We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^2)). Strict Trs: { sort(nil()) -> nil() , sort(cons(x, y)) -> insert(x, sort(y)) , insert(x, nil()) -> cons(x, nil()) , insert(x, cons(v, w)) -> choose(x, cons(v, w), x, v) , choose(x, cons(v, w), y, 0()) -> cons(x, cons(v, w)) , choose(x, cons(v, w), 0(), s(z)) -> cons(v, insert(x, w)) , choose(x, cons(v, w), s(y), s(z)) -> choose(x, cons(v, w), y, z) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^2)) We add the following dependency tuples: Strict DPs: { sort^#(nil()) -> c_1() , sort^#(cons(x, y)) -> c_2(insert^#(x, sort(y)), sort^#(y)) , insert^#(x, nil()) -> c_3() , insert^#(x, cons(v, w)) -> c_4(choose^#(x, cons(v, w), x, v)) , choose^#(x, cons(v, w), y, 0()) -> c_5() , choose^#(x, cons(v, w), 0(), s(z)) -> c_6(insert^#(x, w)) , choose^#(x, cons(v, w), s(y), s(z)) -> c_7(choose^#(x, cons(v, w), y, z)) } and mark the set of starting terms. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^2)). Strict DPs: { sort^#(nil()) -> c_1() , sort^#(cons(x, y)) -> c_2(insert^#(x, sort(y)), sort^#(y)) , insert^#(x, nil()) -> c_3() , insert^#(x, cons(v, w)) -> c_4(choose^#(x, cons(v, w), x, v)) , choose^#(x, cons(v, w), y, 0()) -> c_5() , choose^#(x, cons(v, w), 0(), s(z)) -> c_6(insert^#(x, w)) , choose^#(x, cons(v, w), s(y), s(z)) -> c_7(choose^#(x, cons(v, w), y, z)) } Weak Trs: { sort(nil()) -> nil() , sort(cons(x, y)) -> insert(x, sort(y)) , insert(x, nil()) -> cons(x, nil()) , insert(x, cons(v, w)) -> choose(x, cons(v, w), x, v) , choose(x, cons(v, w), y, 0()) -> cons(x, cons(v, w)) , choose(x, cons(v, w), 0(), s(z)) -> cons(v, insert(x, w)) , choose(x, cons(v, w), s(y), s(z)) -> choose(x, cons(v, w), y, z) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^2)) We estimate the number of application of {1,3,5} by applications of Pre({1,3,5}) = {2,4,6,7}. Here rules are labeled as follows: DPs: { 1: sort^#(nil()) -> c_1() , 2: sort^#(cons(x, y)) -> c_2(insert^#(x, sort(y)), sort^#(y)) , 3: insert^#(x, nil()) -> c_3() , 4: insert^#(x, cons(v, w)) -> c_4(choose^#(x, cons(v, w), x, v)) , 5: choose^#(x, cons(v, w), y, 0()) -> c_5() , 6: choose^#(x, cons(v, w), 0(), s(z)) -> c_6(insert^#(x, w)) , 7: choose^#(x, cons(v, w), s(y), s(z)) -> c_7(choose^#(x, cons(v, w), y, z)) } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^2)). Strict DPs: { sort^#(cons(x, y)) -> c_2(insert^#(x, sort(y)), sort^#(y)) , insert^#(x, cons(v, w)) -> c_4(choose^#(x, cons(v, w), x, v)) , choose^#(x, cons(v, w), 0(), s(z)) -> c_6(insert^#(x, w)) , choose^#(x, cons(v, w), s(y), s(z)) -> c_7(choose^#(x, cons(v, w), y, z)) } Weak DPs: { sort^#(nil()) -> c_1() , insert^#(x, nil()) -> c_3() , choose^#(x, cons(v, w), y, 0()) -> c_5() } Weak Trs: { sort(nil()) -> nil() , sort(cons(x, y)) -> insert(x, sort(y)) , insert(x, nil()) -> cons(x, nil()) , insert(x, cons(v, w)) -> choose(x, cons(v, w), x, v) , choose(x, cons(v, w), y, 0()) -> cons(x, cons(v, w)) , choose(x, cons(v, w), 0(), s(z)) -> cons(v, insert(x, w)) , choose(x, cons(v, w), s(y), s(z)) -> choose(x, cons(v, w), y, z) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^2)) The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. { sort^#(nil()) -> c_1() , insert^#(x, nil()) -> c_3() , choose^#(x, cons(v, w), y, 0()) -> c_5() } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^2)). Strict DPs: { sort^#(cons(x, y)) -> c_2(insert^#(x, sort(y)), sort^#(y)) , insert^#(x, cons(v, w)) -> c_4(choose^#(x, cons(v, w), x, v)) , choose^#(x, cons(v, w), 0(), s(z)) -> c_6(insert^#(x, w)) , choose^#(x, cons(v, w), s(y), s(z)) -> c_7(choose^#(x, cons(v, w), y, z)) } Weak Trs: { sort(nil()) -> nil() , sort(cons(x, y)) -> insert(x, sort(y)) , insert(x, nil()) -> cons(x, nil()) , insert(x, cons(v, w)) -> choose(x, cons(v, w), x, v) , choose(x, cons(v, w), y, 0()) -> cons(x, cons(v, w)) , choose(x, cons(v, w), 0(), s(z)) -> cons(v, insert(x, w)) , choose(x, cons(v, w), s(y), s(z)) -> choose(x, cons(v, w), y, z) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^2)) We decompose the input problem according to the dependency graph into the upper component { sort^#(cons(x, y)) -> c_2(insert^#(x, sort(y)), sort^#(y)) } and lower component { insert^#(x, cons(v, w)) -> c_4(choose^#(x, cons(v, w), x, v)) , choose^#(x, cons(v, w), 0(), s(z)) -> c_6(insert^#(x, w)) , choose^#(x, cons(v, w), s(y), s(z)) -> c_7(choose^#(x, cons(v, w), y, z)) } Further, following extension rules are added to the lower component. { sort^#(cons(x, y)) -> sort^#(y) , sort^#(cons(x, y)) -> insert^#(x, sort(y)) } TcT solves the upper component with certificate YES(O(1),O(n^1)). Sub-proof: ---------- We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict DPs: { sort^#(cons(x, y)) -> c_2(insert^#(x, sort(y)), sort^#(y)) } Weak Trs: { sort(nil()) -> nil() , sort(cons(x, y)) -> insert(x, sort(y)) , insert(x, nil()) -> cons(x, nil()) , insert(x, cons(v, w)) -> choose(x, cons(v, w), x, v) , choose(x, cons(v, w), y, 0()) -> cons(x, cons(v, w)) , choose(x, cons(v, w), 0(), s(z)) -> cons(v, insert(x, w)) , choose(x, cons(v, w), s(y), s(z)) -> choose(x, cons(v, w), y, z) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^1)) We use the processor 'Small Polynomial Path Order (PS,1-bounded)' to orient following rules strictly. DPs: { 1: sort^#(cons(x, y)) -> c_2(insert^#(x, sort(y)), sort^#(y)) } Sub-proof: ---------- The input was oriented with the instance of 'Small Polynomial Path Order (PS,1-bounded)' as induced by the safe mapping safe(sort) = {}, safe(nil) = {}, safe(cons) = {1, 2}, safe(insert) = {}, safe(choose) = {3, 4}, safe(0) = {}, safe(s) = {1}, safe(sort^#) = {}, safe(c_2) = {}, safe(insert^#) = {} and precedence sort > insert, insert > choose . Following symbols are considered recursive: {sort^#} The recursion depth is 1. Further, following argument filtering is employed: pi(sort) = [], pi(nil) = [], pi(cons) = [2], pi(insert) = [2], pi(choose) = [3, 4], pi(0) = [], pi(s) = [], pi(sort^#) = [1], pi(c_2) = [1, 2], pi(insert^#) = [] Usable defined function symbols are a subset of: {sort^#, insert^#} For your convenience, here are the satisfied ordering constraints: pi(sort^#(cons(x, y))) = sort^#(cons(; y);) > c_2(insert^#(), sort^#(y;);) = pi(c_2(insert^#(x, sort(y)), sort^#(y))) The strictly oriented rules are moved into the weak component. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Weak DPs: { sort^#(cons(x, y)) -> c_2(insert^#(x, sort(y)), sort^#(y)) } Weak Trs: { sort(nil()) -> nil() , sort(cons(x, y)) -> insert(x, sort(y)) , insert(x, nil()) -> cons(x, nil()) , insert(x, cons(v, w)) -> choose(x, cons(v, w), x, v) , choose(x, cons(v, w), y, 0()) -> cons(x, cons(v, w)) , choose(x, cons(v, w), 0(), s(z)) -> cons(v, insert(x, w)) , choose(x, cons(v, w), s(y), s(z)) -> choose(x, cons(v, w), y, z) } Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. { sort^#(cons(x, y)) -> c_2(insert^#(x, sort(y)), sort^#(y)) } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Weak Trs: { sort(nil()) -> nil() , sort(cons(x, y)) -> insert(x, sort(y)) , insert(x, nil()) -> cons(x, nil()) , insert(x, cons(v, w)) -> choose(x, cons(v, w), x, v) , choose(x, cons(v, w), y, 0()) -> cons(x, cons(v, w)) , choose(x, cons(v, w), 0(), s(z)) -> cons(v, insert(x, w)) , choose(x, cons(v, w), s(y), s(z)) -> choose(x, cons(v, w), y, z) } Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) No rule is usable, rules are removed from the input problem. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Rules: Empty Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) Empty rules are trivially bounded We return to the main proof. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict DPs: { insert^#(x, cons(v, w)) -> c_4(choose^#(x, cons(v, w), x, v)) , choose^#(x, cons(v, w), 0(), s(z)) -> c_6(insert^#(x, w)) , choose^#(x, cons(v, w), s(y), s(z)) -> c_7(choose^#(x, cons(v, w), y, z)) } Weak DPs: { sort^#(cons(x, y)) -> sort^#(y) , sort^#(cons(x, y)) -> insert^#(x, sort(y)) } Weak Trs: { sort(nil()) -> nil() , sort(cons(x, y)) -> insert(x, sort(y)) , insert(x, nil()) -> cons(x, nil()) , insert(x, cons(v, w)) -> choose(x, cons(v, w), x, v) , choose(x, cons(v, w), y, 0()) -> cons(x, cons(v, w)) , choose(x, cons(v, w), 0(), s(z)) -> cons(v, insert(x, w)) , choose(x, cons(v, w), s(y), s(z)) -> choose(x, cons(v, w), y, z) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^1)) We use the processor 'matrix interpretation of dimension 1' to orient following rules strictly. DPs: { 2: choose^#(x, cons(v, w), 0(), s(z)) -> c_6(insert^#(x, w)) , 4: sort^#(cons(x, y)) -> sort^#(y) , 5: sort^#(cons(x, y)) -> insert^#(x, sort(y)) } Trs: { sort(nil()) -> nil() , sort(cons(x, y)) -> insert(x, sort(y)) , insert(x, nil()) -> cons(x, nil()) , choose(x, cons(v, w), y, 0()) -> cons(x, cons(v, w)) } Sub-proof: ---------- The following argument positions are usable: Uargs(c_4) = {1}, Uargs(c_6) = {1}, Uargs(c_7) = {1} TcT has computed the following constructor-based matrix interpretation satisfying not(EDA). [sort](x1) = [3] x1 + [5] [nil] = [1] [cons](x1, x2) = [1] x1 + [1] x2 + [2] [insert](x1, x2) = [1] x1 + [1] x2 + [5] [choose](x1, x2, x3, x4) = [1] x1 + [1] x2 + [5] [0] = [4] [s](x1) = [1] x1 + [1] [sort^#](x1) = [4] x1 + [7] [insert^#](x1, x2) = [1] x2 + [0] [c_4](x1) = [1] x1 + [0] [choose^#](x1, x2, x3, x4) = [1] x2 + [0] [c_6](x1) = [1] x1 + [1] [c_7](x1) = [1] x1 + [0] The order satisfies the following ordering constraints: [sort(nil())] = [8] > [1] = [nil()] [sort(cons(x, y))] = [3] x + [3] y + [11] > [1] x + [3] y + [10] = [insert(x, sort(y))] [insert(x, nil())] = [1] x + [6] > [1] x + [3] = [cons(x, nil())] [insert(x, cons(v, w))] = [1] x + [1] v + [1] w + [7] >= [1] x + [1] v + [1] w + [7] = [choose(x, cons(v, w), x, v)] [choose(x, cons(v, w), y, 0())] = [1] x + [1] v + [1] w + [7] > [1] x + [1] v + [1] w + [4] = [cons(x, cons(v, w))] [choose(x, cons(v, w), 0(), s(z))] = [1] x + [1] v + [1] w + [7] >= [1] x + [1] v + [1] w + [7] = [cons(v, insert(x, w))] [choose(x, cons(v, w), s(y), s(z))] = [1] x + [1] v + [1] w + [7] >= [1] x + [1] v + [1] w + [7] = [choose(x, cons(v, w), y, z)] [sort^#(cons(x, y))] = [4] x + [4] y + [15] > [4] y + [7] = [sort^#(y)] [sort^#(cons(x, y))] = [4] x + [4] y + [15] > [3] y + [5] = [insert^#(x, sort(y))] [insert^#(x, cons(v, w))] = [1] v + [1] w + [2] >= [1] v + [1] w + [2] = [c_4(choose^#(x, cons(v, w), x, v))] [choose^#(x, cons(v, w), 0(), s(z))] = [1] v + [1] w + [2] > [1] w + [1] = [c_6(insert^#(x, w))] [choose^#(x, cons(v, w), s(y), s(z))] = [1] v + [1] w + [2] >= [1] v + [1] w + [2] = [c_7(choose^#(x, cons(v, w), y, z))] We return to the main proof. Consider the set of all dependency pairs : { 1: insert^#(x, cons(v, w)) -> c_4(choose^#(x, cons(v, w), x, v)) , 2: choose^#(x, cons(v, w), 0(), s(z)) -> c_6(insert^#(x, w)) , 3: choose^#(x, cons(v, w), s(y), s(z)) -> c_7(choose^#(x, cons(v, w), y, z)) , 4: sort^#(cons(x, y)) -> sort^#(y) , 5: sort^#(cons(x, y)) -> insert^#(x, sort(y)) } Processor 'matrix interpretation of dimension 1' induces the complexity certificate YES(?,O(n^1)) on application of dependency pairs {2,4,5}. These cover all (indirect) predecessors of dependency pairs {1,2,4,5}, their number of application is equally bounded. The dependency pairs are shifted into the weak component. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict DPs: { choose^#(x, cons(v, w), s(y), s(z)) -> c_7(choose^#(x, cons(v, w), y, z)) } Weak DPs: { sort^#(cons(x, y)) -> sort^#(y) , sort^#(cons(x, y)) -> insert^#(x, sort(y)) , insert^#(x, cons(v, w)) -> c_4(choose^#(x, cons(v, w), x, v)) , choose^#(x, cons(v, w), 0(), s(z)) -> c_6(insert^#(x, w)) } Weak Trs: { sort(nil()) -> nil() , sort(cons(x, y)) -> insert(x, sort(y)) , insert(x, nil()) -> cons(x, nil()) , insert(x, cons(v, w)) -> choose(x, cons(v, w), x, v) , choose(x, cons(v, w), y, 0()) -> cons(x, cons(v, w)) , choose(x, cons(v, w), 0(), s(z)) -> cons(v, insert(x, w)) , choose(x, cons(v, w), s(y), s(z)) -> choose(x, cons(v, w), y, z) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^1)) We use the processor 'matrix interpretation of dimension 2' to orient following rules strictly. DPs: { 1: choose^#(x, cons(v, w), s(y), s(z)) -> c_7(choose^#(x, cons(v, w), y, z)) , 2: sort^#(cons(x, y)) -> sort^#(y) , 3: sort^#(cons(x, y)) -> insert^#(x, sort(y)) , 4: insert^#(x, cons(v, w)) -> c_4(choose^#(x, cons(v, w), x, v)) , 5: choose^#(x, cons(v, w), 0(), s(z)) -> c_6(insert^#(x, w)) } Trs: { sort(nil()) -> nil() , insert(x, nil()) -> cons(x, nil()) , choose(x, cons(v, w), y, 0()) -> cons(x, cons(v, w)) } Sub-proof: ---------- The following argument positions are usable: Uargs(c_4) = {1}, Uargs(c_6) = {1}, Uargs(c_7) = {1} TcT has computed the following constructor-based matrix interpretation satisfying not(EDA) and not(IDA(1)). [sort](x1) = [0 4] x1 + [5] [0 2] [2] [nil] = [0] [0] [cons](x1, x2) = [0 0] x1 + [0 2] x2 + [3] [0 1] [0 1] [1] [insert](x1, x2) = [0 4] x1 + [0 2] x2 + [5] [0 1] [0 1] [2] [choose](x1, x2, x3, x4) = [0 4] x1 + [0 2] x2 + [5] [0 1] [0 1] [2] [0] = [5] [2] [s](x1) = [1 0] x1 + [1] [0 1] [4] [sort^#](x1) = [0 6] x1 + [7] [0 0] [5] [insert^#](x1, x2) = [0 3] x2 + [6] [0 0] [0] [c_4](x1) = [1 0] x1 + [0] [0 0] [0] [choose^#](x1, x2, x3, x4) = [1 1] x2 + [0 2] x4 + [3] [0 0] [0 0] [7] [c_6](x1) = [1 1] x1 + [0] [0 0] [0] [c_7](x1) = [1 1] x1 + [0] [0 0] [0] The order satisfies the following ordering constraints: [sort(nil())] = [5] [2] > [0] [0] = [nil()] [sort(cons(x, y))] = [0 4] x + [0 4] y + [9] [0 2] [0 2] [4] >= [0 4] x + [0 4] y + [9] [0 1] [0 2] [4] = [insert(x, sort(y))] [insert(x, nil())] = [0 4] x + [5] [0 1] [2] > [0 0] x + [3] [0 1] [1] = [cons(x, nil())] [insert(x, cons(v, w))] = [0 4] x + [0 2] v + [0 2] w + [7] [0 1] [0 1] [0 1] [3] >= [0 4] x + [0 2] v + [0 2] w + [7] [0 1] [0 1] [0 1] [3] = [choose(x, cons(v, w), x, v)] [choose(x, cons(v, w), y, 0())] = [0 4] x + [0 2] v + [0 2] w + [7] [0 1] [0 1] [0 1] [3] > [0 0] x + [0 2] v + [0 2] w + [5] [0 1] [0 1] [0 1] [2] = [cons(x, cons(v, w))] [choose(x, cons(v, w), 0(), s(z))] = [0 4] x + [0 2] v + [0 2] w + [7] [0 1] [0 1] [0 1] [3] >= [0 2] x + [0 0] v + [0 2] w + [7] [0 1] [0 1] [0 1] [3] = [cons(v, insert(x, w))] [choose(x, cons(v, w), s(y), s(z))] = [0 4] x + [0 2] v + [0 2] w + [7] [0 1] [0 1] [0 1] [3] >= [0 4] x + [0 2] v + [0 2] w + [7] [0 1] [0 1] [0 1] [3] = [choose(x, cons(v, w), y, z)] [sort^#(cons(x, y))] = [0 6] x + [0 6] y + [13] [0 0] [0 0] [5] > [0 6] y + [7] [0 0] [5] = [sort^#(y)] [sort^#(cons(x, y))] = [0 6] x + [0 6] y + [13] [0 0] [0 0] [5] > [0 6] y + [12] [0 0] [0] = [insert^#(x, sort(y))] [insert^#(x, cons(v, w))] = [0 3] v + [0 3] w + [9] [0 0] [0 0] [0] > [0 3] v + [0 3] w + [7] [0 0] [0 0] [0] = [c_4(choose^#(x, cons(v, w), x, v))] [choose^#(x, cons(v, w), 0(), s(z))] = [0 1] v + [0 3] w + [0 2] z + [15] [0 0] [0 0] [0 0] [7] > [0 3] w + [6] [0 0] [0] = [c_6(insert^#(x, w))] [choose^#(x, cons(v, w), s(y), s(z))] = [0 1] v + [0 3] w + [0 2] z + [15] [0 0] [0 0] [0 0] [7] > [0 1] v + [0 3] w + [0 2] z + [14] [0 0] [0 0] [0 0] [0] = [c_7(choose^#(x, cons(v, w), y, z))] The strictly oriented rules are moved into the weak component. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Weak DPs: { sort^#(cons(x, y)) -> sort^#(y) , sort^#(cons(x, y)) -> insert^#(x, sort(y)) , insert^#(x, cons(v, w)) -> c_4(choose^#(x, cons(v, w), x, v)) , choose^#(x, cons(v, w), 0(), s(z)) -> c_6(insert^#(x, w)) , choose^#(x, cons(v, w), s(y), s(z)) -> c_7(choose^#(x, cons(v, w), y, z)) } Weak Trs: { sort(nil()) -> nil() , sort(cons(x, y)) -> insert(x, sort(y)) , insert(x, nil()) -> cons(x, nil()) , insert(x, cons(v, w)) -> choose(x, cons(v, w), x, v) , choose(x, cons(v, w), y, 0()) -> cons(x, cons(v, w)) , choose(x, cons(v, w), 0(), s(z)) -> cons(v, insert(x, w)) , choose(x, cons(v, w), s(y), s(z)) -> choose(x, cons(v, w), y, z) } Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. { sort^#(cons(x, y)) -> sort^#(y) , sort^#(cons(x, y)) -> insert^#(x, sort(y)) , insert^#(x, cons(v, w)) -> c_4(choose^#(x, cons(v, w), x, v)) , choose^#(x, cons(v, w), 0(), s(z)) -> c_6(insert^#(x, w)) , choose^#(x, cons(v, w), s(y), s(z)) -> c_7(choose^#(x, cons(v, w), y, z)) } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Weak Trs: { sort(nil()) -> nil() , sort(cons(x, y)) -> insert(x, sort(y)) , insert(x, nil()) -> cons(x, nil()) , insert(x, cons(v, w)) -> choose(x, cons(v, w), x, v) , choose(x, cons(v, w), y, 0()) -> cons(x, cons(v, w)) , choose(x, cons(v, w), 0(), s(z)) -> cons(v, insert(x, w)) , choose(x, cons(v, w), s(y), s(z)) -> choose(x, cons(v, w), y, z) } Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) No rule is usable, rules are removed from the input problem. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Rules: Empty Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) Empty rules are trivially bounded Hurray, we answered YES(O(1),O(n^2))