We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^2)).

Strict Trs:
  { sort(nil()) -> nil()
  , sort(cons(x, y)) -> insert(x, sort(y))
  , insert(x, nil()) -> cons(x, nil())
  , insert(x, cons(v, w)) -> choose(x, cons(v, w), x, v)
  , choose(x, cons(v, w), y, 0()) -> cons(x, cons(v, w))
  , choose(x, cons(v, w), 0(), s(z)) -> cons(v, insert(x, w))
  , choose(x, cons(v, w), s(y), s(z)) ->
    choose(x, cons(v, w), y, z) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^2))

We add the following dependency tuples:

Strict DPs:
  { sort^#(nil()) -> c_1()
  , sort^#(cons(x, y)) -> c_2(insert^#(x, sort(y)), sort^#(y))
  , insert^#(x, nil()) -> c_3()
  , insert^#(x, cons(v, w)) -> c_4(choose^#(x, cons(v, w), x, v))
  , choose^#(x, cons(v, w), y, 0()) -> c_5()
  , choose^#(x, cons(v, w), 0(), s(z)) -> c_6(insert^#(x, w))
  , choose^#(x, cons(v, w), s(y), s(z)) ->
    c_7(choose^#(x, cons(v, w), y, z)) }

and mark the set of starting terms.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^2)).

Strict DPs:
  { sort^#(nil()) -> c_1()
  , sort^#(cons(x, y)) -> c_2(insert^#(x, sort(y)), sort^#(y))
  , insert^#(x, nil()) -> c_3()
  , insert^#(x, cons(v, w)) -> c_4(choose^#(x, cons(v, w), x, v))
  , choose^#(x, cons(v, w), y, 0()) -> c_5()
  , choose^#(x, cons(v, w), 0(), s(z)) -> c_6(insert^#(x, w))
  , choose^#(x, cons(v, w), s(y), s(z)) ->
    c_7(choose^#(x, cons(v, w), y, z)) }
Weak Trs:
  { sort(nil()) -> nil()
  , sort(cons(x, y)) -> insert(x, sort(y))
  , insert(x, nil()) -> cons(x, nil())
  , insert(x, cons(v, w)) -> choose(x, cons(v, w), x, v)
  , choose(x, cons(v, w), y, 0()) -> cons(x, cons(v, w))
  , choose(x, cons(v, w), 0(), s(z)) -> cons(v, insert(x, w))
  , choose(x, cons(v, w), s(y), s(z)) ->
    choose(x, cons(v, w), y, z) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^2))

We estimate the number of application of {1,3,5} by applications of
Pre({1,3,5}) = {2,4,6,7}. Here rules are labeled as follows:

  DPs:
    { 1: sort^#(nil()) -> c_1()
    , 2: sort^#(cons(x, y)) -> c_2(insert^#(x, sort(y)), sort^#(y))
    , 3: insert^#(x, nil()) -> c_3()
    , 4: insert^#(x, cons(v, w)) -> c_4(choose^#(x, cons(v, w), x, v))
    , 5: choose^#(x, cons(v, w), y, 0()) -> c_5()
    , 6: choose^#(x, cons(v, w), 0(), s(z)) -> c_6(insert^#(x, w))
    , 7: choose^#(x, cons(v, w), s(y), s(z)) ->
         c_7(choose^#(x, cons(v, w), y, z)) }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^2)).

Strict DPs:
  { sort^#(cons(x, y)) -> c_2(insert^#(x, sort(y)), sort^#(y))
  , insert^#(x, cons(v, w)) -> c_4(choose^#(x, cons(v, w), x, v))
  , choose^#(x, cons(v, w), 0(), s(z)) -> c_6(insert^#(x, w))
  , choose^#(x, cons(v, w), s(y), s(z)) ->
    c_7(choose^#(x, cons(v, w), y, z)) }
Weak DPs:
  { sort^#(nil()) -> c_1()
  , insert^#(x, nil()) -> c_3()
  , choose^#(x, cons(v, w), y, 0()) -> c_5() }
Weak Trs:
  { sort(nil()) -> nil()
  , sort(cons(x, y)) -> insert(x, sort(y))
  , insert(x, nil()) -> cons(x, nil())
  , insert(x, cons(v, w)) -> choose(x, cons(v, w), x, v)
  , choose(x, cons(v, w), y, 0()) -> cons(x, cons(v, w))
  , choose(x, cons(v, w), 0(), s(z)) -> cons(v, insert(x, w))
  , choose(x, cons(v, w), s(y), s(z)) ->
    choose(x, cons(v, w), y, z) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^2))

The following weak DPs constitute a sub-graph of the DG that is
closed under successors. The DPs are removed.

{ sort^#(nil()) -> c_1()
, insert^#(x, nil()) -> c_3()
, choose^#(x, cons(v, w), y, 0()) -> c_5() }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^2)).

Strict DPs:
  { sort^#(cons(x, y)) -> c_2(insert^#(x, sort(y)), sort^#(y))
  , insert^#(x, cons(v, w)) -> c_4(choose^#(x, cons(v, w), x, v))
  , choose^#(x, cons(v, w), 0(), s(z)) -> c_6(insert^#(x, w))
  , choose^#(x, cons(v, w), s(y), s(z)) ->
    c_7(choose^#(x, cons(v, w), y, z)) }
Weak Trs:
  { sort(nil()) -> nil()
  , sort(cons(x, y)) -> insert(x, sort(y))
  , insert(x, nil()) -> cons(x, nil())
  , insert(x, cons(v, w)) -> choose(x, cons(v, w), x, v)
  , choose(x, cons(v, w), y, 0()) -> cons(x, cons(v, w))
  , choose(x, cons(v, w), 0(), s(z)) -> cons(v, insert(x, w))
  , choose(x, cons(v, w), s(y), s(z)) ->
    choose(x, cons(v, w), y, z) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^2))

We decompose the input problem according to the dependency graph
into the upper component

  { sort^#(cons(x, y)) -> c_2(insert^#(x, sort(y)), sort^#(y)) }

and lower component

  { insert^#(x, cons(v, w)) -> c_4(choose^#(x, cons(v, w), x, v))
  , choose^#(x, cons(v, w), 0(), s(z)) -> c_6(insert^#(x, w))
  , choose^#(x, cons(v, w), s(y), s(z)) ->
    c_7(choose^#(x, cons(v, w), y, z)) }

Further, following extension rules are added to the lower
component.

{ sort^#(cons(x, y)) -> sort^#(y)
, sort^#(cons(x, y)) -> insert^#(x, sort(y)) }

TcT solves the upper component with certificate YES(O(1),O(n^1)).

Sub-proof:
----------
  We are left with following problem, upon which TcT provides the
  certificate YES(O(1),O(n^1)).
  
  Strict DPs:
    { sort^#(cons(x, y)) -> c_2(insert^#(x, sort(y)), sort^#(y)) }
  Weak Trs:
    { sort(nil()) -> nil()
    , sort(cons(x, y)) -> insert(x, sort(y))
    , insert(x, nil()) -> cons(x, nil())
    , insert(x, cons(v, w)) -> choose(x, cons(v, w), x, v)
    , choose(x, cons(v, w), y, 0()) -> cons(x, cons(v, w))
    , choose(x, cons(v, w), 0(), s(z)) -> cons(v, insert(x, w))
    , choose(x, cons(v, w), s(y), s(z)) ->
      choose(x, cons(v, w), y, z) }
  Obligation:
    innermost runtime complexity
  Answer:
    YES(O(1),O(n^1))
  
  We use the processor 'Small Polynomial Path Order (PS,1-bounded)'
  to orient following rules strictly.
  
  DPs:
    { 1: sort^#(cons(x, y)) -> c_2(insert^#(x, sort(y)), sort^#(y)) }
  
  Sub-proof:
  ----------
    The input was oriented with the instance of 'Small Polynomial Path
    Order (PS,1-bounded)' as induced by the safe mapping
    
     safe(sort) = {}, safe(nil) = {}, safe(cons) = {1, 2},
     safe(insert) = {}, safe(choose) = {3, 4}, safe(0) = {},
     safe(s) = {1}, safe(sort^#) = {}, safe(c_2) = {},
     safe(insert^#) = {}
    
    and precedence
    
     sort > insert, insert > choose .
    
    Following symbols are considered recursive:
    
     {sort^#}
    
    The recursion depth is 1.
    
    Further, following argument filtering is employed:
    
     pi(sort) = [], pi(nil) = [], pi(cons) = [2], pi(insert) = [2],
     pi(choose) = [3, 4], pi(0) = [], pi(s) = [], pi(sort^#) = [1],
     pi(c_2) = [1, 2], pi(insert^#) = []
    
    Usable defined function symbols are a subset of:
    
     {sort^#, insert^#}
    
    For your convenience, here are the satisfied ordering constraints:
    
      pi(sort^#(cons(x, y))) = sort^#(cons(; y);)                      
                             > c_2(insert^#(),  sort^#(y;);)           
                             = pi(c_2(insert^#(x, sort(y)), sort^#(y)))
                                                                       
  
  The strictly oriented rules are moved into the weak component.
  
  We are left with following problem, upon which TcT provides the
  certificate YES(O(1),O(1)).
  
  Weak DPs:
    { sort^#(cons(x, y)) -> c_2(insert^#(x, sort(y)), sort^#(y)) }
  Weak Trs:
    { sort(nil()) -> nil()
    , sort(cons(x, y)) -> insert(x, sort(y))
    , insert(x, nil()) -> cons(x, nil())
    , insert(x, cons(v, w)) -> choose(x, cons(v, w), x, v)
    , choose(x, cons(v, w), y, 0()) -> cons(x, cons(v, w))
    , choose(x, cons(v, w), 0(), s(z)) -> cons(v, insert(x, w))
    , choose(x, cons(v, w), s(y), s(z)) ->
      choose(x, cons(v, w), y, z) }
  Obligation:
    innermost runtime complexity
  Answer:
    YES(O(1),O(1))
  
  The following weak DPs constitute a sub-graph of the DG that is
  closed under successors. The DPs are removed.
  
  { sort^#(cons(x, y)) -> c_2(insert^#(x, sort(y)), sort^#(y)) }
  
  We are left with following problem, upon which TcT provides the
  certificate YES(O(1),O(1)).
  
  Weak Trs:
    { sort(nil()) -> nil()
    , sort(cons(x, y)) -> insert(x, sort(y))
    , insert(x, nil()) -> cons(x, nil())
    , insert(x, cons(v, w)) -> choose(x, cons(v, w), x, v)
    , choose(x, cons(v, w), y, 0()) -> cons(x, cons(v, w))
    , choose(x, cons(v, w), 0(), s(z)) -> cons(v, insert(x, w))
    , choose(x, cons(v, w), s(y), s(z)) ->
      choose(x, cons(v, w), y, z) }
  Obligation:
    innermost runtime complexity
  Answer:
    YES(O(1),O(1))
  
  No rule is usable, rules are removed from the input problem.
  
  We are left with following problem, upon which TcT provides the
  certificate YES(O(1),O(1)).
  
  Rules: Empty
  Obligation:
    innermost runtime complexity
  Answer:
    YES(O(1),O(1))
  
  Empty rules are trivially bounded

We return to the main proof.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { insert^#(x, cons(v, w)) -> c_4(choose^#(x, cons(v, w), x, v))
  , choose^#(x, cons(v, w), 0(), s(z)) -> c_6(insert^#(x, w))
  , choose^#(x, cons(v, w), s(y), s(z)) ->
    c_7(choose^#(x, cons(v, w), y, z)) }
Weak DPs:
  { sort^#(cons(x, y)) -> sort^#(y)
  , sort^#(cons(x, y)) -> insert^#(x, sort(y)) }
Weak Trs:
  { sort(nil()) -> nil()
  , sort(cons(x, y)) -> insert(x, sort(y))
  , insert(x, nil()) -> cons(x, nil())
  , insert(x, cons(v, w)) -> choose(x, cons(v, w), x, v)
  , choose(x, cons(v, w), y, 0()) -> cons(x, cons(v, w))
  , choose(x, cons(v, w), 0(), s(z)) -> cons(v, insert(x, w))
  , choose(x, cons(v, w), s(y), s(z)) ->
    choose(x, cons(v, w), y, z) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

We use the processor 'matrix interpretation of dimension 1' to
orient following rules strictly.

DPs:
  { 2: choose^#(x, cons(v, w), 0(), s(z)) -> c_6(insert^#(x, w))
  , 4: sort^#(cons(x, y)) -> sort^#(y)
  , 5: sort^#(cons(x, y)) -> insert^#(x, sort(y)) }
Trs:
  { sort(nil()) -> nil()
  , sort(cons(x, y)) -> insert(x, sort(y))
  , insert(x, nil()) -> cons(x, nil())
  , choose(x, cons(v, w), y, 0()) -> cons(x, cons(v, w)) }

Sub-proof:
----------
  The following argument positions are usable:
    Uargs(c_4) = {1}, Uargs(c_6) = {1}, Uargs(c_7) = {1}
  
  TcT has computed the following constructor-based matrix
  interpretation satisfying not(EDA).
  
                    [sort](x1) = [3] x1 + [5]         
                                                      
                         [nil] = [1]                  
                                                      
                [cons](x1, x2) = [1] x1 + [1] x2 + [2]
                                                      
              [insert](x1, x2) = [1] x1 + [1] x2 + [5]
                                                      
      [choose](x1, x2, x3, x4) = [1] x1 + [1] x2 + [5]
                                                      
                           [0] = [4]                  
                                                      
                       [s](x1) = [1] x1 + [1]         
                                                      
                  [sort^#](x1) = [4] x1 + [7]         
                                                      
            [insert^#](x1, x2) = [1] x2 + [0]         
                                                      
                     [c_4](x1) = [1] x1 + [0]         
                                                      
    [choose^#](x1, x2, x3, x4) = [1] x2 + [0]         
                                                      
                     [c_6](x1) = [1] x1 + [1]         
                                                      
                     [c_7](x1) = [1] x1 + [0]         
  
  The order satisfies the following ordering constraints:
  
                            [sort(nil())] =  [8]                                 
                                          >  [1]                                 
                                          =  [nil()]                             
                                                                                 
                       [sort(cons(x, y))] =  [3] x + [3] y + [11]                
                                          >  [1] x + [3] y + [10]                
                                          =  [insert(x, sort(y))]                
                                                                                 
                       [insert(x, nil())] =  [1] x + [6]                         
                                          >  [1] x + [3]                         
                                          =  [cons(x, nil())]                    
                                                                                 
                  [insert(x, cons(v, w))] =  [1] x + [1] v + [1] w + [7]         
                                          >= [1] x + [1] v + [1] w + [7]         
                                          =  [choose(x, cons(v, w), x, v)]       
                                                                                 
          [choose(x, cons(v, w), y, 0())] =  [1] x + [1] v + [1] w + [7]         
                                          >  [1] x + [1] v + [1] w + [4]         
                                          =  [cons(x, cons(v, w))]               
                                                                                 
       [choose(x, cons(v, w), 0(), s(z))] =  [1] x + [1] v + [1] w + [7]         
                                          >= [1] x + [1] v + [1] w + [7]         
                                          =  [cons(v, insert(x, w))]             
                                                                                 
      [choose(x, cons(v, w), s(y), s(z))] =  [1] x + [1] v + [1] w + [7]         
                                          >= [1] x + [1] v + [1] w + [7]         
                                          =  [choose(x, cons(v, w), y, z)]       
                                                                                 
                     [sort^#(cons(x, y))] =  [4] x + [4] y + [15]                
                                          >  [4] y + [7]                         
                                          =  [sort^#(y)]                         
                                                                                 
                     [sort^#(cons(x, y))] =  [4] x + [4] y + [15]                
                                          >  [3] y + [5]                         
                                          =  [insert^#(x, sort(y))]              
                                                                                 
                [insert^#(x, cons(v, w))] =  [1] v + [1] w + [2]                 
                                          >= [1] v + [1] w + [2]                 
                                          =  [c_4(choose^#(x, cons(v, w), x, v))]
                                                                                 
     [choose^#(x, cons(v, w), 0(), s(z))] =  [1] v + [1] w + [2]                 
                                          >  [1] w + [1]                         
                                          =  [c_6(insert^#(x, w))]               
                                                                                 
    [choose^#(x, cons(v, w), s(y), s(z))] =  [1] v + [1] w + [2]                 
                                          >= [1] v + [1] w + [2]                 
                                          =  [c_7(choose^#(x, cons(v, w), y, z))]
                                                                                 

We return to the main proof. Consider the set of all dependency
pairs

:
  { 1: insert^#(x, cons(v, w)) -> c_4(choose^#(x, cons(v, w), x, v))
  , 2: choose^#(x, cons(v, w), 0(), s(z)) -> c_6(insert^#(x, w))
  , 3: choose^#(x, cons(v, w), s(y), s(z)) ->
       c_7(choose^#(x, cons(v, w), y, z))
  , 4: sort^#(cons(x, y)) -> sort^#(y)
  , 5: sort^#(cons(x, y)) -> insert^#(x, sort(y)) }

Processor 'matrix interpretation of dimension 1' induces the
complexity certificate YES(?,O(n^1)) on application of dependency
pairs {2,4,5}. These cover all (indirect) predecessors of
dependency pairs {1,2,4,5}, their number of application is equally
bounded. The dependency pairs are shifted into the weak component.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { choose^#(x, cons(v, w), s(y), s(z)) ->
    c_7(choose^#(x, cons(v, w), y, z)) }
Weak DPs:
  { sort^#(cons(x, y)) -> sort^#(y)
  , sort^#(cons(x, y)) -> insert^#(x, sort(y))
  , insert^#(x, cons(v, w)) -> c_4(choose^#(x, cons(v, w), x, v))
  , choose^#(x, cons(v, w), 0(), s(z)) -> c_6(insert^#(x, w)) }
Weak Trs:
  { sort(nil()) -> nil()
  , sort(cons(x, y)) -> insert(x, sort(y))
  , insert(x, nil()) -> cons(x, nil())
  , insert(x, cons(v, w)) -> choose(x, cons(v, w), x, v)
  , choose(x, cons(v, w), y, 0()) -> cons(x, cons(v, w))
  , choose(x, cons(v, w), 0(), s(z)) -> cons(v, insert(x, w))
  , choose(x, cons(v, w), s(y), s(z)) ->
    choose(x, cons(v, w), y, z) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

We use the processor 'matrix interpretation of dimension 2' to
orient following rules strictly.

DPs:
  { 1: choose^#(x, cons(v, w), s(y), s(z)) ->
       c_7(choose^#(x, cons(v, w), y, z))
  , 2: sort^#(cons(x, y)) -> sort^#(y)
  , 3: sort^#(cons(x, y)) -> insert^#(x, sort(y))
  , 4: insert^#(x, cons(v, w)) -> c_4(choose^#(x, cons(v, w), x, v))
  , 5: choose^#(x, cons(v, w), 0(), s(z)) -> c_6(insert^#(x, w)) }
Trs:
  { sort(nil()) -> nil()
  , insert(x, nil()) -> cons(x, nil())
  , choose(x, cons(v, w), y, 0()) -> cons(x, cons(v, w)) }

Sub-proof:
----------
  The following argument positions are usable:
    Uargs(c_4) = {1}, Uargs(c_6) = {1}, Uargs(c_7) = {1}
  
  TcT has computed the following constructor-based matrix
  interpretation satisfying not(EDA) and not(IDA(1)).
  
                    [sort](x1) = [0 4] x1 + [5]           
                                 [0 2]      [2]           
                                                          
                         [nil] = [0]                      
                                 [0]                      
                                                          
                [cons](x1, x2) = [0 0] x1 + [0 2] x2 + [3]
                                 [0 1]      [0 1]      [1]
                                                          
              [insert](x1, x2) = [0 4] x1 + [0 2] x2 + [5]
                                 [0 1]      [0 1]      [2]
                                                          
      [choose](x1, x2, x3, x4) = [0 4] x1 + [0 2] x2 + [5]
                                 [0 1]      [0 1]      [2]
                                                          
                           [0] = [5]                      
                                 [2]                      
                                                          
                       [s](x1) = [1 0] x1 + [1]           
                                 [0 1]      [4]           
                                                          
                  [sort^#](x1) = [0 6] x1 + [7]           
                                 [0 0]      [5]           
                                                          
            [insert^#](x1, x2) = [0 3] x2 + [6]           
                                 [0 0]      [0]           
                                                          
                     [c_4](x1) = [1 0] x1 + [0]           
                                 [0 0]      [0]           
                                                          
    [choose^#](x1, x2, x3, x4) = [1 1] x2 + [0 2] x4 + [3]
                                 [0 0]      [0 0]      [7]
                                                          
                     [c_6](x1) = [1 1] x1 + [0]           
                                 [0 0]      [0]           
                                                          
                     [c_7](x1) = [1 1] x1 + [0]           
                                 [0 0]      [0]           
  
  The order satisfies the following ordering constraints:
  
                            [sort(nil())] =  [5]                                 
                                             [2]                                 
                                          >  [0]                                 
                                             [0]                                 
                                          =  [nil()]                             
                                                                                 
                       [sort(cons(x, y))] =  [0 4] x + [0 4] y + [9]             
                                             [0 2]     [0 2]     [4]             
                                          >= [0 4] x + [0 4] y + [9]             
                                             [0 1]     [0 2]     [4]             
                                          =  [insert(x, sort(y))]                
                                                                                 
                       [insert(x, nil())] =  [0 4] x + [5]                       
                                             [0 1]     [2]                       
                                          >  [0 0] x + [3]                       
                                             [0 1]     [1]                       
                                          =  [cons(x, nil())]                    
                                                                                 
                  [insert(x, cons(v, w))] =  [0 4] x + [0 2] v + [0 2] w + [7]   
                                             [0 1]     [0 1]     [0 1]     [3]   
                                          >= [0 4] x + [0 2] v + [0 2] w + [7]   
                                             [0 1]     [0 1]     [0 1]     [3]   
                                          =  [choose(x, cons(v, w), x, v)]       
                                                                                 
          [choose(x, cons(v, w), y, 0())] =  [0 4] x + [0 2] v + [0 2] w + [7]   
                                             [0 1]     [0 1]     [0 1]     [3]   
                                          >  [0 0] x + [0 2] v + [0 2] w + [5]   
                                             [0 1]     [0 1]     [0 1]     [2]   
                                          =  [cons(x, cons(v, w))]               
                                                                                 
       [choose(x, cons(v, w), 0(), s(z))] =  [0 4] x + [0 2] v + [0 2] w + [7]   
                                             [0 1]     [0 1]     [0 1]     [3]   
                                          >= [0 2] x + [0 0] v + [0 2] w + [7]   
                                             [0 1]     [0 1]     [0 1]     [3]   
                                          =  [cons(v, insert(x, w))]             
                                                                                 
      [choose(x, cons(v, w), s(y), s(z))] =  [0 4] x + [0 2] v + [0 2] w + [7]   
                                             [0 1]     [0 1]     [0 1]     [3]   
                                          >= [0 4] x + [0 2] v + [0 2] w + [7]   
                                             [0 1]     [0 1]     [0 1]     [3]   
                                          =  [choose(x, cons(v, w), y, z)]       
                                                                                 
                     [sort^#(cons(x, y))] =  [0 6] x + [0 6] y + [13]            
                                             [0 0]     [0 0]     [5]             
                                          >  [0 6] y + [7]                       
                                             [0 0]     [5]                       
                                          =  [sort^#(y)]                         
                                                                                 
                     [sort^#(cons(x, y))] =  [0 6] x + [0 6] y + [13]            
                                             [0 0]     [0 0]     [5]             
                                          >  [0 6] y + [12]                      
                                             [0 0]     [0]                       
                                          =  [insert^#(x, sort(y))]              
                                                                                 
                [insert^#(x, cons(v, w))] =  [0 3] v + [0 3] w + [9]             
                                             [0 0]     [0 0]     [0]             
                                          >  [0 3] v + [0 3] w + [7]             
                                             [0 0]     [0 0]     [0]             
                                          =  [c_4(choose^#(x, cons(v, w), x, v))]
                                                                                 
     [choose^#(x, cons(v, w), 0(), s(z))] =  [0 1] v + [0 3] w + [0 2] z + [15]  
                                             [0 0]     [0 0]     [0 0]     [7]   
                                          >  [0 3] w + [6]                       
                                             [0 0]     [0]                       
                                          =  [c_6(insert^#(x, w))]               
                                                                                 
    [choose^#(x, cons(v, w), s(y), s(z))] =  [0 1] v + [0 3] w + [0 2] z + [15]  
                                             [0 0]     [0 0]     [0 0]     [7]   
                                          >  [0 1] v + [0 3] w + [0 2] z + [14]  
                                             [0 0]     [0 0]     [0 0]     [0]   
                                          =  [c_7(choose^#(x, cons(v, w), y, z))]
                                                                                 

The strictly oriented rules are moved into the weak component.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).

Weak DPs:
  { sort^#(cons(x, y)) -> sort^#(y)
  , sort^#(cons(x, y)) -> insert^#(x, sort(y))
  , insert^#(x, cons(v, w)) -> c_4(choose^#(x, cons(v, w), x, v))
  , choose^#(x, cons(v, w), 0(), s(z)) -> c_6(insert^#(x, w))
  , choose^#(x, cons(v, w), s(y), s(z)) ->
    c_7(choose^#(x, cons(v, w), y, z)) }
Weak Trs:
  { sort(nil()) -> nil()
  , sort(cons(x, y)) -> insert(x, sort(y))
  , insert(x, nil()) -> cons(x, nil())
  , insert(x, cons(v, w)) -> choose(x, cons(v, w), x, v)
  , choose(x, cons(v, w), y, 0()) -> cons(x, cons(v, w))
  , choose(x, cons(v, w), 0(), s(z)) -> cons(v, insert(x, w))
  , choose(x, cons(v, w), s(y), s(z)) ->
    choose(x, cons(v, w), y, z) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(1))

The following weak DPs constitute a sub-graph of the DG that is
closed under successors. The DPs are removed.

{ sort^#(cons(x, y)) -> sort^#(y)
, sort^#(cons(x, y)) -> insert^#(x, sort(y))
, insert^#(x, cons(v, w)) -> c_4(choose^#(x, cons(v, w), x, v))
, choose^#(x, cons(v, w), 0(), s(z)) -> c_6(insert^#(x, w))
, choose^#(x, cons(v, w), s(y), s(z)) ->
  c_7(choose^#(x, cons(v, w), y, z)) }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).

Weak Trs:
  { sort(nil()) -> nil()
  , sort(cons(x, y)) -> insert(x, sort(y))
  , insert(x, nil()) -> cons(x, nil())
  , insert(x, cons(v, w)) -> choose(x, cons(v, w), x, v)
  , choose(x, cons(v, w), y, 0()) -> cons(x, cons(v, w))
  , choose(x, cons(v, w), 0(), s(z)) -> cons(v, insert(x, w))
  , choose(x, cons(v, w), s(y), s(z)) ->
    choose(x, cons(v, w), y, z) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(1))

No rule is usable, rules are removed from the input problem.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).

Rules: Empty
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(1))

Empty rules are trivially bounded

Hurray, we answered YES(O(1),O(n^2))