*** 1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: choose(x,cons(v,w),y,0()) -> cons(x,cons(v,w)) choose(x,cons(v,w),0(),s(z)) -> cons(v,insert(x,w)) choose(x,cons(v,w),s(y),s(z)) -> choose(x,cons(v,w),y,z) insert(x,cons(v,w)) -> choose(x,cons(v,w),x,v) insert(x,nil()) -> cons(x,nil()) sort(cons(x,y)) -> insert(x,sort(y)) sort(nil()) -> nil() Weak DP Rules: Weak TRS Rules: Signature: {choose/4,insert/2,sort/1} / {0/0,cons/2,nil/0,s/1} Obligation: Innermost basic terms: {choose,insert,sort}/{0,cons,nil,s} Applied Processor: DependencyPairs {dpKind_ = DT} Proof: We add the following dependency tuples: Strict DPs choose#(x,cons(v,w),y,0()) -> c_1() choose#(x,cons(v,w),0(),s(z)) -> c_2(insert#(x,w)) choose#(x,cons(v,w),s(y),s(z)) -> c_3(choose#(x,cons(v,w),y,z)) insert#(x,cons(v,w)) -> c_4(choose#(x,cons(v,w),x,v)) insert#(x,nil()) -> c_5() sort#(cons(x,y)) -> c_6(insert#(x,sort(y)),sort#(y)) sort#(nil()) -> c_7() Weak DPs and mark the set of starting terms. *** 1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: choose#(x,cons(v,w),y,0()) -> c_1() choose#(x,cons(v,w),0(),s(z)) -> c_2(insert#(x,w)) choose#(x,cons(v,w),s(y),s(z)) -> c_3(choose#(x,cons(v,w),y,z)) insert#(x,cons(v,w)) -> c_4(choose#(x,cons(v,w),x,v)) insert#(x,nil()) -> c_5() sort#(cons(x,y)) -> c_6(insert#(x,sort(y)),sort#(y)) sort#(nil()) -> c_7() Strict TRS Rules: Weak DP Rules: Weak TRS Rules: choose(x,cons(v,w),y,0()) -> cons(x,cons(v,w)) choose(x,cons(v,w),0(),s(z)) -> cons(v,insert(x,w)) choose(x,cons(v,w),s(y),s(z)) -> choose(x,cons(v,w),y,z) insert(x,cons(v,w)) -> choose(x,cons(v,w),x,v) insert(x,nil()) -> cons(x,nil()) sort(cons(x,y)) -> insert(x,sort(y)) sort(nil()) -> nil() Signature: {choose/4,insert/2,sort/1,choose#/4,insert#/2,sort#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/0,c_6/2,c_7/0} Obligation: Innermost basic terms: {choose#,insert#,sort#}/{0,cons,nil,s} Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} Proof: We estimate the number of application of {1,5,7} by application of Pre({1,5,7}) = {2,3,4,6}. Here rules are labelled as follows: 1: choose#(x,cons(v,w),y,0()) -> c_1() 2: choose#(x,cons(v,w),0(),s(z)) -> c_2(insert#(x,w)) 3: choose#(x ,cons(v,w) ,s(y) ,s(z)) -> c_3(choose#(x ,cons(v,w) ,y ,z)) 4: insert#(x,cons(v,w)) -> c_4(choose#(x,cons(v,w),x,v)) 5: insert#(x,nil()) -> c_5() 6: sort#(cons(x,y)) -> c_6(insert#(x,sort(y)),sort#(y)) 7: sort#(nil()) -> c_7() *** 1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: choose#(x,cons(v,w),0(),s(z)) -> c_2(insert#(x,w)) choose#(x,cons(v,w),s(y),s(z)) -> c_3(choose#(x,cons(v,w),y,z)) insert#(x,cons(v,w)) -> c_4(choose#(x,cons(v,w),x,v)) sort#(cons(x,y)) -> c_6(insert#(x,sort(y)),sort#(y)) Strict TRS Rules: Weak DP Rules: choose#(x,cons(v,w),y,0()) -> c_1() insert#(x,nil()) -> c_5() sort#(nil()) -> c_7() Weak TRS Rules: choose(x,cons(v,w),y,0()) -> cons(x,cons(v,w)) choose(x,cons(v,w),0(),s(z)) -> cons(v,insert(x,w)) choose(x,cons(v,w),s(y),s(z)) -> choose(x,cons(v,w),y,z) insert(x,cons(v,w)) -> choose(x,cons(v,w),x,v) insert(x,nil()) -> cons(x,nil()) sort(cons(x,y)) -> insert(x,sort(y)) sort(nil()) -> nil() Signature: {choose/4,insert/2,sort/1,choose#/4,insert#/2,sort#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/0,c_6/2,c_7/0} Obligation: Innermost basic terms: {choose#,insert#,sort#}/{0,cons,nil,s} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:choose#(x,cons(v,w),0(),s(z)) -> c_2(insert#(x,w)) -->_1 insert#(x,cons(v,w)) -> c_4(choose#(x,cons(v,w),x,v)):3 -->_1 insert#(x,nil()) -> c_5():6 2:S:choose#(x,cons(v,w),s(y),s(z)) -> c_3(choose#(x,cons(v,w),y,z)) -->_1 choose#(x,cons(v,w),y,0()) -> c_1():5 -->_1 choose#(x,cons(v,w),s(y),s(z)) -> c_3(choose#(x,cons(v,w),y,z)):2 -->_1 choose#(x,cons(v,w),0(),s(z)) -> c_2(insert#(x,w)):1 3:S:insert#(x,cons(v,w)) -> c_4(choose#(x,cons(v,w),x,v)) -->_1 choose#(x,cons(v,w),y,0()) -> c_1():5 -->_1 choose#(x,cons(v,w),s(y),s(z)) -> c_3(choose#(x,cons(v,w),y,z)):2 -->_1 choose#(x,cons(v,w),0(),s(z)) -> c_2(insert#(x,w)):1 4:S:sort#(cons(x,y)) -> c_6(insert#(x,sort(y)),sort#(y)) -->_2 sort#(nil()) -> c_7():7 -->_1 insert#(x,nil()) -> c_5():6 -->_2 sort#(cons(x,y)) -> c_6(insert#(x,sort(y)),sort#(y)):4 -->_1 insert#(x,cons(v,w)) -> c_4(choose#(x,cons(v,w),x,v)):3 5:W:choose#(x,cons(v,w),y,0()) -> c_1() 6:W:insert#(x,nil()) -> c_5() 7:W:sort#(nil()) -> c_7() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 7: sort#(nil()) -> c_7() 6: insert#(x,nil()) -> c_5() 5: choose#(x,cons(v,w),y,0()) -> c_1() *** 1.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: choose#(x,cons(v,w),0(),s(z)) -> c_2(insert#(x,w)) choose#(x,cons(v,w),s(y),s(z)) -> c_3(choose#(x,cons(v,w),y,z)) insert#(x,cons(v,w)) -> c_4(choose#(x,cons(v,w),x,v)) sort#(cons(x,y)) -> c_6(insert#(x,sort(y)),sort#(y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: choose(x,cons(v,w),y,0()) -> cons(x,cons(v,w)) choose(x,cons(v,w),0(),s(z)) -> cons(v,insert(x,w)) choose(x,cons(v,w),s(y),s(z)) -> choose(x,cons(v,w),y,z) insert(x,cons(v,w)) -> choose(x,cons(v,w),x,v) insert(x,nil()) -> cons(x,nil()) sort(cons(x,y)) -> insert(x,sort(y)) sort(nil()) -> nil() Signature: {choose/4,insert/2,sort/1,choose#/4,insert#/2,sort#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/0,c_6/2,c_7/0} Obligation: Innermost basic terms: {choose#,insert#,sort#}/{0,cons,nil,s} Applied Processor: Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd} Proof: We analyse the complexity of following sub-problems (R) and (S). Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component. Problem (R) Strict DP Rules: choose#(x,cons(v,w),0(),s(z)) -> c_2(insert#(x,w)) choose#(x,cons(v,w),s(y),s(z)) -> c_3(choose#(x,cons(v,w),y,z)) insert#(x,cons(v,w)) -> c_4(choose#(x,cons(v,w),x,v)) Strict TRS Rules: Weak DP Rules: sort#(cons(x,y)) -> c_6(insert#(x,sort(y)),sort#(y)) Weak TRS Rules: choose(x,cons(v,w),y,0()) -> cons(x,cons(v,w)) choose(x,cons(v,w),0(),s(z)) -> cons(v,insert(x,w)) choose(x,cons(v,w),s(y),s(z)) -> choose(x,cons(v,w),y,z) insert(x,cons(v,w)) -> choose(x,cons(v,w),x,v) insert(x,nil()) -> cons(x,nil()) sort(cons(x,y)) -> insert(x,sort(y)) sort(nil()) -> nil() Signature: {choose/4,insert/2,sort/1,choose#/4,insert#/2,sort#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/0,c_6/2,c_7/0} Obligation: Innermost basic terms: {choose#,insert#,sort#}/{0,cons,nil,s} Problem (S) Strict DP Rules: sort#(cons(x,y)) -> c_6(insert#(x,sort(y)),sort#(y)) Strict TRS Rules: Weak DP Rules: choose#(x,cons(v,w),0(),s(z)) -> c_2(insert#(x,w)) choose#(x,cons(v,w),s(y),s(z)) -> c_3(choose#(x,cons(v,w),y,z)) insert#(x,cons(v,w)) -> c_4(choose#(x,cons(v,w),x,v)) Weak TRS Rules: choose(x,cons(v,w),y,0()) -> cons(x,cons(v,w)) choose(x,cons(v,w),0(),s(z)) -> cons(v,insert(x,w)) choose(x,cons(v,w),s(y),s(z)) -> choose(x,cons(v,w),y,z) insert(x,cons(v,w)) -> choose(x,cons(v,w),x,v) insert(x,nil()) -> cons(x,nil()) sort(cons(x,y)) -> insert(x,sort(y)) sort(nil()) -> nil() Signature: {choose/4,insert/2,sort/1,choose#/4,insert#/2,sort#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/0,c_6/2,c_7/0} Obligation: Innermost basic terms: {choose#,insert#,sort#}/{0,cons,nil,s} *** 1.1.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: choose#(x,cons(v,w),0(),s(z)) -> c_2(insert#(x,w)) choose#(x,cons(v,w),s(y),s(z)) -> c_3(choose#(x,cons(v,w),y,z)) insert#(x,cons(v,w)) -> c_4(choose#(x,cons(v,w),x,v)) Strict TRS Rules: Weak DP Rules: sort#(cons(x,y)) -> c_6(insert#(x,sort(y)),sort#(y)) Weak TRS Rules: choose(x,cons(v,w),y,0()) -> cons(x,cons(v,w)) choose(x,cons(v,w),0(),s(z)) -> cons(v,insert(x,w)) choose(x,cons(v,w),s(y),s(z)) -> choose(x,cons(v,w),y,z) insert(x,cons(v,w)) -> choose(x,cons(v,w),x,v) insert(x,nil()) -> cons(x,nil()) sort(cons(x,y)) -> insert(x,sort(y)) sort(nil()) -> nil() Signature: {choose/4,insert/2,sort/1,choose#/4,insert#/2,sort#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/0,c_6/2,c_7/0} Obligation: Innermost basic terms: {choose#,insert#,sort#}/{0,cons,nil,s} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: choose#(x,cons(v,w),0(),s(z)) -> c_2(insert#(x,w)) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: choose#(x,cons(v,w),0(),s(z)) -> c_2(insert#(x,w)) choose#(x,cons(v,w),s(y),s(z)) -> c_3(choose#(x,cons(v,w),y,z)) insert#(x,cons(v,w)) -> c_4(choose#(x,cons(v,w),x,v)) Strict TRS Rules: Weak DP Rules: sort#(cons(x,y)) -> c_6(insert#(x,sort(y)),sort#(y)) Weak TRS Rules: choose(x,cons(v,w),y,0()) -> cons(x,cons(v,w)) choose(x,cons(v,w),0(),s(z)) -> cons(v,insert(x,w)) choose(x,cons(v,w),s(y),s(z)) -> choose(x,cons(v,w),y,z) insert(x,cons(v,w)) -> choose(x,cons(v,w),x,v) insert(x,nil()) -> cons(x,nil()) sort(cons(x,y)) -> insert(x,sort(y)) sort(nil()) -> nil() Signature: {choose/4,insert/2,sort/1,choose#/4,insert#/2,sort#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/0,c_6/2,c_7/0} Obligation: Innermost basic terms: {choose#,insert#,sort#}/{0,cons,nil,s} Applied Processor: NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_2) = {1}, uargs(c_3) = {1}, uargs(c_4) = {1}, uargs(c_6) = {1,2} Following symbols are considered usable: {choose,insert,sort,choose#,insert#,sort#} TcT has computed the following interpretation: p(0) = [1] [2] p(choose) = [2 0] x1 + [1 1] x2 + [0] [0 0] [0 1] [1] p(cons) = [1 0] x1 + [1 1] x2 + [0] [0 0] [0 1] [1] p(insert) = [2 0] x1 + [1 1] x2 + [0] [0 0] [0 1] [1] p(nil) = [0] [0] p(s) = [0 0] x1 + [0] [0 1] [0] p(sort) = [3 0] x1 + [0] [0 1] [0] p(choose#) = [0 0] x1 + [0 1] x2 + [0 0] x3 + [0 0] x4 + [0] [0 3] [2 2] [2 0] [0 2] [2] p(insert#) = [0 1] x2 + [0] [0 0] [1] p(sort#) = [1 2] x1 + [2] [1 2] [0] p(c_1) = [0] [0] p(c_2) = [1 0] x1 + [0] [2 0] [1] p(c_3) = [1 0] x1 + [0] [0 0] [1] p(c_4) = [1 0] x1 + [0] [0 0] [0] p(c_5) = [0] [0] p(c_6) = [1 2] x1 + [1 0] x2 + [0] [1 1] [0 0] [0] p(c_7) = [1] [2] Following rules are strictly oriented: choose#(x,cons(v,w),0(),s(z)) = [0 0] v + [0 1] w + [0 0] x + [0 0] z + [1] [2 0] [2 4] [0 3] [0 2] [6] > [0 1] w + [0] [0 2] [1] = c_2(insert#(x,w)) Following rules are (at-least) weakly oriented: choose#(x,cons(v,w),s(y),s(z)) = [0 0] v + [0 1] w + [0 0] x + [0 0] z + [1] [2 0] [2 4] [0 3] [0 2] [4] >= [0 1] w + [1] [0 0] [1] = c_3(choose#(x,cons(v,w),y,z)) insert#(x,cons(v,w)) = [0 1] w + [1] [0 0] [1] >= [0 1] w + [1] [0 0] [0] = c_4(choose#(x,cons(v,w),x,v)) sort#(cons(x,y)) = [1 0] x + [1 3] y + [4] [1 0] [1 3] [2] >= [1 3] y + [4] [0 1] [1] = c_6(insert#(x,sort(y)),sort#(y)) choose(x,cons(v,w),y,0()) = [1 0] v + [1 2] w + [2 0] x + [1] [0 0] [0 1] [0 0] [2] >= [1 0] v + [1 2] w + [1 0] x + [1] [0 0] [0 1] [0 0] [2] = cons(x,cons(v,w)) choose(x,cons(v,w),0(),s(z)) = [1 0] v + [1 2] w + [2 0] x + [1] [0 0] [0 1] [0 0] [2] >= [1 0] v + [1 2] w + [2 0] x + [1] [0 0] [0 1] [0 0] [2] = cons(v,insert(x,w)) choose(x,cons(v,w),s(y),s(z)) = [1 0] v + [1 2] w + [2 0] x + [1] [0 0] [0 1] [0 0] [2] >= [1 0] v + [1 2] w + [2 0] x + [1] [0 0] [0 1] [0 0] [2] = choose(x,cons(v,w),y,z) insert(x,cons(v,w)) = [1 0] v + [1 2] w + [2 0] x + [1] [0 0] [0 1] [0 0] [2] >= [1 0] v + [1 2] w + [2 0] x + [1] [0 0] [0 1] [0 0] [2] = choose(x,cons(v,w),x,v) insert(x,nil()) = [2 0] x + [0] [0 0] [1] >= [1 0] x + [0] [0 0] [1] = cons(x,nil()) sort(cons(x,y)) = [3 0] x + [3 3] y + [0] [0 0] [0 1] [1] >= [2 0] x + [3 1] y + [0] [0 0] [0 1] [1] = insert(x,sort(y)) sort(nil()) = [0] [0] >= [0] [0] = nil() *** 1.1.1.1.1.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: choose#(x,cons(v,w),s(y),s(z)) -> c_3(choose#(x,cons(v,w),y,z)) insert#(x,cons(v,w)) -> c_4(choose#(x,cons(v,w),x,v)) Strict TRS Rules: Weak DP Rules: choose#(x,cons(v,w),0(),s(z)) -> c_2(insert#(x,w)) sort#(cons(x,y)) -> c_6(insert#(x,sort(y)),sort#(y)) Weak TRS Rules: choose(x,cons(v,w),y,0()) -> cons(x,cons(v,w)) choose(x,cons(v,w),0(),s(z)) -> cons(v,insert(x,w)) choose(x,cons(v,w),s(y),s(z)) -> choose(x,cons(v,w),y,z) insert(x,cons(v,w)) -> choose(x,cons(v,w),x,v) insert(x,nil()) -> cons(x,nil()) sort(cons(x,y)) -> insert(x,sort(y)) sort(nil()) -> nil() Signature: {choose/4,insert/2,sort/1,choose#/4,insert#/2,sort#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/0,c_6/2,c_7/0} Obligation: Innermost basic terms: {choose#,insert#,sort#}/{0,cons,nil,s} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.2 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: choose#(x,cons(v,w),s(y),s(z)) -> c_3(choose#(x,cons(v,w),y,z)) insert#(x,cons(v,w)) -> c_4(choose#(x,cons(v,w),x,v)) Strict TRS Rules: Weak DP Rules: choose#(x,cons(v,w),0(),s(z)) -> c_2(insert#(x,w)) sort#(cons(x,y)) -> c_6(insert#(x,sort(y)),sort#(y)) Weak TRS Rules: choose(x,cons(v,w),y,0()) -> cons(x,cons(v,w)) choose(x,cons(v,w),0(),s(z)) -> cons(v,insert(x,w)) choose(x,cons(v,w),s(y),s(z)) -> choose(x,cons(v,w),y,z) insert(x,cons(v,w)) -> choose(x,cons(v,w),x,v) insert(x,nil()) -> cons(x,nil()) sort(cons(x,y)) -> insert(x,sort(y)) sort(nil()) -> nil() Signature: {choose/4,insert/2,sort/1,choose#/4,insert#/2,sort#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/0,c_6/2,c_7/0} Obligation: Innermost basic terms: {choose#,insert#,sort#}/{0,cons,nil,s} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 2: insert#(x,cons(v,w)) -> c_4(choose#(x,cons(v,w),x,v)) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.2.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: choose#(x,cons(v,w),s(y),s(z)) -> c_3(choose#(x,cons(v,w),y,z)) insert#(x,cons(v,w)) -> c_4(choose#(x,cons(v,w),x,v)) Strict TRS Rules: Weak DP Rules: choose#(x,cons(v,w),0(),s(z)) -> c_2(insert#(x,w)) sort#(cons(x,y)) -> c_6(insert#(x,sort(y)),sort#(y)) Weak TRS Rules: choose(x,cons(v,w),y,0()) -> cons(x,cons(v,w)) choose(x,cons(v,w),0(),s(z)) -> cons(v,insert(x,w)) choose(x,cons(v,w),s(y),s(z)) -> choose(x,cons(v,w),y,z) insert(x,cons(v,w)) -> choose(x,cons(v,w),x,v) insert(x,nil()) -> cons(x,nil()) sort(cons(x,y)) -> insert(x,sort(y)) sort(nil()) -> nil() Signature: {choose/4,insert/2,sort/1,choose#/4,insert#/2,sort#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/0,c_6/2,c_7/0} Obligation: Innermost basic terms: {choose#,insert#,sort#}/{0,cons,nil,s} Applied Processor: NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_2) = {1}, uargs(c_3) = {1}, uargs(c_4) = {1}, uargs(c_6) = {1,2} Following symbols are considered usable: {choose,insert,sort,choose#,insert#,sort#} TcT has computed the following interpretation: p(0) = [0] [0] p(choose) = [1 1] x2 + [0] [0 1] [1] p(cons) = [1 1] x2 + [0] [0 1] [1] p(insert) = [1 1] x2 + [0] [0 1] [1] p(nil) = [0] [0] p(s) = [0 1] x1 + [1] [0 0] [1] p(sort) = [2 2] x1 + [0] [0 2] [0] p(choose#) = [0 1] x2 + [0 0] x3 + [0 0] x4 + [1] [2 2] [1 0] [2 1] [0] p(insert#) = [0 1] x2 + [2] [0 0] [1] p(sort#) = [2 2] x1 + [0] [0 1] [0] p(c_1) = [0] [0] p(c_2) = [1 0] x1 + [0] [1 3] [0] p(c_3) = [1 0] x1 + [0] [2 0] [0] p(c_4) = [1 0] x1 + [0] [0 0] [1] p(c_5) = [0] [1] p(c_6) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 1] [0] p(c_7) = [2] [0] Following rules are strictly oriented: insert#(x,cons(v,w)) = [0 1] w + [3] [0 0] [1] > [0 1] w + [2] [0 0] [1] = c_4(choose#(x,cons(v,w),x,v)) Following rules are (at-least) weakly oriented: choose#(x,cons(v,w),0(),s(z)) = [0 1] w + [0 0] z + [2] [2 4] [0 2] [5] >= [0 1] w + [2] [0 1] [5] = c_2(insert#(x,w)) choose#(x,cons(v,w),s(y),s(z)) = [0 1] w + [0 0] y + [0 0] z + [2] [2 4] [0 1] [0 2] [6] >= [0 1] w + [2] [0 2] [4] = c_3(choose#(x,cons(v,w),y,z)) sort#(cons(x,y)) = [2 4] y + [2] [0 1] [1] >= [2 4] y + [2] [0 1] [0] = c_6(insert#(x,sort(y)),sort#(y)) choose(x,cons(v,w),y,0()) = [1 2] w + [1] [0 1] [2] >= [1 2] w + [1] [0 1] [2] = cons(x,cons(v,w)) choose(x,cons(v,w),0(),s(z)) = [1 2] w + [1] [0 1] [2] >= [1 2] w + [1] [0 1] [2] = cons(v,insert(x,w)) choose(x,cons(v,w),s(y),s(z)) = [1 2] w + [1] [0 1] [2] >= [1 2] w + [1] [0 1] [2] = choose(x,cons(v,w),y,z) insert(x,cons(v,w)) = [1 2] w + [1] [0 1] [2] >= [1 2] w + [1] [0 1] [2] = choose(x,cons(v,w),x,v) insert(x,nil()) = [0] [1] >= [0] [1] = cons(x,nil()) sort(cons(x,y)) = [2 4] y + [2] [0 2] [2] >= [2 4] y + [0] [0 2] [1] = insert(x,sort(y)) sort(nil()) = [0] [0] >= [0] [0] = nil() *** 1.1.1.1.1.2.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: choose#(x,cons(v,w),s(y),s(z)) -> c_3(choose#(x,cons(v,w),y,z)) Strict TRS Rules: Weak DP Rules: choose#(x,cons(v,w),0(),s(z)) -> c_2(insert#(x,w)) insert#(x,cons(v,w)) -> c_4(choose#(x,cons(v,w),x,v)) sort#(cons(x,y)) -> c_6(insert#(x,sort(y)),sort#(y)) Weak TRS Rules: choose(x,cons(v,w),y,0()) -> cons(x,cons(v,w)) choose(x,cons(v,w),0(),s(z)) -> cons(v,insert(x,w)) choose(x,cons(v,w),s(y),s(z)) -> choose(x,cons(v,w),y,z) insert(x,cons(v,w)) -> choose(x,cons(v,w),x,v) insert(x,nil()) -> cons(x,nil()) sort(cons(x,y)) -> insert(x,sort(y)) sort(nil()) -> nil() Signature: {choose/4,insert/2,sort/1,choose#/4,insert#/2,sort#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/0,c_6/2,c_7/0} Obligation: Innermost basic terms: {choose#,insert#,sort#}/{0,cons,nil,s} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.2.2 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: choose#(x,cons(v,w),s(y),s(z)) -> c_3(choose#(x,cons(v,w),y,z)) Strict TRS Rules: Weak DP Rules: choose#(x,cons(v,w),0(),s(z)) -> c_2(insert#(x,w)) insert#(x,cons(v,w)) -> c_4(choose#(x,cons(v,w),x,v)) sort#(cons(x,y)) -> c_6(insert#(x,sort(y)),sort#(y)) Weak TRS Rules: choose(x,cons(v,w),y,0()) -> cons(x,cons(v,w)) choose(x,cons(v,w),0(),s(z)) -> cons(v,insert(x,w)) choose(x,cons(v,w),s(y),s(z)) -> choose(x,cons(v,w),y,z) insert(x,cons(v,w)) -> choose(x,cons(v,w),x,v) insert(x,nil()) -> cons(x,nil()) sort(cons(x,y)) -> insert(x,sort(y)) sort(nil()) -> nil() Signature: {choose/4,insert/2,sort/1,choose#/4,insert#/2,sort#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/0,c_6/2,c_7/0} Obligation: Innermost basic terms: {choose#,insert#,sort#}/{0,cons,nil,s} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: choose#(x ,cons(v,w) ,s(y) ,s(z)) -> c_3(choose#(x ,cons(v,w) ,y ,z)) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.2.2.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: choose#(x,cons(v,w),s(y),s(z)) -> c_3(choose#(x,cons(v,w),y,z)) Strict TRS Rules: Weak DP Rules: choose#(x,cons(v,w),0(),s(z)) -> c_2(insert#(x,w)) insert#(x,cons(v,w)) -> c_4(choose#(x,cons(v,w),x,v)) sort#(cons(x,y)) -> c_6(insert#(x,sort(y)),sort#(y)) Weak TRS Rules: choose(x,cons(v,w),y,0()) -> cons(x,cons(v,w)) choose(x,cons(v,w),0(),s(z)) -> cons(v,insert(x,w)) choose(x,cons(v,w),s(y),s(z)) -> choose(x,cons(v,w),y,z) insert(x,cons(v,w)) -> choose(x,cons(v,w),x,v) insert(x,nil()) -> cons(x,nil()) sort(cons(x,y)) -> insert(x,sort(y)) sort(nil()) -> nil() Signature: {choose/4,insert/2,sort/1,choose#/4,insert#/2,sort#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/0,c_6/2,c_7/0} Obligation: Innermost basic terms: {choose#,insert#,sort#}/{0,cons,nil,s} Applied Processor: NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a polynomial interpretation of kind constructor-based(mixed(2)): The following argument positions are considered usable: uargs(c_2) = {1}, uargs(c_3) = {1}, uargs(c_4) = {1}, uargs(c_6) = {1,2} Following symbols are considered usable: {choose,insert,sort,choose#,insert#,sort#} TcT has computed the following interpretation: p(0) = 1 p(choose) = 1 + 2*x1 + x2 p(cons) = 1 + x1 + x2 p(insert) = 1 + 2*x1 + x2 p(nil) = 0 p(s) = 1 + x1 p(sort) = 1 + 2*x1 p(choose#) = 2*x1*x2 + x2 + x3 p(insert#) = 1 + 2*x1 + 2*x1*x2 + x2 p(sort#) = 2*x1 + 2*x1^2 p(c_1) = 0 p(c_2) = x1 p(c_3) = x1 p(c_4) = x1 p(c_5) = 1 p(c_6) = x1 + x2 p(c_7) = 0 Following rules are strictly oriented: choose#(x,cons(v,w),s(y),s(z)) = 2 + v + 2*v*x + w + 2*w*x + 2*x + y > 1 + v + 2*v*x + w + 2*w*x + 2*x + y = c_3(choose#(x,cons(v,w),y,z)) Following rules are (at-least) weakly oriented: choose#(x,cons(v,w),0(),s(z)) = 2 + v + 2*v*x + w + 2*w*x + 2*x >= 1 + w + 2*w*x + 2*x = c_2(insert#(x,w)) insert#(x,cons(v,w)) = 2 + v + 2*v*x + w + 2*w*x + 4*x >= 1 + v + 2*v*x + w + 2*w*x + 3*x = c_4(choose#(x,cons(v,w),x,v)) sort#(cons(x,y)) = 4 + 6*x + 4*x*y + 2*x^2 + 6*y + 2*y^2 >= 2 + 4*x + 4*x*y + 4*y + 2*y^2 = c_6(insert#(x,sort(y)),sort#(y)) choose(x,cons(v,w),y,0()) = 2 + v + w + 2*x >= 2 + v + w + x = cons(x,cons(v,w)) choose(x,cons(v,w),0(),s(z)) = 2 + v + w + 2*x >= 2 + v + w + 2*x = cons(v,insert(x,w)) choose(x,cons(v,w),s(y),s(z)) = 2 + v + w + 2*x >= 2 + v + w + 2*x = choose(x,cons(v,w),y,z) insert(x,cons(v,w)) = 2 + v + w + 2*x >= 2 + v + w + 2*x = choose(x,cons(v,w),x,v) insert(x,nil()) = 1 + 2*x >= 1 + x = cons(x,nil()) sort(cons(x,y)) = 3 + 2*x + 2*y >= 2 + 2*x + 2*y = insert(x,sort(y)) sort(nil()) = 1 >= 0 = nil() *** 1.1.1.1.1.2.2.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: choose#(x,cons(v,w),0(),s(z)) -> c_2(insert#(x,w)) choose#(x,cons(v,w),s(y),s(z)) -> c_3(choose#(x,cons(v,w),y,z)) insert#(x,cons(v,w)) -> c_4(choose#(x,cons(v,w),x,v)) sort#(cons(x,y)) -> c_6(insert#(x,sort(y)),sort#(y)) Weak TRS Rules: choose(x,cons(v,w),y,0()) -> cons(x,cons(v,w)) choose(x,cons(v,w),0(),s(z)) -> cons(v,insert(x,w)) choose(x,cons(v,w),s(y),s(z)) -> choose(x,cons(v,w),y,z) insert(x,cons(v,w)) -> choose(x,cons(v,w),x,v) insert(x,nil()) -> cons(x,nil()) sort(cons(x,y)) -> insert(x,sort(y)) sort(nil()) -> nil() Signature: {choose/4,insert/2,sort/1,choose#/4,insert#/2,sort#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/0,c_6/2,c_7/0} Obligation: Innermost basic terms: {choose#,insert#,sort#}/{0,cons,nil,s} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.2.2.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: choose#(x,cons(v,w),0(),s(z)) -> c_2(insert#(x,w)) choose#(x,cons(v,w),s(y),s(z)) -> c_3(choose#(x,cons(v,w),y,z)) insert#(x,cons(v,w)) -> c_4(choose#(x,cons(v,w),x,v)) sort#(cons(x,y)) -> c_6(insert#(x,sort(y)),sort#(y)) Weak TRS Rules: choose(x,cons(v,w),y,0()) -> cons(x,cons(v,w)) choose(x,cons(v,w),0(),s(z)) -> cons(v,insert(x,w)) choose(x,cons(v,w),s(y),s(z)) -> choose(x,cons(v,w),y,z) insert(x,cons(v,w)) -> choose(x,cons(v,w),x,v) insert(x,nil()) -> cons(x,nil()) sort(cons(x,y)) -> insert(x,sort(y)) sort(nil()) -> nil() Signature: {choose/4,insert/2,sort/1,choose#/4,insert#/2,sort#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/0,c_6/2,c_7/0} Obligation: Innermost basic terms: {choose#,insert#,sort#}/{0,cons,nil,s} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:choose#(x,cons(v,w),0(),s(z)) -> c_2(insert#(x,w)) -->_1 insert#(x,cons(v,w)) -> c_4(choose#(x,cons(v,w),x,v)):3 2:W:choose#(x,cons(v,w),s(y),s(z)) -> c_3(choose#(x,cons(v,w),y,z)) -->_1 choose#(x,cons(v,w),s(y),s(z)) -> c_3(choose#(x,cons(v,w),y,z)):2 -->_1 choose#(x,cons(v,w),0(),s(z)) -> c_2(insert#(x,w)):1 3:W:insert#(x,cons(v,w)) -> c_4(choose#(x,cons(v,w),x,v)) -->_1 choose#(x,cons(v,w),s(y),s(z)) -> c_3(choose#(x,cons(v,w),y,z)):2 -->_1 choose#(x,cons(v,w),0(),s(z)) -> c_2(insert#(x,w)):1 4:W:sort#(cons(x,y)) -> c_6(insert#(x,sort(y)),sort#(y)) -->_2 sort#(cons(x,y)) -> c_6(insert#(x,sort(y)),sort#(y)):4 -->_1 insert#(x,cons(v,w)) -> c_4(choose#(x,cons(v,w),x,v)):3 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 4: sort#(cons(x,y)) -> c_6(insert#(x,sort(y)),sort#(y)) 1: choose#(x,cons(v,w),0(),s(z)) -> c_2(insert#(x,w)) 3: insert#(x,cons(v,w)) -> c_4(choose#(x,cons(v,w),x,v)) 2: choose#(x ,cons(v,w) ,s(y) ,s(z)) -> c_3(choose#(x ,cons(v,w) ,y ,z)) *** 1.1.1.1.1.2.2.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: choose(x,cons(v,w),y,0()) -> cons(x,cons(v,w)) choose(x,cons(v,w),0(),s(z)) -> cons(v,insert(x,w)) choose(x,cons(v,w),s(y),s(z)) -> choose(x,cons(v,w),y,z) insert(x,cons(v,w)) -> choose(x,cons(v,w),x,v) insert(x,nil()) -> cons(x,nil()) sort(cons(x,y)) -> insert(x,sort(y)) sort(nil()) -> nil() Signature: {choose/4,insert/2,sort/1,choose#/4,insert#/2,sort#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/0,c_6/2,c_7/0} Obligation: Innermost basic terms: {choose#,insert#,sort#}/{0,cons,nil,s} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1). *** 1.1.1.1.2 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: sort#(cons(x,y)) -> c_6(insert#(x,sort(y)),sort#(y)) Strict TRS Rules: Weak DP Rules: choose#(x,cons(v,w),0(),s(z)) -> c_2(insert#(x,w)) choose#(x,cons(v,w),s(y),s(z)) -> c_3(choose#(x,cons(v,w),y,z)) insert#(x,cons(v,w)) -> c_4(choose#(x,cons(v,w),x,v)) Weak TRS Rules: choose(x,cons(v,w),y,0()) -> cons(x,cons(v,w)) choose(x,cons(v,w),0(),s(z)) -> cons(v,insert(x,w)) choose(x,cons(v,w),s(y),s(z)) -> choose(x,cons(v,w),y,z) insert(x,cons(v,w)) -> choose(x,cons(v,w),x,v) insert(x,nil()) -> cons(x,nil()) sort(cons(x,y)) -> insert(x,sort(y)) sort(nil()) -> nil() Signature: {choose/4,insert/2,sort/1,choose#/4,insert#/2,sort#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/0,c_6/2,c_7/0} Obligation: Innermost basic terms: {choose#,insert#,sort#}/{0,cons,nil,s} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:sort#(cons(x,y)) -> c_6(insert#(x,sort(y)),sort#(y)) -->_1 insert#(x,cons(v,w)) -> c_4(choose#(x,cons(v,w),x,v)):4 -->_2 sort#(cons(x,y)) -> c_6(insert#(x,sort(y)),sort#(y)):1 2:W:choose#(x,cons(v,w),0(),s(z)) -> c_2(insert#(x,w)) -->_1 insert#(x,cons(v,w)) -> c_4(choose#(x,cons(v,w),x,v)):4 3:W:choose#(x,cons(v,w),s(y),s(z)) -> c_3(choose#(x,cons(v,w),y,z)) -->_1 choose#(x,cons(v,w),s(y),s(z)) -> c_3(choose#(x,cons(v,w),y,z)):3 -->_1 choose#(x,cons(v,w),0(),s(z)) -> c_2(insert#(x,w)):2 4:W:insert#(x,cons(v,w)) -> c_4(choose#(x,cons(v,w),x,v)) -->_1 choose#(x,cons(v,w),s(y),s(z)) -> c_3(choose#(x,cons(v,w),y,z)):3 -->_1 choose#(x,cons(v,w),0(),s(z)) -> c_2(insert#(x,w)):2 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 4: insert#(x,cons(v,w)) -> c_4(choose#(x,cons(v,w),x,v)) 2: choose#(x,cons(v,w),0(),s(z)) -> c_2(insert#(x,w)) 3: choose#(x ,cons(v,w) ,s(y) ,s(z)) -> c_3(choose#(x ,cons(v,w) ,y ,z)) *** 1.1.1.1.2.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: sort#(cons(x,y)) -> c_6(insert#(x,sort(y)),sort#(y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: choose(x,cons(v,w),y,0()) -> cons(x,cons(v,w)) choose(x,cons(v,w),0(),s(z)) -> cons(v,insert(x,w)) choose(x,cons(v,w),s(y),s(z)) -> choose(x,cons(v,w),y,z) insert(x,cons(v,w)) -> choose(x,cons(v,w),x,v) insert(x,nil()) -> cons(x,nil()) sort(cons(x,y)) -> insert(x,sort(y)) sort(nil()) -> nil() Signature: {choose/4,insert/2,sort/1,choose#/4,insert#/2,sort#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/0,c_6/2,c_7/0} Obligation: Innermost basic terms: {choose#,insert#,sort#}/{0,cons,nil,s} Applied Processor: SimplifyRHS Proof: Consider the dependency graph 1:S:sort#(cons(x,y)) -> c_6(insert#(x,sort(y)),sort#(y)) -->_2 sort#(cons(x,y)) -> c_6(insert#(x,sort(y)),sort#(y)):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: sort#(cons(x,y)) -> c_6(sort#(y)) *** 1.1.1.1.2.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: sort#(cons(x,y)) -> c_6(sort#(y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: choose(x,cons(v,w),y,0()) -> cons(x,cons(v,w)) choose(x,cons(v,w),0(),s(z)) -> cons(v,insert(x,w)) choose(x,cons(v,w),s(y),s(z)) -> choose(x,cons(v,w),y,z) insert(x,cons(v,w)) -> choose(x,cons(v,w),x,v) insert(x,nil()) -> cons(x,nil()) sort(cons(x,y)) -> insert(x,sort(y)) sort(nil()) -> nil() Signature: {choose/4,insert/2,sort/1,choose#/4,insert#/2,sort#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/0,c_6/1,c_7/0} Obligation: Innermost basic terms: {choose#,insert#,sort#}/{0,cons,nil,s} Applied Processor: UsableRules Proof: We replace rewrite rules by usable rules: sort#(cons(x,y)) -> c_6(sort#(y)) *** 1.1.1.1.2.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: sort#(cons(x,y)) -> c_6(sort#(y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {choose/4,insert/2,sort/1,choose#/4,insert#/2,sort#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/0,c_6/1,c_7/0} Obligation: Innermost basic terms: {choose#,insert#,sort#}/{0,cons,nil,s} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: sort#(cons(x,y)) -> c_6(sort#(y)) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.2.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: sort#(cons(x,y)) -> c_6(sort#(y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {choose/4,insert/2,sort/1,choose#/4,insert#/2,sort#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/0,c_6/1,c_7/0} Obligation: Innermost basic terms: {choose#,insert#,sort#}/{0,cons,nil,s} Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_6) = {1} Following symbols are considered usable: {choose#,insert#,sort#} TcT has computed the following interpretation: p(0) = [8] p(choose) = [8] x4 + [2] p(cons) = [1] x2 + [5] p(insert) = [1] x1 + [1] x2 + [1] p(nil) = [1] p(s) = [0] p(sort) = [1] p(choose#) = [1] x4 + [2] p(insert#) = [2] x1 + [1] x2 + [1] p(sort#) = [4] x1 + [8] p(c_1) = [0] p(c_2) = [2] x1 + [0] p(c_3) = [1] p(c_4) = [2] p(c_5) = [0] p(c_6) = [1] x1 + [15] p(c_7) = [1] Following rules are strictly oriented: sort#(cons(x,y)) = [4] y + [28] > [4] y + [23] = c_6(sort#(y)) Following rules are (at-least) weakly oriented: *** 1.1.1.1.2.1.1.1.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: sort#(cons(x,y)) -> c_6(sort#(y)) Weak TRS Rules: Signature: {choose/4,insert/2,sort/1,choose#/4,insert#/2,sort#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/0,c_6/1,c_7/0} Obligation: Innermost basic terms: {choose#,insert#,sort#}/{0,cons,nil,s} Applied Processor: Assumption Proof: () *** 1.1.1.1.2.1.1.1.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: sort#(cons(x,y)) -> c_6(sort#(y)) Weak TRS Rules: Signature: {choose/4,insert/2,sort/1,choose#/4,insert#/2,sort#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/0,c_6/1,c_7/0} Obligation: Innermost basic terms: {choose#,insert#,sort#}/{0,cons,nil,s} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:sort#(cons(x,y)) -> c_6(sort#(y)) -->_1 sort#(cons(x,y)) -> c_6(sort#(y)):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: sort#(cons(x,y)) -> c_6(sort#(y)) *** 1.1.1.1.2.1.1.1.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {choose/4,insert/2,sort/1,choose#/4,insert#/2,sort#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/0,c_6/1,c_7/0} Obligation: Innermost basic terms: {choose#,insert#,sort#}/{0,cons,nil,s} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1).