: Nat → Cons:Nil
(9) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
add0
(10) Obligation:
Innermost TRS:
Rules:
add0(
x',
Cons(
xs)) →
add0(
Cons(
x'),
xs)
notEmpty(
Cons(
xs)) →
TruenotEmpty(
Nil) →
Falseadd0(
x,
Nil) →
xgoal(
x,
y) →
add0(
x,
y)
Types:
add0 :: Cons:Nil → Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil
notEmpty :: Cons:Nil → True:False
True :: True:False
Nil :: Cons:Nil
False :: True:False
goal :: Cons:Nil → Cons:Nil → Cons:Nil
hole_Cons:Nil1_1 :: Cons:Nil
hole_True:False2_1 :: True:False
gen_Cons:Nil3_1 :: Nat → Cons:Nil
Generator Equations:
gen_Cons:Nil3_1(0) ⇔ Nil
gen_Cons:Nil3_1(+(x, 1)) ⇔ Cons(gen_Cons:Nil3_1(x))
The following defined symbols remain to be analysed:
add0
(11) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
add0(
gen_Cons:Nil3_1(
a),
gen_Cons:Nil3_1(
n5_1)) →
gen_Cons:Nil3_1(
+(
n5_1,
a)), rt ∈ Ω(1 + n5
1)
Induction Base:
add0(gen_Cons:Nil3_1(a), gen_Cons:Nil3_1(0)) →RΩ(1)
gen_Cons:Nil3_1(a)
Induction Step:
add0(gen_Cons:Nil3_1(a), gen_Cons:Nil3_1(+(n5_1, 1))) →RΩ(1)
add0(Cons(gen_Cons:Nil3_1(a)), gen_Cons:Nil3_1(n5_1)) →IH
gen_Cons:Nil3_1(+(+(a, 1), c6_1))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(12) Complex Obligation (BEST)
(13) Obligation:
Innermost TRS:
Rules:
add0(
x',
Cons(
xs)) →
add0(
Cons(
x'),
xs)
notEmpty(
Cons(
xs)) →
TruenotEmpty(
Nil) →
Falseadd0(
x,
Nil) →
xgoal(
x,
y) →
add0(
x,
y)
Types:
add0 :: Cons:Nil → Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil
notEmpty :: Cons:Nil → True:False
True :: True:False
Nil :: Cons:Nil
False :: True:False
goal :: Cons:Nil → Cons:Nil → Cons:Nil
hole_Cons:Nil1_1 :: Cons:Nil
hole_True:False2_1 :: True:False
gen_Cons:Nil3_1 :: Nat → Cons:Nil
Lemmas:
add0(gen_Cons:Nil3_1(a), gen_Cons:Nil3_1(n5_1)) → gen_Cons:Nil3_1(+(n5_1, a)), rt ∈ Ω(1 + n51)
Generator Equations:
gen_Cons:Nil3_1(0) ⇔ Nil
gen_Cons:Nil3_1(+(x, 1)) ⇔ Cons(gen_Cons:Nil3_1(x))
No more defined symbols left to analyse.
(14) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
add0(gen_Cons:Nil3_1(a), gen_Cons:Nil3_1(n5_1)) → gen_Cons:Nil3_1(+(n5_1, a)), rt ∈ Ω(1 + n51)
(15) BOUNDS(n^1, INF)
(16) Obligation:
Innermost TRS:
Rules:
add0(
x',
Cons(
xs)) →
add0(
Cons(
x'),
xs)
notEmpty(
Cons(
xs)) →
TruenotEmpty(
Nil) →
Falseadd0(
x,
Nil) →
xgoal(
x,
y) →
add0(
x,
y)
Types:
add0 :: Cons:Nil → Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil
notEmpty :: Cons:Nil → True:False
True :: True:False
Nil :: Cons:Nil
False :: True:False
goal :: Cons:Nil → Cons:Nil → Cons:Nil
hole_Cons:Nil1_1 :: Cons:Nil
hole_True:False2_1 :: True:False
gen_Cons:Nil3_1 :: Nat → Cons:Nil
Lemmas:
add0(gen_Cons:Nil3_1(a), gen_Cons:Nil3_1(n5_1)) → gen_Cons:Nil3_1(+(n5_1, a)), rt ∈ Ω(1 + n51)
Generator Equations:
gen_Cons:Nil3_1(0) ⇔ Nil
gen_Cons:Nil3_1(+(x, 1)) ⇔ Cons(gen_Cons:Nil3_1(x))
No more defined symbols left to analyse.
(17) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
add0(gen_Cons:Nil3_1(a), gen_Cons:Nil3_1(n5_1)) → gen_Cons:Nil3_1(+(n5_1, a)), rt ∈ Ω(1 + n51)
(18) BOUNDS(n^1, INF)