(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
f(g(x)) → g(g(f(x)))
f(g(x)) → g(g(g(x)))
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
f(g(x)) → g(g(f(x)))
f(g(x)) → g(g(g(x)))
S is empty.
Rewrite Strategy: INNERMOST
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
Innermost TRS:
Rules:
f(g(x)) → g(g(f(x)))
f(g(x)) → g(g(g(x)))
Types:
f :: g → g
g :: g → g
hole_g1_0 :: g
gen_g2_0 :: Nat → g
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
f
(6) Obligation:
Innermost TRS:
Rules:
f(
g(
x)) →
g(
g(
f(
x)))
f(
g(
x)) →
g(
g(
g(
x)))
Types:
f :: g → g
g :: g → g
hole_g1_0 :: g
gen_g2_0 :: Nat → g
Generator Equations:
gen_g2_0(0) ⇔ hole_g1_0
gen_g2_0(+(x, 1)) ⇔ g(gen_g2_0(x))
The following defined symbols remain to be analysed:
f
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
f(
gen_g2_0(
+(
1,
n4_0))) →
*3_0, rt ∈ Ω(n4
0)
Induction Base:
f(gen_g2_0(+(1, 0)))
Induction Step:
f(gen_g2_0(+(1, +(n4_0, 1)))) →RΩ(1)
g(g(f(gen_g2_0(+(1, n4_0))))) →IH
g(g(*3_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
Innermost TRS:
Rules:
f(
g(
x)) →
g(
g(
f(
x)))
f(
g(
x)) →
g(
g(
g(
x)))
Types:
f :: g → g
g :: g → g
hole_g1_0 :: g
gen_g2_0 :: Nat → g
Lemmas:
f(gen_g2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_g2_0(0) ⇔ hole_g1_0
gen_g2_0(+(x, 1)) ⇔ g(gen_g2_0(x))
No more defined symbols left to analyse.
(10) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
f(gen_g2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
(11) BOUNDS(n^1, INF)
(12) Obligation:
Innermost TRS:
Rules:
f(
g(
x)) →
g(
g(
f(
x)))
f(
g(
x)) →
g(
g(
g(
x)))
Types:
f :: g → g
g :: g → g
hole_g1_0 :: g
gen_g2_0 :: Nat → g
Lemmas:
f(gen_g2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_g2_0(0) ⇔ hole_g1_0
gen_g2_0(+(x, 1)) ⇔ g(gen_g2_0(x))
No more defined symbols left to analyse.
(13) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
f(gen_g2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
(14) BOUNDS(n^1, INF)