*** 1 Progress [(?,O(n^4))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        +(x,#()) -> x
        +(x,+(y,z)) -> +(+(x,y),z)
        +(#(),x) -> x
        +(0(x),0(y)) -> 0(+(x,y))
        +(0(x),1(y)) -> 1(+(x,y))
        +(1(x),0(y)) -> 1(+(x,y))
        +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
        -(x,#()) -> x
        -(#(),x) -> #()
        -(0(x),0(y)) -> 0(-(x,y))
        -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
        -(1(x),0(y)) -> 1(-(x,y))
        -(1(x),1(y)) -> 0(-(x,y))
        0(#()) -> #()
        and(x,false()) -> false()
        and(x,true()) -> x
        bs(l(x)) -> true()
        bs(n(x,y,z)) -> and(and(ge(x,max(y)),ge(min(z),x)),and(bs(y),bs(z)))
        ge(x,#()) -> true()
        ge(#(),0(x)) -> ge(#(),x)
        ge(#(),1(x)) -> false()
        ge(0(x),0(y)) -> ge(x,y)
        ge(0(x),1(y)) -> not(ge(y,x))
        ge(1(x),0(y)) -> ge(x,y)
        ge(1(x),1(y)) -> ge(x,y)
        if(false(),x,y) -> y
        if(true(),x,y) -> x
        max(l(x)) -> x
        max(n(x,y,z)) -> max(z)
        min(l(x)) -> x
        min(n(x,y,z)) -> min(y)
        not(false()) -> true()
        not(true()) -> false()
        size(l(x)) -> 1(#())
        size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
        val(l(x)) -> x
        val(n(x,y,z)) -> x
        wb(l(x)) -> true()
        wb(n(x,y,z)) -> and(if(ge(size(y),size(z)),ge(1(#()),-(size(y),size(z))),ge(1(#()),-(size(z),size(y)))),and(wb(y),wb(z)))
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1} / {#/0,1/1,false/0,l/1,n/3,true/0}
      Obligation:
        Innermost
        basic terms: {+,-,0,and,bs,ge,if,max,min,not,size,val,wb}/{#,1,false,l,n,true}
    Applied Processor:
      DependencyPairs {dpKind_ = DT}
    Proof:
      We add the following dependency tuples:
      
      Strict DPs
        +#(x,#()) -> c_1()
        +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y))
        +#(#(),x) -> c_3()
        +#(0(x),0(y)) -> c_4(0#(+(x,y)),+#(x,y))
        +#(0(x),1(y)) -> c_5(+#(x,y))
        +#(1(x),0(y)) -> c_6(+#(x,y))
        +#(1(x),1(y)) -> c_7(0#(+(+(x,y),1(#()))),+#(+(x,y),1(#())),+#(x,y))
        -#(x,#()) -> c_8()
        -#(#(),x) -> c_9()
        -#(0(x),0(y)) -> c_10(0#(-(x,y)),-#(x,y))
        -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y))
        -#(1(x),0(y)) -> c_12(-#(x,y))
        -#(1(x),1(y)) -> c_13(0#(-(x,y)),-#(x,y))
        0#(#()) -> c_14()
        and#(x,false()) -> c_15()
        and#(x,true()) -> c_16()
        bs#(l(x)) -> c_17()
        bs#(n(x,y,z)) -> c_18(and#(and(ge(x,max(y)),ge(min(z),x)),and(bs(y),bs(z))),and#(ge(x,max(y)),ge(min(z),x)),ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),and#(bs(y),bs(z)),bs#(y),bs#(z))
        ge#(x,#()) -> c_19()
        ge#(#(),0(x)) -> c_20(ge#(#(),x))
        ge#(#(),1(x)) -> c_21()
        ge#(0(x),0(y)) -> c_22(ge#(x,y))
        ge#(0(x),1(y)) -> c_23(not#(ge(y,x)),ge#(y,x))
        ge#(1(x),0(y)) -> c_24(ge#(x,y))
        ge#(1(x),1(y)) -> c_25(ge#(x,y))
        if#(false(),x,y) -> c_26()
        if#(true(),x,y) -> c_27()
        max#(l(x)) -> c_28()
        max#(n(x,y,z)) -> c_29(max#(z))
        min#(l(x)) -> c_30()
        min#(n(x,y,z)) -> c_31(min#(y))
        not#(false()) -> c_32()
        not#(true()) -> c_33()
        size#(l(x)) -> c_34()
        size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y))
        val#(l(x)) -> c_36()
        val#(n(x,y,z)) -> c_37()
        wb#(l(x)) -> c_38()
        wb#(n(x,y,z)) -> c_39(and#(if(ge(size(y),size(z)),ge(1(#()),-(size(y),size(z))),ge(1(#()),-(size(z),size(y)))),and(wb(y),wb(z))),if#(ge(size(y),size(z)),ge(1(#()),-(size(y),size(z))),ge(1(#()),-(size(z),size(y)))),ge#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(y),size(z))),-#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(z),size(y))),-#(size(z),size(y)),size#(z),size#(y),and#(wb(y),wb(z)),wb#(y),wb#(z))
      Weak DPs
        
      
      and mark the set of starting terms.
*** 1.1 Progress [(?,O(n^4))]  ***
    Considered Problem:
      Strict DP Rules:
        +#(x,#()) -> c_1()
        +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y))
        +#(#(),x) -> c_3()
        +#(0(x),0(y)) -> c_4(0#(+(x,y)),+#(x,y))
        +#(0(x),1(y)) -> c_5(+#(x,y))
        +#(1(x),0(y)) -> c_6(+#(x,y))
        +#(1(x),1(y)) -> c_7(0#(+(+(x,y),1(#()))),+#(+(x,y),1(#())),+#(x,y))
        -#(x,#()) -> c_8()
        -#(#(),x) -> c_9()
        -#(0(x),0(y)) -> c_10(0#(-(x,y)),-#(x,y))
        -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y))
        -#(1(x),0(y)) -> c_12(-#(x,y))
        -#(1(x),1(y)) -> c_13(0#(-(x,y)),-#(x,y))
        0#(#()) -> c_14()
        and#(x,false()) -> c_15()
        and#(x,true()) -> c_16()
        bs#(l(x)) -> c_17()
        bs#(n(x,y,z)) -> c_18(and#(and(ge(x,max(y)),ge(min(z),x)),and(bs(y),bs(z))),and#(ge(x,max(y)),ge(min(z),x)),ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),and#(bs(y),bs(z)),bs#(y),bs#(z))
        ge#(x,#()) -> c_19()
        ge#(#(),0(x)) -> c_20(ge#(#(),x))
        ge#(#(),1(x)) -> c_21()
        ge#(0(x),0(y)) -> c_22(ge#(x,y))
        ge#(0(x),1(y)) -> c_23(not#(ge(y,x)),ge#(y,x))
        ge#(1(x),0(y)) -> c_24(ge#(x,y))
        ge#(1(x),1(y)) -> c_25(ge#(x,y))
        if#(false(),x,y) -> c_26()
        if#(true(),x,y) -> c_27()
        max#(l(x)) -> c_28()
        max#(n(x,y,z)) -> c_29(max#(z))
        min#(l(x)) -> c_30()
        min#(n(x,y,z)) -> c_31(min#(y))
        not#(false()) -> c_32()
        not#(true()) -> c_33()
        size#(l(x)) -> c_34()
        size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y))
        val#(l(x)) -> c_36()
        val#(n(x,y,z)) -> c_37()
        wb#(l(x)) -> c_38()
        wb#(n(x,y,z)) -> c_39(and#(if(ge(size(y),size(z)),ge(1(#()),-(size(y),size(z))),ge(1(#()),-(size(z),size(y)))),and(wb(y),wb(z))),if#(ge(size(y),size(z)),ge(1(#()),-(size(y),size(z))),ge(1(#()),-(size(z),size(y)))),ge#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(y),size(z))),-#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(z),size(y))),-#(size(z),size(y)),size#(z),size#(y),and#(wb(y),wb(z)),wb#(y),wb#(z))
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        +(x,#()) -> x
        +(x,+(y,z)) -> +(+(x,y),z)
        +(#(),x) -> x
        +(0(x),0(y)) -> 0(+(x,y))
        +(0(x),1(y)) -> 1(+(x,y))
        +(1(x),0(y)) -> 1(+(x,y))
        +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
        -(x,#()) -> x
        -(#(),x) -> #()
        -(0(x),0(y)) -> 0(-(x,y))
        -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
        -(1(x),0(y)) -> 1(-(x,y))
        -(1(x),1(y)) -> 0(-(x,y))
        0(#()) -> #()
        and(x,false()) -> false()
        and(x,true()) -> x
        bs(l(x)) -> true()
        bs(n(x,y,z)) -> and(and(ge(x,max(y)),ge(min(z),x)),and(bs(y),bs(z)))
        ge(x,#()) -> true()
        ge(#(),0(x)) -> ge(#(),x)
        ge(#(),1(x)) -> false()
        ge(0(x),0(y)) -> ge(x,y)
        ge(0(x),1(y)) -> not(ge(y,x))
        ge(1(x),0(y)) -> ge(x,y)
        ge(1(x),1(y)) -> ge(x,y)
        if(false(),x,y) -> y
        if(true(),x,y) -> x
        max(l(x)) -> x
        max(n(x,y,z)) -> max(z)
        min(l(x)) -> x
        min(n(x,y,z)) -> min(y)
        not(false()) -> true()
        not(true()) -> false()
        size(l(x)) -> 1(#())
        size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
        val(l(x)) -> x
        val(n(x,y,z)) -> x
        wb(l(x)) -> true()
        wb(n(x,y,z)) -> and(if(ge(size(y),size(z)),ge(1(#()),-(size(y),size(z))),ge(1(#()),-(size(z),size(y)))),and(wb(y),wb(z)))
      Signature:
        {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/2,c_5/1,c_6/1,c_7/3,c_8/0,c_9/0,c_10/2,c_11/2,c_12/1,c_13/2,c_14/0,c_15/0,c_16/0,c_17/0,c_18/9,c_19/0,c_20/1,c_21/0,c_22/1,c_23/2,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/4,c_36/0,c_37/0,c_38/0,c_39/16}
      Obligation:
        Innermost
        basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
    Applied Processor:
      UsableRules
    Proof:
      We replace rewrite rules by usable rules:
        +(x,#()) -> x
        +(x,+(y,z)) -> +(+(x,y),z)
        +(#(),x) -> x
        +(0(x),0(y)) -> 0(+(x,y))
        +(0(x),1(y)) -> 1(+(x,y))
        +(1(x),0(y)) -> 1(+(x,y))
        +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
        -(x,#()) -> x
        -(#(),x) -> #()
        -(0(x),0(y)) -> 0(-(x,y))
        -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
        -(1(x),0(y)) -> 1(-(x,y))
        -(1(x),1(y)) -> 0(-(x,y))
        0(#()) -> #()
        and(x,false()) -> false()
        and(x,true()) -> x
        bs(l(x)) -> true()
        bs(n(x,y,z)) -> and(and(ge(x,max(y)),ge(min(z),x)),and(bs(y),bs(z)))
        ge(x,#()) -> true()
        ge(#(),0(x)) -> ge(#(),x)
        ge(#(),1(x)) -> false()
        ge(0(x),0(y)) -> ge(x,y)
        ge(0(x),1(y)) -> not(ge(y,x))
        ge(1(x),0(y)) -> ge(x,y)
        ge(1(x),1(y)) -> ge(x,y)
        if(false(),x,y) -> y
        if(true(),x,y) -> x
        max(l(x)) -> x
        max(n(x,y,z)) -> max(z)
        min(l(x)) -> x
        min(n(x,y,z)) -> min(y)
        not(false()) -> true()
        not(true()) -> false()
        size(l(x)) -> 1(#())
        size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
        wb(l(x)) -> true()
        wb(n(x,y,z)) -> and(if(ge(size(y),size(z)),ge(1(#()),-(size(y),size(z))),ge(1(#()),-(size(z),size(y)))),and(wb(y),wb(z)))
        +#(x,#()) -> c_1()
        +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y))
        +#(#(),x) -> c_3()
        +#(0(x),0(y)) -> c_4(0#(+(x,y)),+#(x,y))
        +#(0(x),1(y)) -> c_5(+#(x,y))
        +#(1(x),0(y)) -> c_6(+#(x,y))
        +#(1(x),1(y)) -> c_7(0#(+(+(x,y),1(#()))),+#(+(x,y),1(#())),+#(x,y))
        -#(x,#()) -> c_8()
        -#(#(),x) -> c_9()
        -#(0(x),0(y)) -> c_10(0#(-(x,y)),-#(x,y))
        -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y))
        -#(1(x),0(y)) -> c_12(-#(x,y))
        -#(1(x),1(y)) -> c_13(0#(-(x,y)),-#(x,y))
        0#(#()) -> c_14()
        and#(x,false()) -> c_15()
        and#(x,true()) -> c_16()
        bs#(l(x)) -> c_17()
        bs#(n(x,y,z)) -> c_18(and#(and(ge(x,max(y)),ge(min(z),x)),and(bs(y),bs(z))),and#(ge(x,max(y)),ge(min(z),x)),ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),and#(bs(y),bs(z)),bs#(y),bs#(z))
        ge#(x,#()) -> c_19()
        ge#(#(),0(x)) -> c_20(ge#(#(),x))
        ge#(#(),1(x)) -> c_21()
        ge#(0(x),0(y)) -> c_22(ge#(x,y))
        ge#(0(x),1(y)) -> c_23(not#(ge(y,x)),ge#(y,x))
        ge#(1(x),0(y)) -> c_24(ge#(x,y))
        ge#(1(x),1(y)) -> c_25(ge#(x,y))
        if#(false(),x,y) -> c_26()
        if#(true(),x,y) -> c_27()
        max#(l(x)) -> c_28()
        max#(n(x,y,z)) -> c_29(max#(z))
        min#(l(x)) -> c_30()
        min#(n(x,y,z)) -> c_31(min#(y))
        not#(false()) -> c_32()
        not#(true()) -> c_33()
        size#(l(x)) -> c_34()
        size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y))
        val#(l(x)) -> c_36()
        val#(n(x,y,z)) -> c_37()
        wb#(l(x)) -> c_38()
        wb#(n(x,y,z)) -> c_39(and#(if(ge(size(y),size(z)),ge(1(#()),-(size(y),size(z))),ge(1(#()),-(size(z),size(y)))),and(wb(y),wb(z))),if#(ge(size(y),size(z)),ge(1(#()),-(size(y),size(z))),ge(1(#()),-(size(z),size(y)))),ge#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(y),size(z))),-#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(z),size(y))),-#(size(z),size(y)),size#(z),size#(y),and#(wb(y),wb(z)),wb#(y),wb#(z))
*** 1.1.1 Progress [(?,O(n^4))]  ***
    Considered Problem:
      Strict DP Rules:
        +#(x,#()) -> c_1()
        +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y))
        +#(#(),x) -> c_3()
        +#(0(x),0(y)) -> c_4(0#(+(x,y)),+#(x,y))
        +#(0(x),1(y)) -> c_5(+#(x,y))
        +#(1(x),0(y)) -> c_6(+#(x,y))
        +#(1(x),1(y)) -> c_7(0#(+(+(x,y),1(#()))),+#(+(x,y),1(#())),+#(x,y))
        -#(x,#()) -> c_8()
        -#(#(),x) -> c_9()
        -#(0(x),0(y)) -> c_10(0#(-(x,y)),-#(x,y))
        -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y))
        -#(1(x),0(y)) -> c_12(-#(x,y))
        -#(1(x),1(y)) -> c_13(0#(-(x,y)),-#(x,y))
        0#(#()) -> c_14()
        and#(x,false()) -> c_15()
        and#(x,true()) -> c_16()
        bs#(l(x)) -> c_17()
        bs#(n(x,y,z)) -> c_18(and#(and(ge(x,max(y)),ge(min(z),x)),and(bs(y),bs(z))),and#(ge(x,max(y)),ge(min(z),x)),ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),and#(bs(y),bs(z)),bs#(y),bs#(z))
        ge#(x,#()) -> c_19()
        ge#(#(),0(x)) -> c_20(ge#(#(),x))
        ge#(#(),1(x)) -> c_21()
        ge#(0(x),0(y)) -> c_22(ge#(x,y))
        ge#(0(x),1(y)) -> c_23(not#(ge(y,x)),ge#(y,x))
        ge#(1(x),0(y)) -> c_24(ge#(x,y))
        ge#(1(x),1(y)) -> c_25(ge#(x,y))
        if#(false(),x,y) -> c_26()
        if#(true(),x,y) -> c_27()
        max#(l(x)) -> c_28()
        max#(n(x,y,z)) -> c_29(max#(z))
        min#(l(x)) -> c_30()
        min#(n(x,y,z)) -> c_31(min#(y))
        not#(false()) -> c_32()
        not#(true()) -> c_33()
        size#(l(x)) -> c_34()
        size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y))
        val#(l(x)) -> c_36()
        val#(n(x,y,z)) -> c_37()
        wb#(l(x)) -> c_38()
        wb#(n(x,y,z)) -> c_39(and#(if(ge(size(y),size(z)),ge(1(#()),-(size(y),size(z))),ge(1(#()),-(size(z),size(y)))),and(wb(y),wb(z))),if#(ge(size(y),size(z)),ge(1(#()),-(size(y),size(z))),ge(1(#()),-(size(z),size(y)))),ge#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(y),size(z))),-#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(z),size(y))),-#(size(z),size(y)),size#(z),size#(y),and#(wb(y),wb(z)),wb#(y),wb#(z))
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        +(x,#()) -> x
        +(x,+(y,z)) -> +(+(x,y),z)
        +(#(),x) -> x
        +(0(x),0(y)) -> 0(+(x,y))
        +(0(x),1(y)) -> 1(+(x,y))
        +(1(x),0(y)) -> 1(+(x,y))
        +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
        -(x,#()) -> x
        -(#(),x) -> #()
        -(0(x),0(y)) -> 0(-(x,y))
        -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
        -(1(x),0(y)) -> 1(-(x,y))
        -(1(x),1(y)) -> 0(-(x,y))
        0(#()) -> #()
        and(x,false()) -> false()
        and(x,true()) -> x
        bs(l(x)) -> true()
        bs(n(x,y,z)) -> and(and(ge(x,max(y)),ge(min(z),x)),and(bs(y),bs(z)))
        ge(x,#()) -> true()
        ge(#(),0(x)) -> ge(#(),x)
        ge(#(),1(x)) -> false()
        ge(0(x),0(y)) -> ge(x,y)
        ge(0(x),1(y)) -> not(ge(y,x))
        ge(1(x),0(y)) -> ge(x,y)
        ge(1(x),1(y)) -> ge(x,y)
        if(false(),x,y) -> y
        if(true(),x,y) -> x
        max(l(x)) -> x
        max(n(x,y,z)) -> max(z)
        min(l(x)) -> x
        min(n(x,y,z)) -> min(y)
        not(false()) -> true()
        not(true()) -> false()
        size(l(x)) -> 1(#())
        size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
        wb(l(x)) -> true()
        wb(n(x,y,z)) -> and(if(ge(size(y),size(z)),ge(1(#()),-(size(y),size(z))),ge(1(#()),-(size(z),size(y)))),and(wb(y),wb(z)))
      Signature:
        {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/2,c_5/1,c_6/1,c_7/3,c_8/0,c_9/0,c_10/2,c_11/2,c_12/1,c_13/2,c_14/0,c_15/0,c_16/0,c_17/0,c_18/9,c_19/0,c_20/1,c_21/0,c_22/1,c_23/2,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/4,c_36/0,c_37/0,c_38/0,c_39/16}
      Obligation:
        Innermost
        basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
    Applied Processor:
      PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    Proof:
      We estimate the number of application of
        {1,3,8,9,14,15,16,17,19,21,26,27,28,30,32,33,34,36,37,38}
      by application of
        Pre({1,3,8,9,14,15,16,17,19,21,26,27,28,30,32,33,34,36,37,38}) = {2,4,5,6,7,10,11,12,13,18,20,22,23,24,25,29,31,35,39}.
      Here rules are labelled as follows:
        1:  +#(x,#()) -> c_1()                           
        2:  +#(x,+(y,z)) -> c_2(+#(+(x,y),z)             
                               ,+#(x,y))                 
        3:  +#(#(),x) -> c_3()                           
        4:  +#(0(x),0(y)) -> c_4(0#(+(x,y))              
                                ,+#(x,y))                
        5:  +#(0(x),1(y)) -> c_5(+#(x,y))                
        6:  +#(1(x),0(y)) -> c_6(+#(x,y))                
        7:  +#(1(x),1(y)) -> c_7(0#(+(+(x,y)             
                                     ,1(#())))           
                                ,+#(+(x,y),1(#()))       
                                ,+#(x,y))                
        8:  -#(x,#()) -> c_8()                           
        9:  -#(#(),x) -> c_9()                           
        10: -#(0(x),0(y)) -> c_10(0#(-(x,y))             
                                 ,-#(x,y))               
        11: -#(0(x),1(y)) -> c_11(-#(-(x,y)              
                                    ,1(#()))             
                                 ,-#(x,y))               
        12: -#(1(x),0(y)) -> c_12(-#(x,y))               
        13: -#(1(x),1(y)) -> c_13(0#(-(x,y))             
                                 ,-#(x,y))               
        14: 0#(#()) -> c_14()                            
        15: and#(x,false()) -> c_15()                    
        16: and#(x,true()) -> c_16()                     
        17: bs#(l(x)) -> c_17()                          
        18: bs#(n(x,y,z)) ->                             
              c_18(and#(and(ge(x,max(y))                 
                           ,ge(min(z),x))                
                       ,and(bs(y),bs(z)))                
                  ,and#(ge(x,max(y)),ge(min(z),x))       
                  ,ge#(x,max(y))                         
                  ,max#(y)                               
                  ,ge#(min(z),x)                         
                  ,min#(z)                               
                  ,and#(bs(y),bs(z))                     
                  ,bs#(y)                                
                  ,bs#(z))                               
        19: ge#(x,#()) -> c_19()                         
        20: ge#(#(),0(x)) -> c_20(ge#(#()                
                                     ,x))                
        21: ge#(#(),1(x)) -> c_21()                      
        22: ge#(0(x),0(y)) -> c_22(ge#(x,y))             
        23: ge#(0(x),1(y)) -> c_23(not#(ge(y             
                                          ,x))           
                                  ,ge#(y,x))             
        24: ge#(1(x),0(y)) -> c_24(ge#(x,y))             
        25: ge#(1(x),1(y)) -> c_25(ge#(x,y))             
        26: if#(false(),x,y) -> c_26()                   
        27: if#(true(),x,y) -> c_27()                    
        28: max#(l(x)) -> c_28()                         
        29: max#(n(x,y,z)) -> c_29(max#(z))              
        30: min#(l(x)) -> c_30()                         
        31: min#(n(x,y,z)) -> c_31(min#(y))              
        32: not#(false()) -> c_32()                      
        33: not#(true()) -> c_33()                       
        34: size#(l(x)) -> c_34()                        
        35: size#(n(x,y,z)) ->                           
              c_35(+#(+(size(x),size(y))                 
                     ,1(#()))                            
                  ,+#(size(x),size(y))                   
                  ,size#(x)                              
                  ,size#(y))                             
        36: val#(l(x)) -> c_36()                         
        37: val#(n(x,y,z)) -> c_37()                     
        38: wb#(l(x)) -> c_38()                          
        39: wb#(n(x,y,z)) ->                             
              c_39(and#(if(ge(size(y),size(z))           
                          ,ge(1(#()),-(size(y),size(z))) 
                          ,ge(1(#()),-(size(z),size(y))))
                       ,and(wb(y),wb(z)))                
                  ,if#(ge(size(y),size(z))               
                      ,ge(1(#()),-(size(y),size(z)))     
                      ,ge(1(#()),-(size(z),size(y))))    
                  ,ge#(size(y),size(z))                  
                  ,size#(y)                              
                  ,size#(z)                              
                  ,ge#(1(#()),-(size(y),size(z)))        
                  ,-#(size(y),size(z))                   
                  ,size#(y)                              
                  ,size#(z)                              
                  ,ge#(1(#()),-(size(z),size(y)))        
                  ,-#(size(z),size(y))                   
                  ,size#(z)                              
                  ,size#(y)                              
                  ,and#(wb(y),wb(z))                     
                  ,wb#(y)                                
                  ,wb#(z))                               
*** 1.1.1.1 Progress [(?,O(n^4))]  ***
    Considered Problem:
      Strict DP Rules:
        +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y))
        +#(0(x),0(y)) -> c_4(0#(+(x,y)),+#(x,y))
        +#(0(x),1(y)) -> c_5(+#(x,y))
        +#(1(x),0(y)) -> c_6(+#(x,y))
        +#(1(x),1(y)) -> c_7(0#(+(+(x,y),1(#()))),+#(+(x,y),1(#())),+#(x,y))
        -#(0(x),0(y)) -> c_10(0#(-(x,y)),-#(x,y))
        -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y))
        -#(1(x),0(y)) -> c_12(-#(x,y))
        -#(1(x),1(y)) -> c_13(0#(-(x,y)),-#(x,y))
        bs#(n(x,y,z)) -> c_18(and#(and(ge(x,max(y)),ge(min(z),x)),and(bs(y),bs(z))),and#(ge(x,max(y)),ge(min(z),x)),ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),and#(bs(y),bs(z)),bs#(y),bs#(z))
        ge#(#(),0(x)) -> c_20(ge#(#(),x))
        ge#(0(x),0(y)) -> c_22(ge#(x,y))
        ge#(0(x),1(y)) -> c_23(not#(ge(y,x)),ge#(y,x))
        ge#(1(x),0(y)) -> c_24(ge#(x,y))
        ge#(1(x),1(y)) -> c_25(ge#(x,y))
        max#(n(x,y,z)) -> c_29(max#(z))
        min#(n(x,y,z)) -> c_31(min#(y))
        size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y))
        wb#(n(x,y,z)) -> c_39(and#(if(ge(size(y),size(z)),ge(1(#()),-(size(y),size(z))),ge(1(#()),-(size(z),size(y)))),and(wb(y),wb(z))),if#(ge(size(y),size(z)),ge(1(#()),-(size(y),size(z))),ge(1(#()),-(size(z),size(y)))),ge#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(y),size(z))),-#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(z),size(y))),-#(size(z),size(y)),size#(z),size#(y),and#(wb(y),wb(z)),wb#(y),wb#(z))
      Strict TRS Rules:
        
      Weak DP Rules:
        +#(x,#()) -> c_1()
        +#(#(),x) -> c_3()
        -#(x,#()) -> c_8()
        -#(#(),x) -> c_9()
        0#(#()) -> c_14()
        and#(x,false()) -> c_15()
        and#(x,true()) -> c_16()
        bs#(l(x)) -> c_17()
        ge#(x,#()) -> c_19()
        ge#(#(),1(x)) -> c_21()
        if#(false(),x,y) -> c_26()
        if#(true(),x,y) -> c_27()
        max#(l(x)) -> c_28()
        min#(l(x)) -> c_30()
        not#(false()) -> c_32()
        not#(true()) -> c_33()
        size#(l(x)) -> c_34()
        val#(l(x)) -> c_36()
        val#(n(x,y,z)) -> c_37()
        wb#(l(x)) -> c_38()
      Weak TRS Rules:
        +(x,#()) -> x
        +(x,+(y,z)) -> +(+(x,y),z)
        +(#(),x) -> x
        +(0(x),0(y)) -> 0(+(x,y))
        +(0(x),1(y)) -> 1(+(x,y))
        +(1(x),0(y)) -> 1(+(x,y))
        +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
        -(x,#()) -> x
        -(#(),x) -> #()
        -(0(x),0(y)) -> 0(-(x,y))
        -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
        -(1(x),0(y)) -> 1(-(x,y))
        -(1(x),1(y)) -> 0(-(x,y))
        0(#()) -> #()
        and(x,false()) -> false()
        and(x,true()) -> x
        bs(l(x)) -> true()
        bs(n(x,y,z)) -> and(and(ge(x,max(y)),ge(min(z),x)),and(bs(y),bs(z)))
        ge(x,#()) -> true()
        ge(#(),0(x)) -> ge(#(),x)
        ge(#(),1(x)) -> false()
        ge(0(x),0(y)) -> ge(x,y)
        ge(0(x),1(y)) -> not(ge(y,x))
        ge(1(x),0(y)) -> ge(x,y)
        ge(1(x),1(y)) -> ge(x,y)
        if(false(),x,y) -> y
        if(true(),x,y) -> x
        max(l(x)) -> x
        max(n(x,y,z)) -> max(z)
        min(l(x)) -> x
        min(n(x,y,z)) -> min(y)
        not(false()) -> true()
        not(true()) -> false()
        size(l(x)) -> 1(#())
        size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
        wb(l(x)) -> true()
        wb(n(x,y,z)) -> and(if(ge(size(y),size(z)),ge(1(#()),-(size(y),size(z))),ge(1(#()),-(size(z),size(y)))),and(wb(y),wb(z)))
      Signature:
        {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/2,c_5/1,c_6/1,c_7/3,c_8/0,c_9/0,c_10/2,c_11/2,c_12/1,c_13/2,c_14/0,c_15/0,c_16/0,c_17/0,c_18/9,c_19/0,c_20/1,c_21/0,c_22/1,c_23/2,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/4,c_36/0,c_37/0,c_38/0,c_39/16}
      Obligation:
        Innermost
        basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
    Applied Processor:
      RemoveWeakSuffixes
    Proof:
      Consider the dependency graph
        1:S:+#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y))
           -->_2 +#(1(x),1(y)) -> c_7(0#(+(+(x,y),1(#()))),+#(+(x,y),1(#())),+#(x,y)):5
           -->_1 +#(1(x),1(y)) -> c_7(0#(+(+(x,y),1(#()))),+#(+(x,y),1(#())),+#(x,y)):5
           -->_2 +#(1(x),0(y)) -> c_6(+#(x,y)):4
           -->_1 +#(1(x),0(y)) -> c_6(+#(x,y)):4
           -->_2 +#(0(x),1(y)) -> c_5(+#(x,y)):3
           -->_1 +#(0(x),1(y)) -> c_5(+#(x,y)):3
           -->_2 +#(0(x),0(y)) -> c_4(0#(+(x,y)),+#(x,y)):2
           -->_1 +#(0(x),0(y)) -> c_4(0#(+(x,y)),+#(x,y)):2
           -->_2 +#(#(),x) -> c_3():21
           -->_1 +#(#(),x) -> c_3():21
           -->_2 +#(x,#()) -> c_1():20
           -->_1 +#(x,#()) -> c_1():20
           -->_2 +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y)):1
           -->_1 +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y)):1
        
        2:S:+#(0(x),0(y)) -> c_4(0#(+(x,y)),+#(x,y))
           -->_2 +#(1(x),1(y)) -> c_7(0#(+(+(x,y),1(#()))),+#(+(x,y),1(#())),+#(x,y)):5
           -->_2 +#(1(x),0(y)) -> c_6(+#(x,y)):4
           -->_2 +#(0(x),1(y)) -> c_5(+#(x,y)):3
           -->_1 0#(#()) -> c_14():24
           -->_2 +#(#(),x) -> c_3():21
           -->_2 +#(x,#()) -> c_1():20
           -->_2 +#(0(x),0(y)) -> c_4(0#(+(x,y)),+#(x,y)):2
           -->_2 +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y)):1
        
        3:S:+#(0(x),1(y)) -> c_5(+#(x,y))
           -->_1 +#(1(x),1(y)) -> c_7(0#(+(+(x,y),1(#()))),+#(+(x,y),1(#())),+#(x,y)):5
           -->_1 +#(1(x),0(y)) -> c_6(+#(x,y)):4
           -->_1 +#(#(),x) -> c_3():21
           -->_1 +#(x,#()) -> c_1():20
           -->_1 +#(0(x),1(y)) -> c_5(+#(x,y)):3
           -->_1 +#(0(x),0(y)) -> c_4(0#(+(x,y)),+#(x,y)):2
           -->_1 +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y)):1
        
        4:S:+#(1(x),0(y)) -> c_6(+#(x,y))
           -->_1 +#(1(x),1(y)) -> c_7(0#(+(+(x,y),1(#()))),+#(+(x,y),1(#())),+#(x,y)):5
           -->_1 +#(#(),x) -> c_3():21
           -->_1 +#(x,#()) -> c_1():20
           -->_1 +#(1(x),0(y)) -> c_6(+#(x,y)):4
           -->_1 +#(0(x),1(y)) -> c_5(+#(x,y)):3
           -->_1 +#(0(x),0(y)) -> c_4(0#(+(x,y)),+#(x,y)):2
           -->_1 +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y)):1
        
        5:S:+#(1(x),1(y)) -> c_7(0#(+(+(x,y),1(#()))),+#(+(x,y),1(#())),+#(x,y))
           -->_1 0#(#()) -> c_14():24
           -->_3 +#(#(),x) -> c_3():21
           -->_2 +#(#(),x) -> c_3():21
           -->_3 +#(x,#()) -> c_1():20
           -->_3 +#(1(x),1(y)) -> c_7(0#(+(+(x,y),1(#()))),+#(+(x,y),1(#())),+#(x,y)):5
           -->_2 +#(1(x),1(y)) -> c_7(0#(+(+(x,y),1(#()))),+#(+(x,y),1(#())),+#(x,y)):5
           -->_3 +#(1(x),0(y)) -> c_6(+#(x,y)):4
           -->_3 +#(0(x),1(y)) -> c_5(+#(x,y)):3
           -->_2 +#(0(x),1(y)) -> c_5(+#(x,y)):3
           -->_3 +#(0(x),0(y)) -> c_4(0#(+(x,y)),+#(x,y)):2
           -->_3 +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y)):1
        
        6:S:-#(0(x),0(y)) -> c_10(0#(-(x,y)),-#(x,y))
           -->_2 -#(1(x),1(y)) -> c_13(0#(-(x,y)),-#(x,y)):9
           -->_2 -#(1(x),0(y)) -> c_12(-#(x,y)):8
           -->_2 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):7
           -->_1 0#(#()) -> c_14():24
           -->_2 -#(#(),x) -> c_9():23
           -->_2 -#(x,#()) -> c_8():22
           -->_2 -#(0(x),0(y)) -> c_10(0#(-(x,y)),-#(x,y)):6
        
        7:S:-#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y))
           -->_2 -#(1(x),1(y)) -> c_13(0#(-(x,y)),-#(x,y)):9
           -->_1 -#(1(x),1(y)) -> c_13(0#(-(x,y)),-#(x,y)):9
           -->_2 -#(1(x),0(y)) -> c_12(-#(x,y)):8
           -->_2 -#(#(),x) -> c_9():23
           -->_1 -#(#(),x) -> c_9():23
           -->_2 -#(x,#()) -> c_8():22
           -->_2 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):7
           -->_1 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):7
           -->_2 -#(0(x),0(y)) -> c_10(0#(-(x,y)),-#(x,y)):6
        
        8:S:-#(1(x),0(y)) -> c_12(-#(x,y))
           -->_1 -#(1(x),1(y)) -> c_13(0#(-(x,y)),-#(x,y)):9
           -->_1 -#(#(),x) -> c_9():23
           -->_1 -#(x,#()) -> c_8():22
           -->_1 -#(1(x),0(y)) -> c_12(-#(x,y)):8
           -->_1 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):7
           -->_1 -#(0(x),0(y)) -> c_10(0#(-(x,y)),-#(x,y)):6
        
        9:S:-#(1(x),1(y)) -> c_13(0#(-(x,y)),-#(x,y))
           -->_1 0#(#()) -> c_14():24
           -->_2 -#(#(),x) -> c_9():23
           -->_2 -#(x,#()) -> c_8():22
           -->_2 -#(1(x),1(y)) -> c_13(0#(-(x,y)),-#(x,y)):9
           -->_2 -#(1(x),0(y)) -> c_12(-#(x,y)):8
           -->_2 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):7
           -->_2 -#(0(x),0(y)) -> c_10(0#(-(x,y)),-#(x,y)):6
        
        10:S:bs#(n(x,y,z)) -> c_18(and#(and(ge(x,max(y)),ge(min(z),x)),and(bs(y),bs(z))),and#(ge(x,max(y)),ge(min(z),x)),ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),and#(bs(y),bs(z)),bs#(y),bs#(z))
           -->_6 min#(n(x,y,z)) -> c_31(min#(y)):17
           -->_4 max#(n(x,y,z)) -> c_29(max#(z)):16
           -->_5 ge#(1(x),1(y)) -> c_25(ge#(x,y)):15
           -->_3 ge#(1(x),1(y)) -> c_25(ge#(x,y)):15
           -->_5 ge#(1(x),0(y)) -> c_24(ge#(x,y)):14
           -->_3 ge#(1(x),0(y)) -> c_24(ge#(x,y)):14
           -->_5 ge#(0(x),1(y)) -> c_23(not#(ge(y,x)),ge#(y,x)):13
           -->_3 ge#(0(x),1(y)) -> c_23(not#(ge(y,x)),ge#(y,x)):13
           -->_5 ge#(0(x),0(y)) -> c_22(ge#(x,y)):12
           -->_3 ge#(0(x),0(y)) -> c_22(ge#(x,y)):12
           -->_5 ge#(#(),0(x)) -> c_20(ge#(#(),x)):11
           -->_3 ge#(#(),0(x)) -> c_20(ge#(#(),x)):11
           -->_6 min#(l(x)) -> c_30():33
           -->_4 max#(l(x)) -> c_28():32
           -->_5 ge#(#(),1(x)) -> c_21():29
           -->_3 ge#(#(),1(x)) -> c_21():29
           -->_5 ge#(x,#()) -> c_19():28
           -->_3 ge#(x,#()) -> c_19():28
           -->_9 bs#(l(x)) -> c_17():27
           -->_8 bs#(l(x)) -> c_17():27
           -->_7 and#(x,true()) -> c_16():26
           -->_2 and#(x,true()) -> c_16():26
           -->_1 and#(x,true()) -> c_16():26
           -->_7 and#(x,false()) -> c_15():25
           -->_2 and#(x,false()) -> c_15():25
           -->_1 and#(x,false()) -> c_15():25
           -->_9 bs#(n(x,y,z)) -> c_18(and#(and(ge(x,max(y)),ge(min(z),x)),and(bs(y),bs(z))),and#(ge(x,max(y)),ge(min(z),x)),ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),and#(bs(y),bs(z)),bs#(y),bs#(z)):10
           -->_8 bs#(n(x,y,z)) -> c_18(and#(and(ge(x,max(y)),ge(min(z),x)),and(bs(y),bs(z))),and#(ge(x,max(y)),ge(min(z),x)),ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),and#(bs(y),bs(z)),bs#(y),bs#(z)):10
        
        11:S:ge#(#(),0(x)) -> c_20(ge#(#(),x))
           -->_1 ge#(#(),1(x)) -> c_21():29
           -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):11
        
        12:S:ge#(0(x),0(y)) -> c_22(ge#(x,y))
           -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):15
           -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):14
           -->_1 ge#(0(x),1(y)) -> c_23(not#(ge(y,x)),ge#(y,x)):13
           -->_1 ge#(#(),1(x)) -> c_21():29
           -->_1 ge#(x,#()) -> c_19():28
           -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):12
           -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):11
        
        13:S:ge#(0(x),1(y)) -> c_23(not#(ge(y,x)),ge#(y,x))
           -->_2 ge#(1(x),1(y)) -> c_25(ge#(x,y)):15
           -->_2 ge#(1(x),0(y)) -> c_24(ge#(x,y)):14
           -->_1 not#(true()) -> c_33():35
           -->_1 not#(false()) -> c_32():34
           -->_2 ge#(#(),1(x)) -> c_21():29
           -->_2 ge#(x,#()) -> c_19():28
           -->_2 ge#(0(x),1(y)) -> c_23(not#(ge(y,x)),ge#(y,x)):13
           -->_2 ge#(0(x),0(y)) -> c_22(ge#(x,y)):12
           -->_2 ge#(#(),0(x)) -> c_20(ge#(#(),x)):11
        
        14:S:ge#(1(x),0(y)) -> c_24(ge#(x,y))
           -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):15
           -->_1 ge#(#(),1(x)) -> c_21():29
           -->_1 ge#(x,#()) -> c_19():28
           -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):14
           -->_1 ge#(0(x),1(y)) -> c_23(not#(ge(y,x)),ge#(y,x)):13
           -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):12
           -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):11
        
        15:S:ge#(1(x),1(y)) -> c_25(ge#(x,y))
           -->_1 ge#(#(),1(x)) -> c_21():29
           -->_1 ge#(x,#()) -> c_19():28
           -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):15
           -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):14
           -->_1 ge#(0(x),1(y)) -> c_23(not#(ge(y,x)),ge#(y,x)):13
           -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):12
           -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):11
        
        16:S:max#(n(x,y,z)) -> c_29(max#(z))
           -->_1 max#(l(x)) -> c_28():32
           -->_1 max#(n(x,y,z)) -> c_29(max#(z)):16
        
        17:S:min#(n(x,y,z)) -> c_31(min#(y))
           -->_1 min#(l(x)) -> c_30():33
           -->_1 min#(n(x,y,z)) -> c_31(min#(y)):17
        
        18:S:size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y))
           -->_4 size#(l(x)) -> c_34():36
           -->_3 size#(l(x)) -> c_34():36
           -->_2 +#(#(),x) -> c_3():21
           -->_1 +#(#(),x) -> c_3():21
           -->_2 +#(x,#()) -> c_1():20
           -->_4 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):18
           -->_3 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):18
           -->_2 +#(1(x),1(y)) -> c_7(0#(+(+(x,y),1(#()))),+#(+(x,y),1(#())),+#(x,y)):5
           -->_1 +#(1(x),1(y)) -> c_7(0#(+(+(x,y),1(#()))),+#(+(x,y),1(#())),+#(x,y)):5
           -->_2 +#(1(x),0(y)) -> c_6(+#(x,y)):4
           -->_2 +#(0(x),1(y)) -> c_5(+#(x,y)):3
           -->_1 +#(0(x),1(y)) -> c_5(+#(x,y)):3
           -->_2 +#(0(x),0(y)) -> c_4(0#(+(x,y)),+#(x,y)):2
           -->_2 +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y)):1
        
        19:S:wb#(n(x,y,z)) -> c_39(and#(if(ge(size(y),size(z)),ge(1(#()),-(size(y),size(z))),ge(1(#()),-(size(z),size(y)))),and(wb(y),wb(z))),if#(ge(size(y),size(z)),ge(1(#()),-(size(y),size(z))),ge(1(#()),-(size(z),size(y)))),ge#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(y),size(z))),-#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(z),size(y))),-#(size(z),size(y)),size#(z),size#(y),and#(wb(y),wb(z)),wb#(y),wb#(z))
           -->_16 wb#(l(x)) -> c_38():39
           -->_15 wb#(l(x)) -> c_38():39
           -->_13 size#(l(x)) -> c_34():36
           -->_12 size#(l(x)) -> c_34():36
           -->_9 size#(l(x)) -> c_34():36
           -->_8 size#(l(x)) -> c_34():36
           -->_5 size#(l(x)) -> c_34():36
           -->_4 size#(l(x)) -> c_34():36
           -->_2 if#(true(),x,y) -> c_27():31
           -->_2 if#(false(),x,y) -> c_26():30
           -->_3 ge#(#(),1(x)) -> c_21():29
           -->_10 ge#(x,#()) -> c_19():28
           -->_6 ge#(x,#()) -> c_19():28
           -->_3 ge#(x,#()) -> c_19():28
           -->_14 and#(x,true()) -> c_16():26
           -->_1 and#(x,true()) -> c_16():26
           -->_14 and#(x,false()) -> c_15():25
           -->_1 and#(x,false()) -> c_15():25
           -->_11 -#(#(),x) -> c_9():23
           -->_7 -#(#(),x) -> c_9():23
           -->_11 -#(x,#()) -> c_8():22
           -->_7 -#(x,#()) -> c_8():22
           -->_16 wb#(n(x,y,z)) -> c_39(and#(if(ge(size(y),size(z)),ge(1(#()),-(size(y),size(z))),ge(1(#()),-(size(z),size(y)))),and(wb(y),wb(z))),if#(ge(size(y),size(z)),ge(1(#()),-(size(y),size(z))),ge(1(#()),-(size(z),size(y)))),ge#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(y),size(z))),-#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(z),size(y))),-#(size(z),size(y)),size#(z),size#(y),and#(wb(y),wb(z)),wb#(y),wb#(z)):19
           -->_15 wb#(n(x,y,z)) -> c_39(and#(if(ge(size(y),size(z)),ge(1(#()),-(size(y),size(z))),ge(1(#()),-(size(z),size(y)))),and(wb(y),wb(z))),if#(ge(size(y),size(z)),ge(1(#()),-(size(y),size(z))),ge(1(#()),-(size(z),size(y)))),ge#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(y),size(z))),-#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(z),size(y))),-#(size(z),size(y)),size#(z),size#(y),and#(wb(y),wb(z)),wb#(y),wb#(z)):19
           -->_13 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):18
           -->_12 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):18
           -->_9 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):18
           -->_8 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):18
           -->_5 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):18
           -->_4 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):18
           -->_10 ge#(1(x),1(y)) -> c_25(ge#(x,y)):15
           -->_6 ge#(1(x),1(y)) -> c_25(ge#(x,y)):15
           -->_3 ge#(1(x),1(y)) -> c_25(ge#(x,y)):15
           -->_10 ge#(1(x),0(y)) -> c_24(ge#(x,y)):14
           -->_6 ge#(1(x),0(y)) -> c_24(ge#(x,y)):14
           -->_3 ge#(1(x),0(y)) -> c_24(ge#(x,y)):14
           -->_3 ge#(0(x),1(y)) -> c_23(not#(ge(y,x)),ge#(y,x)):13
           -->_3 ge#(0(x),0(y)) -> c_22(ge#(x,y)):12
           -->_3 ge#(#(),0(x)) -> c_20(ge#(#(),x)):11
           -->_11 -#(1(x),1(y)) -> c_13(0#(-(x,y)),-#(x,y)):9
           -->_7 -#(1(x),1(y)) -> c_13(0#(-(x,y)),-#(x,y)):9
           -->_11 -#(1(x),0(y)) -> c_12(-#(x,y)):8
           -->_7 -#(1(x),0(y)) -> c_12(-#(x,y)):8
           -->_11 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):7
           -->_7 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):7
           -->_11 -#(0(x),0(y)) -> c_10(0#(-(x,y)),-#(x,y)):6
           -->_7 -#(0(x),0(y)) -> c_10(0#(-(x,y)),-#(x,y)):6
        
        20:W:+#(x,#()) -> c_1()
           
        
        21:W:+#(#(),x) -> c_3()
           
        
        22:W:-#(x,#()) -> c_8()
           
        
        23:W:-#(#(),x) -> c_9()
           
        
        24:W:0#(#()) -> c_14()
           
        
        25:W:and#(x,false()) -> c_15()
           
        
        26:W:and#(x,true()) -> c_16()
           
        
        27:W:bs#(l(x)) -> c_17()
           
        
        28:W:ge#(x,#()) -> c_19()
           
        
        29:W:ge#(#(),1(x)) -> c_21()
           
        
        30:W:if#(false(),x,y) -> c_26()
           
        
        31:W:if#(true(),x,y) -> c_27()
           
        
        32:W:max#(l(x)) -> c_28()
           
        
        33:W:min#(l(x)) -> c_30()
           
        
        34:W:not#(false()) -> c_32()
           
        
        35:W:not#(true()) -> c_33()
           
        
        36:W:size#(l(x)) -> c_34()
           
        
        37:W:val#(l(x)) -> c_36()
           
        
        38:W:val#(n(x,y,z)) -> c_37()
           
        
        39:W:wb#(l(x)) -> c_38()
           
        
      The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
        38: val#(n(x,y,z)) -> c_37()  
        37: val#(l(x)) -> c_36()      
        30: if#(false(),x,y) -> c_26()
        31: if#(true(),x,y) -> c_27() 
        39: wb#(l(x)) -> c_38()       
        36: size#(l(x)) -> c_34()     
        25: and#(x,false()) -> c_15() 
        26: and#(x,true()) -> c_16()  
        27: bs#(l(x)) -> c_17()       
        34: not#(false()) -> c_32()   
        35: not#(true()) -> c_33()    
        28: ge#(x,#()) -> c_19()      
        29: ge#(#(),1(x)) -> c_21()   
        32: max#(l(x)) -> c_28()      
        33: min#(l(x)) -> c_30()      
        22: -#(x,#()) -> c_8()        
        23: -#(#(),x) -> c_9()        
        20: +#(x,#()) -> c_1()        
        21: +#(#(),x) -> c_3()        
        24: 0#(#()) -> c_14()         
*** 1.1.1.1.1 Progress [(?,O(n^4))]  ***
    Considered Problem:
      Strict DP Rules:
        +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y))
        +#(0(x),0(y)) -> c_4(0#(+(x,y)),+#(x,y))
        +#(0(x),1(y)) -> c_5(+#(x,y))
        +#(1(x),0(y)) -> c_6(+#(x,y))
        +#(1(x),1(y)) -> c_7(0#(+(+(x,y),1(#()))),+#(+(x,y),1(#())),+#(x,y))
        -#(0(x),0(y)) -> c_10(0#(-(x,y)),-#(x,y))
        -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y))
        -#(1(x),0(y)) -> c_12(-#(x,y))
        -#(1(x),1(y)) -> c_13(0#(-(x,y)),-#(x,y))
        bs#(n(x,y,z)) -> c_18(and#(and(ge(x,max(y)),ge(min(z),x)),and(bs(y),bs(z))),and#(ge(x,max(y)),ge(min(z),x)),ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),and#(bs(y),bs(z)),bs#(y),bs#(z))
        ge#(#(),0(x)) -> c_20(ge#(#(),x))
        ge#(0(x),0(y)) -> c_22(ge#(x,y))
        ge#(0(x),1(y)) -> c_23(not#(ge(y,x)),ge#(y,x))
        ge#(1(x),0(y)) -> c_24(ge#(x,y))
        ge#(1(x),1(y)) -> c_25(ge#(x,y))
        max#(n(x,y,z)) -> c_29(max#(z))
        min#(n(x,y,z)) -> c_31(min#(y))
        size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y))
        wb#(n(x,y,z)) -> c_39(and#(if(ge(size(y),size(z)),ge(1(#()),-(size(y),size(z))),ge(1(#()),-(size(z),size(y)))),and(wb(y),wb(z))),if#(ge(size(y),size(z)),ge(1(#()),-(size(y),size(z))),ge(1(#()),-(size(z),size(y)))),ge#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(y),size(z))),-#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(z),size(y))),-#(size(z),size(y)),size#(z),size#(y),and#(wb(y),wb(z)),wb#(y),wb#(z))
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        +(x,#()) -> x
        +(x,+(y,z)) -> +(+(x,y),z)
        +(#(),x) -> x
        +(0(x),0(y)) -> 0(+(x,y))
        +(0(x),1(y)) -> 1(+(x,y))
        +(1(x),0(y)) -> 1(+(x,y))
        +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
        -(x,#()) -> x
        -(#(),x) -> #()
        -(0(x),0(y)) -> 0(-(x,y))
        -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
        -(1(x),0(y)) -> 1(-(x,y))
        -(1(x),1(y)) -> 0(-(x,y))
        0(#()) -> #()
        and(x,false()) -> false()
        and(x,true()) -> x
        bs(l(x)) -> true()
        bs(n(x,y,z)) -> and(and(ge(x,max(y)),ge(min(z),x)),and(bs(y),bs(z)))
        ge(x,#()) -> true()
        ge(#(),0(x)) -> ge(#(),x)
        ge(#(),1(x)) -> false()
        ge(0(x),0(y)) -> ge(x,y)
        ge(0(x),1(y)) -> not(ge(y,x))
        ge(1(x),0(y)) -> ge(x,y)
        ge(1(x),1(y)) -> ge(x,y)
        if(false(),x,y) -> y
        if(true(),x,y) -> x
        max(l(x)) -> x
        max(n(x,y,z)) -> max(z)
        min(l(x)) -> x
        min(n(x,y,z)) -> min(y)
        not(false()) -> true()
        not(true()) -> false()
        size(l(x)) -> 1(#())
        size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
        wb(l(x)) -> true()
        wb(n(x,y,z)) -> and(if(ge(size(y),size(z)),ge(1(#()),-(size(y),size(z))),ge(1(#()),-(size(z),size(y)))),and(wb(y),wb(z)))
      Signature:
        {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/2,c_5/1,c_6/1,c_7/3,c_8/0,c_9/0,c_10/2,c_11/2,c_12/1,c_13/2,c_14/0,c_15/0,c_16/0,c_17/0,c_18/9,c_19/0,c_20/1,c_21/0,c_22/1,c_23/2,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/4,c_36/0,c_37/0,c_38/0,c_39/16}
      Obligation:
        Innermost
        basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
    Applied Processor:
      SimplifyRHS
    Proof:
      Consider the dependency graph
        1:S:+#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y))
           -->_2 +#(1(x),1(y)) -> c_7(0#(+(+(x,y),1(#()))),+#(+(x,y),1(#())),+#(x,y)):5
           -->_1 +#(1(x),1(y)) -> c_7(0#(+(+(x,y),1(#()))),+#(+(x,y),1(#())),+#(x,y)):5
           -->_2 +#(1(x),0(y)) -> c_6(+#(x,y)):4
           -->_1 +#(1(x),0(y)) -> c_6(+#(x,y)):4
           -->_2 +#(0(x),1(y)) -> c_5(+#(x,y)):3
           -->_1 +#(0(x),1(y)) -> c_5(+#(x,y)):3
           -->_2 +#(0(x),0(y)) -> c_4(0#(+(x,y)),+#(x,y)):2
           -->_1 +#(0(x),0(y)) -> c_4(0#(+(x,y)),+#(x,y)):2
           -->_2 +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y)):1
           -->_1 +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y)):1
        
        2:S:+#(0(x),0(y)) -> c_4(0#(+(x,y)),+#(x,y))
           -->_2 +#(1(x),1(y)) -> c_7(0#(+(+(x,y),1(#()))),+#(+(x,y),1(#())),+#(x,y)):5
           -->_2 +#(1(x),0(y)) -> c_6(+#(x,y)):4
           -->_2 +#(0(x),1(y)) -> c_5(+#(x,y)):3
           -->_2 +#(0(x),0(y)) -> c_4(0#(+(x,y)),+#(x,y)):2
           -->_2 +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y)):1
        
        3:S:+#(0(x),1(y)) -> c_5(+#(x,y))
           -->_1 +#(1(x),1(y)) -> c_7(0#(+(+(x,y),1(#()))),+#(+(x,y),1(#())),+#(x,y)):5
           -->_1 +#(1(x),0(y)) -> c_6(+#(x,y)):4
           -->_1 +#(0(x),1(y)) -> c_5(+#(x,y)):3
           -->_1 +#(0(x),0(y)) -> c_4(0#(+(x,y)),+#(x,y)):2
           -->_1 +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y)):1
        
        4:S:+#(1(x),0(y)) -> c_6(+#(x,y))
           -->_1 +#(1(x),1(y)) -> c_7(0#(+(+(x,y),1(#()))),+#(+(x,y),1(#())),+#(x,y)):5
           -->_1 +#(1(x),0(y)) -> c_6(+#(x,y)):4
           -->_1 +#(0(x),1(y)) -> c_5(+#(x,y)):3
           -->_1 +#(0(x),0(y)) -> c_4(0#(+(x,y)),+#(x,y)):2
           -->_1 +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y)):1
        
        5:S:+#(1(x),1(y)) -> c_7(0#(+(+(x,y),1(#()))),+#(+(x,y),1(#())),+#(x,y))
           -->_3 +#(1(x),1(y)) -> c_7(0#(+(+(x,y),1(#()))),+#(+(x,y),1(#())),+#(x,y)):5
           -->_2 +#(1(x),1(y)) -> c_7(0#(+(+(x,y),1(#()))),+#(+(x,y),1(#())),+#(x,y)):5
           -->_3 +#(1(x),0(y)) -> c_6(+#(x,y)):4
           -->_3 +#(0(x),1(y)) -> c_5(+#(x,y)):3
           -->_2 +#(0(x),1(y)) -> c_5(+#(x,y)):3
           -->_3 +#(0(x),0(y)) -> c_4(0#(+(x,y)),+#(x,y)):2
           -->_3 +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y)):1
        
        6:S:-#(0(x),0(y)) -> c_10(0#(-(x,y)),-#(x,y))
           -->_2 -#(1(x),1(y)) -> c_13(0#(-(x,y)),-#(x,y)):9
           -->_2 -#(1(x),0(y)) -> c_12(-#(x,y)):8
           -->_2 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):7
           -->_2 -#(0(x),0(y)) -> c_10(0#(-(x,y)),-#(x,y)):6
        
        7:S:-#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y))
           -->_2 -#(1(x),1(y)) -> c_13(0#(-(x,y)),-#(x,y)):9
           -->_1 -#(1(x),1(y)) -> c_13(0#(-(x,y)),-#(x,y)):9
           -->_2 -#(1(x),0(y)) -> c_12(-#(x,y)):8
           -->_2 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):7
           -->_1 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):7
           -->_2 -#(0(x),0(y)) -> c_10(0#(-(x,y)),-#(x,y)):6
        
        8:S:-#(1(x),0(y)) -> c_12(-#(x,y))
           -->_1 -#(1(x),1(y)) -> c_13(0#(-(x,y)),-#(x,y)):9
           -->_1 -#(1(x),0(y)) -> c_12(-#(x,y)):8
           -->_1 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):7
           -->_1 -#(0(x),0(y)) -> c_10(0#(-(x,y)),-#(x,y)):6
        
        9:S:-#(1(x),1(y)) -> c_13(0#(-(x,y)),-#(x,y))
           -->_2 -#(1(x),1(y)) -> c_13(0#(-(x,y)),-#(x,y)):9
           -->_2 -#(1(x),0(y)) -> c_12(-#(x,y)):8
           -->_2 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):7
           -->_2 -#(0(x),0(y)) -> c_10(0#(-(x,y)),-#(x,y)):6
        
        10:S:bs#(n(x,y,z)) -> c_18(and#(and(ge(x,max(y)),ge(min(z),x)),and(bs(y),bs(z))),and#(ge(x,max(y)),ge(min(z),x)),ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),and#(bs(y),bs(z)),bs#(y),bs#(z))
           -->_6 min#(n(x,y,z)) -> c_31(min#(y)):17
           -->_4 max#(n(x,y,z)) -> c_29(max#(z)):16
           -->_5 ge#(1(x),1(y)) -> c_25(ge#(x,y)):15
           -->_3 ge#(1(x),1(y)) -> c_25(ge#(x,y)):15
           -->_5 ge#(1(x),0(y)) -> c_24(ge#(x,y)):14
           -->_3 ge#(1(x),0(y)) -> c_24(ge#(x,y)):14
           -->_5 ge#(0(x),1(y)) -> c_23(not#(ge(y,x)),ge#(y,x)):13
           -->_3 ge#(0(x),1(y)) -> c_23(not#(ge(y,x)),ge#(y,x)):13
           -->_5 ge#(0(x),0(y)) -> c_22(ge#(x,y)):12
           -->_3 ge#(0(x),0(y)) -> c_22(ge#(x,y)):12
           -->_5 ge#(#(),0(x)) -> c_20(ge#(#(),x)):11
           -->_3 ge#(#(),0(x)) -> c_20(ge#(#(),x)):11
           -->_9 bs#(n(x,y,z)) -> c_18(and#(and(ge(x,max(y)),ge(min(z),x)),and(bs(y),bs(z))),and#(ge(x,max(y)),ge(min(z),x)),ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),and#(bs(y),bs(z)),bs#(y),bs#(z)):10
           -->_8 bs#(n(x,y,z)) -> c_18(and#(and(ge(x,max(y)),ge(min(z),x)),and(bs(y),bs(z))),and#(ge(x,max(y)),ge(min(z),x)),ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),and#(bs(y),bs(z)),bs#(y),bs#(z)):10
        
        11:S:ge#(#(),0(x)) -> c_20(ge#(#(),x))
           -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):11
        
        12:S:ge#(0(x),0(y)) -> c_22(ge#(x,y))
           -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):15
           -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):14
           -->_1 ge#(0(x),1(y)) -> c_23(not#(ge(y,x)),ge#(y,x)):13
           -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):12
           -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):11
        
        13:S:ge#(0(x),1(y)) -> c_23(not#(ge(y,x)),ge#(y,x))
           -->_2 ge#(1(x),1(y)) -> c_25(ge#(x,y)):15
           -->_2 ge#(1(x),0(y)) -> c_24(ge#(x,y)):14
           -->_2 ge#(0(x),1(y)) -> c_23(not#(ge(y,x)),ge#(y,x)):13
           -->_2 ge#(0(x),0(y)) -> c_22(ge#(x,y)):12
           -->_2 ge#(#(),0(x)) -> c_20(ge#(#(),x)):11
        
        14:S:ge#(1(x),0(y)) -> c_24(ge#(x,y))
           -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):15
           -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):14
           -->_1 ge#(0(x),1(y)) -> c_23(not#(ge(y,x)),ge#(y,x)):13
           -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):12
           -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):11
        
        15:S:ge#(1(x),1(y)) -> c_25(ge#(x,y))
           -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):15
           -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):14
           -->_1 ge#(0(x),1(y)) -> c_23(not#(ge(y,x)),ge#(y,x)):13
           -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):12
           -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):11
        
        16:S:max#(n(x,y,z)) -> c_29(max#(z))
           -->_1 max#(n(x,y,z)) -> c_29(max#(z)):16
        
        17:S:min#(n(x,y,z)) -> c_31(min#(y))
           -->_1 min#(n(x,y,z)) -> c_31(min#(y)):17
        
        18:S:size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y))
           -->_4 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):18
           -->_3 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):18
           -->_2 +#(1(x),1(y)) -> c_7(0#(+(+(x,y),1(#()))),+#(+(x,y),1(#())),+#(x,y)):5
           -->_1 +#(1(x),1(y)) -> c_7(0#(+(+(x,y),1(#()))),+#(+(x,y),1(#())),+#(x,y)):5
           -->_2 +#(1(x),0(y)) -> c_6(+#(x,y)):4
           -->_2 +#(0(x),1(y)) -> c_5(+#(x,y)):3
           -->_1 +#(0(x),1(y)) -> c_5(+#(x,y)):3
           -->_2 +#(0(x),0(y)) -> c_4(0#(+(x,y)),+#(x,y)):2
           -->_2 +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y)):1
        
        19:S:wb#(n(x,y,z)) -> c_39(and#(if(ge(size(y),size(z)),ge(1(#()),-(size(y),size(z))),ge(1(#()),-(size(z),size(y)))),and(wb(y),wb(z))),if#(ge(size(y),size(z)),ge(1(#()),-(size(y),size(z))),ge(1(#()),-(size(z),size(y)))),ge#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(y),size(z))),-#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(z),size(y))),-#(size(z),size(y)),size#(z),size#(y),and#(wb(y),wb(z)),wb#(y),wb#(z))
           -->_16 wb#(n(x,y,z)) -> c_39(and#(if(ge(size(y),size(z)),ge(1(#()),-(size(y),size(z))),ge(1(#()),-(size(z),size(y)))),and(wb(y),wb(z))),if#(ge(size(y),size(z)),ge(1(#()),-(size(y),size(z))),ge(1(#()),-(size(z),size(y)))),ge#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(y),size(z))),-#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(z),size(y))),-#(size(z),size(y)),size#(z),size#(y),and#(wb(y),wb(z)),wb#(y),wb#(z)):19
           -->_15 wb#(n(x,y,z)) -> c_39(and#(if(ge(size(y),size(z)),ge(1(#()),-(size(y),size(z))),ge(1(#()),-(size(z),size(y)))),and(wb(y),wb(z))),if#(ge(size(y),size(z)),ge(1(#()),-(size(y),size(z))),ge(1(#()),-(size(z),size(y)))),ge#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(y),size(z))),-#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(z),size(y))),-#(size(z),size(y)),size#(z),size#(y),and#(wb(y),wb(z)),wb#(y),wb#(z)):19
           -->_13 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):18
           -->_12 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):18
           -->_9 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):18
           -->_8 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):18
           -->_5 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):18
           -->_4 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):18
           -->_10 ge#(1(x),1(y)) -> c_25(ge#(x,y)):15
           -->_6 ge#(1(x),1(y)) -> c_25(ge#(x,y)):15
           -->_3 ge#(1(x),1(y)) -> c_25(ge#(x,y)):15
           -->_10 ge#(1(x),0(y)) -> c_24(ge#(x,y)):14
           -->_6 ge#(1(x),0(y)) -> c_24(ge#(x,y)):14
           -->_3 ge#(1(x),0(y)) -> c_24(ge#(x,y)):14
           -->_3 ge#(0(x),1(y)) -> c_23(not#(ge(y,x)),ge#(y,x)):13
           -->_3 ge#(0(x),0(y)) -> c_22(ge#(x,y)):12
           -->_3 ge#(#(),0(x)) -> c_20(ge#(#(),x)):11
           -->_11 -#(1(x),1(y)) -> c_13(0#(-(x,y)),-#(x,y)):9
           -->_7 -#(1(x),1(y)) -> c_13(0#(-(x,y)),-#(x,y)):9
           -->_11 -#(1(x),0(y)) -> c_12(-#(x,y)):8
           -->_7 -#(1(x),0(y)) -> c_12(-#(x,y)):8
           -->_11 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):7
           -->_7 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):7
           -->_11 -#(0(x),0(y)) -> c_10(0#(-(x,y)),-#(x,y)):6
           -->_7 -#(0(x),0(y)) -> c_10(0#(-(x,y)),-#(x,y)):6
        
      Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
        +#(0(x),0(y)) -> c_4(+#(x,y))
        +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y))
        -#(0(x),0(y)) -> c_10(-#(x,y))
        -#(1(x),1(y)) -> c_13(-#(x,y))
        bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z))
        ge#(0(x),1(y)) -> c_23(ge#(y,x))
        wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(y),size(z))),-#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(z),size(y))),-#(size(z),size(y)),size#(z),size#(y),wb#(y),wb#(z))
*** 1.1.1.1.1.1 Progress [(?,O(n^4))]  ***
    Considered Problem:
      Strict DP Rules:
        +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y))
        +#(0(x),0(y)) -> c_4(+#(x,y))
        +#(0(x),1(y)) -> c_5(+#(x,y))
        +#(1(x),0(y)) -> c_6(+#(x,y))
        +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y))
        -#(0(x),0(y)) -> c_10(-#(x,y))
        -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y))
        -#(1(x),0(y)) -> c_12(-#(x,y))
        -#(1(x),1(y)) -> c_13(-#(x,y))
        bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z))
        ge#(#(),0(x)) -> c_20(ge#(#(),x))
        ge#(0(x),0(y)) -> c_22(ge#(x,y))
        ge#(0(x),1(y)) -> c_23(ge#(y,x))
        ge#(1(x),0(y)) -> c_24(ge#(x,y))
        ge#(1(x),1(y)) -> c_25(ge#(x,y))
        max#(n(x,y,z)) -> c_29(max#(z))
        min#(n(x,y,z)) -> c_31(min#(y))
        size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y))
        wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(y),size(z))),-#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(z),size(y))),-#(size(z),size(y)),size#(z),size#(y),wb#(y),wb#(z))
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        +(x,#()) -> x
        +(x,+(y,z)) -> +(+(x,y),z)
        +(#(),x) -> x
        +(0(x),0(y)) -> 0(+(x,y))
        +(0(x),1(y)) -> 1(+(x,y))
        +(1(x),0(y)) -> 1(+(x,y))
        +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
        -(x,#()) -> x
        -(#(),x) -> #()
        -(0(x),0(y)) -> 0(-(x,y))
        -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
        -(1(x),0(y)) -> 1(-(x,y))
        -(1(x),1(y)) -> 0(-(x,y))
        0(#()) -> #()
        and(x,false()) -> false()
        and(x,true()) -> x
        bs(l(x)) -> true()
        bs(n(x,y,z)) -> and(and(ge(x,max(y)),ge(min(z),x)),and(bs(y),bs(z)))
        ge(x,#()) -> true()
        ge(#(),0(x)) -> ge(#(),x)
        ge(#(),1(x)) -> false()
        ge(0(x),0(y)) -> ge(x,y)
        ge(0(x),1(y)) -> not(ge(y,x))
        ge(1(x),0(y)) -> ge(x,y)
        ge(1(x),1(y)) -> ge(x,y)
        if(false(),x,y) -> y
        if(true(),x,y) -> x
        max(l(x)) -> x
        max(n(x,y,z)) -> max(z)
        min(l(x)) -> x
        min(n(x,y,z)) -> min(y)
        not(false()) -> true()
        not(true()) -> false()
        size(l(x)) -> 1(#())
        size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
        wb(l(x)) -> true()
        wb(n(x,y,z)) -> and(if(ge(size(y),size(z)),ge(1(#()),-(size(y),size(z))),ge(1(#()),-(size(z),size(y)))),and(wb(y),wb(z)))
      Signature:
        {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/4,c_36/0,c_37/0,c_38/0,c_39/13}
      Obligation:
        Innermost
        basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
    Applied Processor:
      UsableRules
    Proof:
      We replace rewrite rules by usable rules:
        +(x,#()) -> x
        +(x,+(y,z)) -> +(+(x,y),z)
        +(#(),x) -> x
        +(0(x),0(y)) -> 0(+(x,y))
        +(0(x),1(y)) -> 1(+(x,y))
        +(1(x),0(y)) -> 1(+(x,y))
        +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
        -(x,#()) -> x
        -(#(),x) -> #()
        -(0(x),0(y)) -> 0(-(x,y))
        -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
        -(1(x),0(y)) -> 1(-(x,y))
        -(1(x),1(y)) -> 0(-(x,y))
        0(#()) -> #()
        max(l(x)) -> x
        max(n(x,y,z)) -> max(z)
        min(l(x)) -> x
        min(n(x,y,z)) -> min(y)
        size(l(x)) -> 1(#())
        size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
        +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y))
        +#(0(x),0(y)) -> c_4(+#(x,y))
        +#(0(x),1(y)) -> c_5(+#(x,y))
        +#(1(x),0(y)) -> c_6(+#(x,y))
        +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y))
        -#(0(x),0(y)) -> c_10(-#(x,y))
        -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y))
        -#(1(x),0(y)) -> c_12(-#(x,y))
        -#(1(x),1(y)) -> c_13(-#(x,y))
        bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z))
        ge#(#(),0(x)) -> c_20(ge#(#(),x))
        ge#(0(x),0(y)) -> c_22(ge#(x,y))
        ge#(0(x),1(y)) -> c_23(ge#(y,x))
        ge#(1(x),0(y)) -> c_24(ge#(x,y))
        ge#(1(x),1(y)) -> c_25(ge#(x,y))
        max#(n(x,y,z)) -> c_29(max#(z))
        min#(n(x,y,z)) -> c_31(min#(y))
        size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y))
        wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(y),size(z))),-#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(z),size(y))),-#(size(z),size(y)),size#(z),size#(y),wb#(y),wb#(z))
*** 1.1.1.1.1.1.1 Progress [(?,O(n^4))]  ***
    Considered Problem:
      Strict DP Rules:
        +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y))
        +#(0(x),0(y)) -> c_4(+#(x,y))
        +#(0(x),1(y)) -> c_5(+#(x,y))
        +#(1(x),0(y)) -> c_6(+#(x,y))
        +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y))
        -#(0(x),0(y)) -> c_10(-#(x,y))
        -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y))
        -#(1(x),0(y)) -> c_12(-#(x,y))
        -#(1(x),1(y)) -> c_13(-#(x,y))
        bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z))
        ge#(#(),0(x)) -> c_20(ge#(#(),x))
        ge#(0(x),0(y)) -> c_22(ge#(x,y))
        ge#(0(x),1(y)) -> c_23(ge#(y,x))
        ge#(1(x),0(y)) -> c_24(ge#(x,y))
        ge#(1(x),1(y)) -> c_25(ge#(x,y))
        max#(n(x,y,z)) -> c_29(max#(z))
        min#(n(x,y,z)) -> c_31(min#(y))
        size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y))
        wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(y),size(z))),-#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(z),size(y))),-#(size(z),size(y)),size#(z),size#(y),wb#(y),wb#(z))
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        +(x,#()) -> x
        +(x,+(y,z)) -> +(+(x,y),z)
        +(#(),x) -> x
        +(0(x),0(y)) -> 0(+(x,y))
        +(0(x),1(y)) -> 1(+(x,y))
        +(1(x),0(y)) -> 1(+(x,y))
        +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
        -(x,#()) -> x
        -(#(),x) -> #()
        -(0(x),0(y)) -> 0(-(x,y))
        -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
        -(1(x),0(y)) -> 1(-(x,y))
        -(1(x),1(y)) -> 0(-(x,y))
        0(#()) -> #()
        max(l(x)) -> x
        max(n(x,y,z)) -> max(z)
        min(l(x)) -> x
        min(n(x,y,z)) -> min(y)
        size(l(x)) -> 1(#())
        size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
      Signature:
        {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/4,c_36/0,c_37/0,c_38/0,c_39/13}
      Obligation:
        Innermost
        basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
    Applied Processor:
      Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd}
    Proof:
      We analyse the complexity of following sub-problems (R) and (S).
      Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component.
      
      Problem (R)
        Strict DP Rules:
          +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y))
          +#(0(x),0(y)) -> c_4(+#(x,y))
          +#(0(x),1(y)) -> c_5(+#(x,y))
          +#(1(x),0(y)) -> c_6(+#(x,y))
          +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y))
        Strict TRS Rules:
          
        Weak DP Rules:
          -#(0(x),0(y)) -> c_10(-#(x,y))
          -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y))
          -#(1(x),0(y)) -> c_12(-#(x,y))
          -#(1(x),1(y)) -> c_13(-#(x,y))
          bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z))
          ge#(#(),0(x)) -> c_20(ge#(#(),x))
          ge#(0(x),0(y)) -> c_22(ge#(x,y))
          ge#(0(x),1(y)) -> c_23(ge#(y,x))
          ge#(1(x),0(y)) -> c_24(ge#(x,y))
          ge#(1(x),1(y)) -> c_25(ge#(x,y))
          max#(n(x,y,z)) -> c_29(max#(z))
          min#(n(x,y,z)) -> c_31(min#(y))
          size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y))
          wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(y),size(z))),-#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(z),size(y))),-#(size(z),size(y)),size#(z),size#(y),wb#(y),wb#(z))
        Weak TRS Rules:
          +(x,#()) -> x
          +(x,+(y,z)) -> +(+(x,y),z)
          +(#(),x) -> x
          +(0(x),0(y)) -> 0(+(x,y))
          +(0(x),1(y)) -> 1(+(x,y))
          +(1(x),0(y)) -> 1(+(x,y))
          +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
          -(x,#()) -> x
          -(#(),x) -> #()
          -(0(x),0(y)) -> 0(-(x,y))
          -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
          -(1(x),0(y)) -> 1(-(x,y))
          -(1(x),1(y)) -> 0(-(x,y))
          0(#()) -> #()
          max(l(x)) -> x
          max(n(x,y,z)) -> max(z)
          min(l(x)) -> x
          min(n(x,y,z)) -> min(y)
          size(l(x)) -> 1(#())
          size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
        Signature:
          {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/4,c_36/0,c_37/0,c_38/0,c_39/13}
        Obligation:
          Innermost
          basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
      
      Problem (S)
        Strict DP Rules:
          -#(0(x),0(y)) -> c_10(-#(x,y))
          -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y))
          -#(1(x),0(y)) -> c_12(-#(x,y))
          -#(1(x),1(y)) -> c_13(-#(x,y))
          bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z))
          ge#(#(),0(x)) -> c_20(ge#(#(),x))
          ge#(0(x),0(y)) -> c_22(ge#(x,y))
          ge#(0(x),1(y)) -> c_23(ge#(y,x))
          ge#(1(x),0(y)) -> c_24(ge#(x,y))
          ge#(1(x),1(y)) -> c_25(ge#(x,y))
          max#(n(x,y,z)) -> c_29(max#(z))
          min#(n(x,y,z)) -> c_31(min#(y))
          size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y))
          wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(y),size(z))),-#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(z),size(y))),-#(size(z),size(y)),size#(z),size#(y),wb#(y),wb#(z))
        Strict TRS Rules:
          
        Weak DP Rules:
          +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y))
          +#(0(x),0(y)) -> c_4(+#(x,y))
          +#(0(x),1(y)) -> c_5(+#(x,y))
          +#(1(x),0(y)) -> c_6(+#(x,y))
          +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y))
        Weak TRS Rules:
          +(x,#()) -> x
          +(x,+(y,z)) -> +(+(x,y),z)
          +(#(),x) -> x
          +(0(x),0(y)) -> 0(+(x,y))
          +(0(x),1(y)) -> 1(+(x,y))
          +(1(x),0(y)) -> 1(+(x,y))
          +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
          -(x,#()) -> x
          -(#(),x) -> #()
          -(0(x),0(y)) -> 0(-(x,y))
          -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
          -(1(x),0(y)) -> 1(-(x,y))
          -(1(x),1(y)) -> 0(-(x,y))
          0(#()) -> #()
          max(l(x)) -> x
          max(n(x,y,z)) -> max(z)
          min(l(x)) -> x
          min(n(x,y,z)) -> min(y)
          size(l(x)) -> 1(#())
          size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
        Signature:
          {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/4,c_36/0,c_37/0,c_38/0,c_39/13}
        Obligation:
          Innermost
          basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
  *** 1.1.1.1.1.1.1.1 Progress [(?,O(n^4))]  ***
      Considered Problem:
        Strict DP Rules:
          +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y))
          +#(0(x),0(y)) -> c_4(+#(x,y))
          +#(0(x),1(y)) -> c_5(+#(x,y))
          +#(1(x),0(y)) -> c_6(+#(x,y))
          +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y))
        Strict TRS Rules:
          
        Weak DP Rules:
          -#(0(x),0(y)) -> c_10(-#(x,y))
          -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y))
          -#(1(x),0(y)) -> c_12(-#(x,y))
          -#(1(x),1(y)) -> c_13(-#(x,y))
          bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z))
          ge#(#(),0(x)) -> c_20(ge#(#(),x))
          ge#(0(x),0(y)) -> c_22(ge#(x,y))
          ge#(0(x),1(y)) -> c_23(ge#(y,x))
          ge#(1(x),0(y)) -> c_24(ge#(x,y))
          ge#(1(x),1(y)) -> c_25(ge#(x,y))
          max#(n(x,y,z)) -> c_29(max#(z))
          min#(n(x,y,z)) -> c_31(min#(y))
          size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y))
          wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(y),size(z))),-#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(z),size(y))),-#(size(z),size(y)),size#(z),size#(y),wb#(y),wb#(z))
        Weak TRS Rules:
          +(x,#()) -> x
          +(x,+(y,z)) -> +(+(x,y),z)
          +(#(),x) -> x
          +(0(x),0(y)) -> 0(+(x,y))
          +(0(x),1(y)) -> 1(+(x,y))
          +(1(x),0(y)) -> 1(+(x,y))
          +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
          -(x,#()) -> x
          -(#(),x) -> #()
          -(0(x),0(y)) -> 0(-(x,y))
          -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
          -(1(x),0(y)) -> 1(-(x,y))
          -(1(x),1(y)) -> 0(-(x,y))
          0(#()) -> #()
          max(l(x)) -> x
          max(n(x,y,z)) -> max(z)
          min(l(x)) -> x
          min(n(x,y,z)) -> min(y)
          size(l(x)) -> 1(#())
          size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
        Signature:
          {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/4,c_36/0,c_37/0,c_38/0,c_39/13}
        Obligation:
          Innermost
          basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
      Applied Processor:
        RemoveWeakSuffixes
      Proof:
        Consider the dependency graph
          1:S:+#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y))
             -->_2 +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y)):5
             -->_1 +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y)):5
             -->_2 +#(1(x),0(y)) -> c_6(+#(x,y)):4
             -->_1 +#(1(x),0(y)) -> c_6(+#(x,y)):4
             -->_2 +#(0(x),1(y)) -> c_5(+#(x,y)):3
             -->_1 +#(0(x),1(y)) -> c_5(+#(x,y)):3
             -->_2 +#(0(x),0(y)) -> c_4(+#(x,y)):2
             -->_1 +#(0(x),0(y)) -> c_4(+#(x,y)):2
             -->_2 +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y)):1
             -->_1 +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y)):1
          
          2:S:+#(0(x),0(y)) -> c_4(+#(x,y))
             -->_1 +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y)):5
             -->_1 +#(1(x),0(y)) -> c_6(+#(x,y)):4
             -->_1 +#(0(x),1(y)) -> c_5(+#(x,y)):3
             -->_1 +#(0(x),0(y)) -> c_4(+#(x,y)):2
             -->_1 +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y)):1
          
          3:S:+#(0(x),1(y)) -> c_5(+#(x,y))
             -->_1 +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y)):5
             -->_1 +#(1(x),0(y)) -> c_6(+#(x,y)):4
             -->_1 +#(0(x),1(y)) -> c_5(+#(x,y)):3
             -->_1 +#(0(x),0(y)) -> c_4(+#(x,y)):2
             -->_1 +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y)):1
          
          4:S:+#(1(x),0(y)) -> c_6(+#(x,y))
             -->_1 +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y)):5
             -->_1 +#(1(x),0(y)) -> c_6(+#(x,y)):4
             -->_1 +#(0(x),1(y)) -> c_5(+#(x,y)):3
             -->_1 +#(0(x),0(y)) -> c_4(+#(x,y)):2
             -->_1 +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y)):1
          
          5:S:+#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y))
             -->_2 +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y)):5
             -->_1 +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y)):5
             -->_2 +#(1(x),0(y)) -> c_6(+#(x,y)):4
             -->_2 +#(0(x),1(y)) -> c_5(+#(x,y)):3
             -->_1 +#(0(x),1(y)) -> c_5(+#(x,y)):3
             -->_2 +#(0(x),0(y)) -> c_4(+#(x,y)):2
             -->_2 +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y)):1
          
          6:W:-#(0(x),0(y)) -> c_10(-#(x,y))
             -->_1 -#(1(x),1(y)) -> c_13(-#(x,y)):9
             -->_1 -#(1(x),0(y)) -> c_12(-#(x,y)):8
             -->_1 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):7
             -->_1 -#(0(x),0(y)) -> c_10(-#(x,y)):6
          
          7:W:-#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y))
             -->_2 -#(1(x),1(y)) -> c_13(-#(x,y)):9
             -->_1 -#(1(x),1(y)) -> c_13(-#(x,y)):9
             -->_2 -#(1(x),0(y)) -> c_12(-#(x,y)):8
             -->_2 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):7
             -->_1 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):7
             -->_2 -#(0(x),0(y)) -> c_10(-#(x,y)):6
          
          8:W:-#(1(x),0(y)) -> c_12(-#(x,y))
             -->_1 -#(1(x),1(y)) -> c_13(-#(x,y)):9
             -->_1 -#(1(x),0(y)) -> c_12(-#(x,y)):8
             -->_1 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):7
             -->_1 -#(0(x),0(y)) -> c_10(-#(x,y)):6
          
          9:W:-#(1(x),1(y)) -> c_13(-#(x,y))
             -->_1 -#(1(x),1(y)) -> c_13(-#(x,y)):9
             -->_1 -#(1(x),0(y)) -> c_12(-#(x,y)):8
             -->_1 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):7
             -->_1 -#(0(x),0(y)) -> c_10(-#(x,y)):6
          
          10:W:bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z))
             -->_3 ge#(#(),0(x)) -> c_20(ge#(#(),x)):11
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):11
             -->_4 min#(n(x,y,z)) -> c_31(min#(y)):17
             -->_2 max#(n(x,y,z)) -> c_29(max#(z)):16
             -->_3 ge#(1(x),1(y)) -> c_25(ge#(x,y)):15
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):15
             -->_3 ge#(1(x),0(y)) -> c_24(ge#(x,y)):14
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):14
             -->_3 ge#(0(x),1(y)) -> c_23(ge#(y,x)):13
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):13
             -->_3 ge#(0(x),0(y)) -> c_22(ge#(x,y)):12
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):12
             -->_6 bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z)):10
             -->_5 bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z)):10
          
          11:W:ge#(#(),0(x)) -> c_20(ge#(#(),x))
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):11
          
          12:W:ge#(0(x),0(y)) -> c_22(ge#(x,y))
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):11
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):15
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):14
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):13
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):12
          
          13:W:ge#(0(x),1(y)) -> c_23(ge#(y,x))
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):11
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):15
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):14
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):13
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):12
          
          14:W:ge#(1(x),0(y)) -> c_24(ge#(x,y))
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):11
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):15
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):14
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):13
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):12
          
          15:W:ge#(1(x),1(y)) -> c_25(ge#(x,y))
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):11
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):15
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):14
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):13
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):12
          
          16:W:max#(n(x,y,z)) -> c_29(max#(z))
             -->_1 max#(n(x,y,z)) -> c_29(max#(z)):16
          
          17:W:min#(n(x,y,z)) -> c_31(min#(y))
             -->_1 min#(n(x,y,z)) -> c_31(min#(y)):17
          
          18:W:size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y))
             -->_2 +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y)):5
             -->_1 +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y)):5
             -->_2 +#(1(x),0(y)) -> c_6(+#(x,y)):4
             -->_2 +#(0(x),1(y)) -> c_5(+#(x,y)):3
             -->_1 +#(0(x),1(y)) -> c_5(+#(x,y)):3
             -->_2 +#(0(x),0(y)) -> c_4(+#(x,y)):2
             -->_4 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):18
             -->_3 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):18
             -->_2 +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y)):1
          
          19:W:wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(y),size(z))),-#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(z),size(y))),-#(size(z),size(y)),size#(z),size#(y),wb#(y),wb#(z))
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):11
             -->_9 -#(1(x),1(y)) -> c_13(-#(x,y)):9
             -->_5 -#(1(x),1(y)) -> c_13(-#(x,y)):9
             -->_9 -#(1(x),0(y)) -> c_12(-#(x,y)):8
             -->_5 -#(1(x),0(y)) -> c_12(-#(x,y)):8
             -->_9 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):7
             -->_5 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):7
             -->_9 -#(0(x),0(y)) -> c_10(-#(x,y)):6
             -->_5 -#(0(x),0(y)) -> c_10(-#(x,y)):6
             -->_8 ge#(1(x),1(y)) -> c_25(ge#(x,y)):15
             -->_4 ge#(1(x),1(y)) -> c_25(ge#(x,y)):15
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):15
             -->_8 ge#(1(x),0(y)) -> c_24(ge#(x,y)):14
             -->_4 ge#(1(x),0(y)) -> c_24(ge#(x,y)):14
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):14
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):13
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):12
             -->_11 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):18
             -->_10 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):18
             -->_7 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):18
             -->_6 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):18
             -->_3 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):18
             -->_2 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):18
             -->_13 wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(y),size(z))),-#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(z),size(y))),-#(size(z),size(y)),size#(z),size#(y),wb#(y),wb#(z)):19
             -->_12 wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(y),size(z))),-#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(z),size(y))),-#(size(z),size(y)),size#(z),size#(y),wb#(y),wb#(z)):19
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          10: bs#(n(x,y,z)) -> c_18(ge#(x        
                                       ,max(y))  
                                   ,max#(y)      
                                   ,ge#(min(z),x)
                                   ,min#(z)      
                                   ,bs#(y)       
                                   ,bs#(z))      
          15: ge#(1(x),1(y)) -> c_25(ge#(x,y))   
          14: ge#(1(x),0(y)) -> c_24(ge#(x,y))   
          13: ge#(0(x),1(y)) -> c_23(ge#(y,x))   
          12: ge#(0(x),0(y)) -> c_22(ge#(x,y))   
          11: ge#(#(),0(x)) -> c_20(ge#(#()      
                                       ,x))      
          16: max#(n(x,y,z)) -> c_29(max#(z))    
          17: min#(n(x,y,z)) -> c_31(min#(y))    
          6:  -#(0(x),0(y)) -> c_10(-#(x,y))     
          9:  -#(1(x),1(y)) -> c_13(-#(x,y))     
          8:  -#(1(x),0(y)) -> c_12(-#(x,y))     
          7:  -#(0(x),1(y)) -> c_11(-#(-(x,y)    
                                      ,1(#()))   
                                   ,-#(x,y))     
  *** 1.1.1.1.1.1.1.1.1 Progress [(?,O(n^4))]  ***
      Considered Problem:
        Strict DP Rules:
          +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y))
          +#(0(x),0(y)) -> c_4(+#(x,y))
          +#(0(x),1(y)) -> c_5(+#(x,y))
          +#(1(x),0(y)) -> c_6(+#(x,y))
          +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y))
        Strict TRS Rules:
          
        Weak DP Rules:
          size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y))
          wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(y),size(z))),-#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(z),size(y))),-#(size(z),size(y)),size#(z),size#(y),wb#(y),wb#(z))
        Weak TRS Rules:
          +(x,#()) -> x
          +(x,+(y,z)) -> +(+(x,y),z)
          +(#(),x) -> x
          +(0(x),0(y)) -> 0(+(x,y))
          +(0(x),1(y)) -> 1(+(x,y))
          +(1(x),0(y)) -> 1(+(x,y))
          +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
          -(x,#()) -> x
          -(#(),x) -> #()
          -(0(x),0(y)) -> 0(-(x,y))
          -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
          -(1(x),0(y)) -> 1(-(x,y))
          -(1(x),1(y)) -> 0(-(x,y))
          0(#()) -> #()
          max(l(x)) -> x
          max(n(x,y,z)) -> max(z)
          min(l(x)) -> x
          min(n(x,y,z)) -> min(y)
          size(l(x)) -> 1(#())
          size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
        Signature:
          {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/4,c_36/0,c_37/0,c_38/0,c_39/13}
        Obligation:
          Innermost
          basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
      Applied Processor:
        SimplifyRHS
      Proof:
        Consider the dependency graph
          1:S:+#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y))
             -->_2 +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y)):5
             -->_1 +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y)):5
             -->_2 +#(1(x),0(y)) -> c_6(+#(x,y)):4
             -->_1 +#(1(x),0(y)) -> c_6(+#(x,y)):4
             -->_2 +#(0(x),1(y)) -> c_5(+#(x,y)):3
             -->_1 +#(0(x),1(y)) -> c_5(+#(x,y)):3
             -->_2 +#(0(x),0(y)) -> c_4(+#(x,y)):2
             -->_1 +#(0(x),0(y)) -> c_4(+#(x,y)):2
             -->_2 +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y)):1
             -->_1 +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y)):1
          
          2:S:+#(0(x),0(y)) -> c_4(+#(x,y))
             -->_1 +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y)):5
             -->_1 +#(1(x),0(y)) -> c_6(+#(x,y)):4
             -->_1 +#(0(x),1(y)) -> c_5(+#(x,y)):3
             -->_1 +#(0(x),0(y)) -> c_4(+#(x,y)):2
             -->_1 +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y)):1
          
          3:S:+#(0(x),1(y)) -> c_5(+#(x,y))
             -->_1 +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y)):5
             -->_1 +#(1(x),0(y)) -> c_6(+#(x,y)):4
             -->_1 +#(0(x),1(y)) -> c_5(+#(x,y)):3
             -->_1 +#(0(x),0(y)) -> c_4(+#(x,y)):2
             -->_1 +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y)):1
          
          4:S:+#(1(x),0(y)) -> c_6(+#(x,y))
             -->_1 +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y)):5
             -->_1 +#(1(x),0(y)) -> c_6(+#(x,y)):4
             -->_1 +#(0(x),1(y)) -> c_5(+#(x,y)):3
             -->_1 +#(0(x),0(y)) -> c_4(+#(x,y)):2
             -->_1 +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y)):1
          
          5:S:+#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y))
             -->_2 +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y)):5
             -->_1 +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y)):5
             -->_2 +#(1(x),0(y)) -> c_6(+#(x,y)):4
             -->_2 +#(0(x),1(y)) -> c_5(+#(x,y)):3
             -->_1 +#(0(x),1(y)) -> c_5(+#(x,y)):3
             -->_2 +#(0(x),0(y)) -> c_4(+#(x,y)):2
             -->_2 +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y)):1
          
          18:W:size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y))
             -->_2 +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y)):5
             -->_1 +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y)):5
             -->_2 +#(1(x),0(y)) -> c_6(+#(x,y)):4
             -->_2 +#(0(x),1(y)) -> c_5(+#(x,y)):3
             -->_1 +#(0(x),1(y)) -> c_5(+#(x,y)):3
             -->_2 +#(0(x),0(y)) -> c_4(+#(x,y)):2
             -->_4 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):18
             -->_3 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):18
             -->_2 +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y)):1
          
          19:W:wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(y),size(z))),-#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(z),size(y))),-#(size(z),size(y)),size#(z),size#(y),wb#(y),wb#(z))
             -->_11 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):18
             -->_10 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):18
             -->_7 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):18
             -->_6 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):18
             -->_3 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):18
             -->_2 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):18
             -->_13 wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(y),size(z))),-#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(z),size(y))),-#(size(z),size(y)),size#(z),size#(y),wb#(y),wb#(z)):19
             -->_12 wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(y),size(z))),-#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(z),size(y))),-#(size(z),size(y)),size#(z),size#(y),wb#(y),wb#(z)):19
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          wb#(n(x,y,z)) -> c_39(size#(y),size#(z),size#(y),size#(z),size#(z),size#(y),wb#(y),wb#(z))
  *** 1.1.1.1.1.1.1.1.1.1 Progress [(?,O(n^4))]  ***
      Considered Problem:
        Strict DP Rules:
          +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y))
          +#(0(x),0(y)) -> c_4(+#(x,y))
          +#(0(x),1(y)) -> c_5(+#(x,y))
          +#(1(x),0(y)) -> c_6(+#(x,y))
          +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y))
        Strict TRS Rules:
          
        Weak DP Rules:
          size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y))
          wb#(n(x,y,z)) -> c_39(size#(y),size#(z),size#(y),size#(z),size#(z),size#(y),wb#(y),wb#(z))
        Weak TRS Rules:
          +(x,#()) -> x
          +(x,+(y,z)) -> +(+(x,y),z)
          +(#(),x) -> x
          +(0(x),0(y)) -> 0(+(x,y))
          +(0(x),1(y)) -> 1(+(x,y))
          +(1(x),0(y)) -> 1(+(x,y))
          +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
          -(x,#()) -> x
          -(#(),x) -> #()
          -(0(x),0(y)) -> 0(-(x,y))
          -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
          -(1(x),0(y)) -> 1(-(x,y))
          -(1(x),1(y)) -> 0(-(x,y))
          0(#()) -> #()
          max(l(x)) -> x
          max(n(x,y,z)) -> max(z)
          min(l(x)) -> x
          min(n(x,y,z)) -> min(y)
          size(l(x)) -> 1(#())
          size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
        Signature:
          {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/4,c_36/0,c_37/0,c_38/0,c_39/8}
        Obligation:
          Innermost
          basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
      Applied Processor:
        UsableRules
      Proof:
        We replace rewrite rules by usable rules:
          +(x,#()) -> x
          +(x,+(y,z)) -> +(+(x,y),z)
          +(#(),x) -> x
          +(0(x),0(y)) -> 0(+(x,y))
          +(0(x),1(y)) -> 1(+(x,y))
          +(1(x),0(y)) -> 1(+(x,y))
          +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
          0(#()) -> #()
          size(l(x)) -> 1(#())
          size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
          +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y))
          +#(0(x),0(y)) -> c_4(+#(x,y))
          +#(0(x),1(y)) -> c_5(+#(x,y))
          +#(1(x),0(y)) -> c_6(+#(x,y))
          +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y))
          size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y))
          wb#(n(x,y,z)) -> c_39(size#(y),size#(z),size#(y),size#(z),size#(z),size#(y),wb#(y),wb#(z))
  *** 1.1.1.1.1.1.1.1.1.1.1 Progress [(?,O(n^4))]  ***
      Considered Problem:
        Strict DP Rules:
          +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y))
          +#(0(x),0(y)) -> c_4(+#(x,y))
          +#(0(x),1(y)) -> c_5(+#(x,y))
          +#(1(x),0(y)) -> c_6(+#(x,y))
          +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y))
        Strict TRS Rules:
          
        Weak DP Rules:
          size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y))
          wb#(n(x,y,z)) -> c_39(size#(y),size#(z),size#(y),size#(z),size#(z),size#(y),wb#(y),wb#(z))
        Weak TRS Rules:
          +(x,#()) -> x
          +(x,+(y,z)) -> +(+(x,y),z)
          +(#(),x) -> x
          +(0(x),0(y)) -> 0(+(x,y))
          +(0(x),1(y)) -> 1(+(x,y))
          +(1(x),0(y)) -> 1(+(x,y))
          +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
          0(#()) -> #()
          size(l(x)) -> 1(#())
          size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
        Signature:
          {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/4,c_36/0,c_37/0,c_38/0,c_39/8}
        Obligation:
          Innermost
          basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
      Applied Processor:
        DecomposeDG {onSelection = all below first cut in WDG, onUpper = Just someStrategy, onLower = Nothing}
      Proof:
        We decompose the input problem according to the dependency graph into the upper component
          wb#(n(x,y,z)) -> c_39(size#(y),size#(z),size#(y),size#(z),size#(z),size#(y),wb#(y),wb#(z))
        and a lower component
          +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y))
          +#(0(x),0(y)) -> c_4(+#(x,y))
          +#(0(x),1(y)) -> c_5(+#(x,y))
          +#(1(x),0(y)) -> c_6(+#(x,y))
          +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y))
          size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y))
        Further, following extension rules are added to the lower component.
          wb#(n(x,y,z)) -> size#(y)
          wb#(n(x,y,z)) -> size#(z)
          wb#(n(x,y,z)) -> wb#(y)
          wb#(n(x,y,z)) -> wb#(z)
    *** 1.1.1.1.1.1.1.1.1.1.1.1 Progress [(?,O(n^1))]  ***
        Considered Problem:
          Strict DP Rules:
            wb#(n(x,y,z)) -> c_39(size#(y),size#(z),size#(y),size#(z),size#(z),size#(y),wb#(y),wb#(z))
          Strict TRS Rules:
            
          Weak DP Rules:
            
          Weak TRS Rules:
            +(x,#()) -> x
            +(x,+(y,z)) -> +(+(x,y),z)
            +(#(),x) -> x
            +(0(x),0(y)) -> 0(+(x,y))
            +(0(x),1(y)) -> 1(+(x,y))
            +(1(x),0(y)) -> 1(+(x,y))
            +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
            0(#()) -> #()
            size(l(x)) -> 1(#())
            size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
          Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/4,c_36/0,c_37/0,c_38/0,c_39/8}
          Obligation:
            Innermost
            basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
        Applied Processor:
          PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
        Proof:
          We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
            1: wb#(n(x,y,z)) -> c_39(size#(y)
                                    ,size#(z)
                                    ,size#(y)
                                    ,size#(z)
                                    ,size#(z)
                                    ,size#(y)
                                    ,wb#(y)  
                                    ,wb#(z)) 
            
          The strictly oriented rules are moved into the weak component.
      *** 1.1.1.1.1.1.1.1.1.1.1.1.1 Progress [(?,O(n^1))]  ***
          Considered Problem:
            Strict DP Rules:
              wb#(n(x,y,z)) -> c_39(size#(y),size#(z),size#(y),size#(z),size#(z),size#(y),wb#(y),wb#(z))
            Strict TRS Rules:
              
            Weak DP Rules:
              
            Weak TRS Rules:
              +(x,#()) -> x
              +(x,+(y,z)) -> +(+(x,y),z)
              +(#(),x) -> x
              +(0(x),0(y)) -> 0(+(x,y))
              +(0(x),1(y)) -> 1(+(x,y))
              +(1(x),0(y)) -> 1(+(x,y))
              +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
              0(#()) -> #()
              size(l(x)) -> 1(#())
              size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
            Signature:
              {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/4,c_36/0,c_37/0,c_38/0,c_39/8}
            Obligation:
              Innermost
              basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
          Applied Processor:
            NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
          Proof:
            We apply a matrix interpretation of kind constructor based matrix interpretation:
            The following argument positions are considered usable:
              uargs(c_39) = {7,8}
            
            Following symbols are considered usable:
              {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}
            TcT has computed the following interpretation:
                  p(#) = [4]                                                      
                  p(+) = [1] x2 + [0]                                             
                  p(-) = [0]                                                      
                  p(0) = [5] x1 + [3]                                             
                  p(1) = [5]                                                      
                p(and) = [0]                                                      
                 p(bs) = [0]                                                      
              p(false) = [0]                                                      
                 p(ge) = [0]                                                      
                 p(if) = [1] x3 + [0]                                             
                  p(l) = [1]                                                      
                p(max) = [0]                                                      
                p(min) = [2]                                                      
                  p(n) = [1] x2 + [1] x3 + [15]                                   
                p(not) = [1] x1 + [8]                                             
               p(size) = [13]                                                     
               p(true) = [2]                                                      
                p(val) = [4] x1 + [4]                                             
                 p(wb) = [4] x1 + [4]                                             
                 p(+#) = [0]                                                      
                 p(-#) = [1] x2 + [1]                                             
                 p(0#) = [1] x1 + [2]                                             
               p(and#) = [4] x2 + [2]                                             
                p(bs#) = [2] x1 + [1]                                             
                p(ge#) = [1] x1 + [2] x2 + [0]                                    
                p(if#) = [1]                                                      
               p(max#) = [1] x1 + [8]                                             
               p(min#) = [1] x1 + [0]                                             
               p(not#) = [1] x1 + [2]                                             
              p(size#) = [1]                                                      
               p(val#) = [1] x1 + [1]                                             
                p(wb#) = [1] x1 + [1]                                             
                p(c_1) = [2]                                                      
                p(c_2) = [1] x1 + [1]                                             
                p(c_3) = [1]                                                      
                p(c_4) = [1] x1 + [0]                                             
                p(c_5) = [8]                                                      
                p(c_6) = [1]                                                      
                p(c_7) = [1] x2 + [1]                                             
                p(c_8) = [1]                                                      
                p(c_9) = [1]                                                      
               p(c_10) = [4] x1 + [1]                                             
               p(c_11) = [1] x2 + [0]                                             
               p(c_12) = [2] x1 + [0]                                             
               p(c_13) = [1] x1 + [1]                                             
               p(c_14) = [1]                                                      
               p(c_15) = [1]                                                      
               p(c_16) = [1]                                                      
               p(c_17) = [0]                                                      
               p(c_18) = [1] x1 + [1] x2 + [1] x3 + [4] x5 + [0]                  
               p(c_19) = [0]                                                      
               p(c_20) = [0]                                                      
               p(c_21) = [1]                                                      
               p(c_22) = [4]                                                      
               p(c_23) = [1] x1 + [1]                                             
               p(c_24) = [1] x1 + [1]                                             
               p(c_25) = [1] x1 + [0]                                             
               p(c_26) = [1]                                                      
               p(c_27) = [1]                                                      
               p(c_28) = [0]                                                      
               p(c_29) = [2]                                                      
               p(c_30) = [1]                                                      
               p(c_31) = [2]                                                      
               p(c_32) = [0]                                                      
               p(c_33) = [1]                                                      
               p(c_34) = [1]                                                      
               p(c_35) = [1] x4 + [2]                                             
               p(c_36) = [0]                                                      
               p(c_37) = [0]                                                      
               p(c_38) = [2]                                                      
               p(c_39) = [1] x1 + [4] x2 + [2] x4 + [1] x6 + [1] x7 + [1] x8 + [2]
            
            Following rules are strictly oriented:
            wb#(n(x,y,z)) = [1] y + [1] z + [16]
                          > [1] y + [1] z + [12]
                          = c_39(size#(y)       
                                ,size#(z)       
                                ,size#(y)       
                                ,size#(z)       
                                ,size#(z)       
                                ,size#(y)       
                                ,wb#(y)         
                                ,wb#(z))        
            
            
            Following rules are (at-least) weakly oriented:
            
      *** 1.1.1.1.1.1.1.1.1.1.1.1.1.1 Progress [(?,O(1))]  ***
          Considered Problem:
            Strict DP Rules:
              
            Strict TRS Rules:
              
            Weak DP Rules:
              wb#(n(x,y,z)) -> c_39(size#(y),size#(z),size#(y),size#(z),size#(z),size#(y),wb#(y),wb#(z))
            Weak TRS Rules:
              +(x,#()) -> x
              +(x,+(y,z)) -> +(+(x,y),z)
              +(#(),x) -> x
              +(0(x),0(y)) -> 0(+(x,y))
              +(0(x),1(y)) -> 1(+(x,y))
              +(1(x),0(y)) -> 1(+(x,y))
              +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
              0(#()) -> #()
              size(l(x)) -> 1(#())
              size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
            Signature:
              {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/4,c_36/0,c_37/0,c_38/0,c_39/8}
            Obligation:
              Innermost
              basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
          Applied Processor:
            Assumption
          Proof:
            ()
      
      *** 1.1.1.1.1.1.1.1.1.1.1.1.2 Progress [(O(1),O(1))]  ***
          Considered Problem:
            Strict DP Rules:
              
            Strict TRS Rules:
              
            Weak DP Rules:
              wb#(n(x,y,z)) -> c_39(size#(y),size#(z),size#(y),size#(z),size#(z),size#(y),wb#(y),wb#(z))
            Weak TRS Rules:
              +(x,#()) -> x
              +(x,+(y,z)) -> +(+(x,y),z)
              +(#(),x) -> x
              +(0(x),0(y)) -> 0(+(x,y))
              +(0(x),1(y)) -> 1(+(x,y))
              +(1(x),0(y)) -> 1(+(x,y))
              +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
              0(#()) -> #()
              size(l(x)) -> 1(#())
              size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
            Signature:
              {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/4,c_36/0,c_37/0,c_38/0,c_39/8}
            Obligation:
              Innermost
              basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
          Applied Processor:
            RemoveWeakSuffixes
          Proof:
            Consider the dependency graph
              1:W:wb#(n(x,y,z)) -> c_39(size#(y),size#(z),size#(y),size#(z),size#(z),size#(y),wb#(y),wb#(z))
                 -->_8 wb#(n(x,y,z)) -> c_39(size#(y),size#(z),size#(y),size#(z),size#(z),size#(y),wb#(y),wb#(z)):1
                 -->_7 wb#(n(x,y,z)) -> c_39(size#(y),size#(z),size#(y),size#(z),size#(z),size#(y),wb#(y),wb#(z)):1
              
            The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
              1: wb#(n(x,y,z)) -> c_39(size#(y)
                                      ,size#(z)
                                      ,size#(y)
                                      ,size#(z)
                                      ,size#(z)
                                      ,size#(y)
                                      ,wb#(y)  
                                      ,wb#(z)) 
      *** 1.1.1.1.1.1.1.1.1.1.1.1.2.1 Progress [(O(1),O(1))]  ***
          Considered Problem:
            Strict DP Rules:
              
            Strict TRS Rules:
              
            Weak DP Rules:
              
            Weak TRS Rules:
              +(x,#()) -> x
              +(x,+(y,z)) -> +(+(x,y),z)
              +(#(),x) -> x
              +(0(x),0(y)) -> 0(+(x,y))
              +(0(x),1(y)) -> 1(+(x,y))
              +(1(x),0(y)) -> 1(+(x,y))
              +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
              0(#()) -> #()
              size(l(x)) -> 1(#())
              size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
            Signature:
              {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/4,c_36/0,c_37/0,c_38/0,c_39/8}
            Obligation:
              Innermost
              basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
          Applied Processor:
            EmptyProcessor
          Proof:
            The problem is already closed. The intended complexity is O(1).
      
    *** 1.1.1.1.1.1.1.1.1.1.1.2 Progress [(?,O(n^3))]  ***
        Considered Problem:
          Strict DP Rules:
            +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y))
            +#(0(x),0(y)) -> c_4(+#(x,y))
            +#(0(x),1(y)) -> c_5(+#(x,y))
            +#(1(x),0(y)) -> c_6(+#(x,y))
            +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y))
          Strict TRS Rules:
            
          Weak DP Rules:
            size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y))
            wb#(n(x,y,z)) -> size#(y)
            wb#(n(x,y,z)) -> size#(z)
            wb#(n(x,y,z)) -> wb#(y)
            wb#(n(x,y,z)) -> wb#(z)
          Weak TRS Rules:
            +(x,#()) -> x
            +(x,+(y,z)) -> +(+(x,y),z)
            +(#(),x) -> x
            +(0(x),0(y)) -> 0(+(x,y))
            +(0(x),1(y)) -> 1(+(x,y))
            +(1(x),0(y)) -> 1(+(x,y))
            +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
            0(#()) -> #()
            size(l(x)) -> 1(#())
            size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
          Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/4,c_36/0,c_37/0,c_38/0,c_39/8}
          Obligation:
            Innermost
            basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
        Applied Processor:
          PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
        Proof:
          We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
            3: +#(0(x),1(y)) -> c_5(+#(x,y))
            
          The strictly oriented rules are moved into the weak component.
      *** 1.1.1.1.1.1.1.1.1.1.1.2.1 Progress [(?,O(n^2))]  ***
          Considered Problem:
            Strict DP Rules:
              +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y))
              +#(0(x),0(y)) -> c_4(+#(x,y))
              +#(0(x),1(y)) -> c_5(+#(x,y))
              +#(1(x),0(y)) -> c_6(+#(x,y))
              +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y))
            Strict TRS Rules:
              
            Weak DP Rules:
              size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y))
              wb#(n(x,y,z)) -> size#(y)
              wb#(n(x,y,z)) -> size#(z)
              wb#(n(x,y,z)) -> wb#(y)
              wb#(n(x,y,z)) -> wb#(z)
            Weak TRS Rules:
              +(x,#()) -> x
              +(x,+(y,z)) -> +(+(x,y),z)
              +(#(),x) -> x
              +(0(x),0(y)) -> 0(+(x,y))
              +(0(x),1(y)) -> 1(+(x,y))
              +(1(x),0(y)) -> 1(+(x,y))
              +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
              0(#()) -> #()
              size(l(x)) -> 1(#())
              size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
            Signature:
              {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/4,c_36/0,c_37/0,c_38/0,c_39/8}
            Obligation:
              Innermost
              basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
          Applied Processor:
            NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
          Proof:
            We apply a polynomial interpretation of kind constructor-based(mixed(2)):
            The following argument positions are considered usable:
              uargs(c_2) = {1,2},
              uargs(c_4) = {1},
              uargs(c_5) = {1},
              uargs(c_6) = {1},
              uargs(c_7) = {1,2},
              uargs(c_35) = {1,2,3,4}
            
            Following symbols are considered usable:
              {+,0,size,+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}
            TcT has computed the following interpretation:
                  p(#) = 0                
                  p(+) = x1 + x2          
                  p(-) = 0                
                  p(0) = x1               
                  p(1) = 1 + x1           
                p(and) = 0                
                 p(bs) = 0                
              p(false) = 0                
                 p(ge) = 0                
                 p(if) = 0                
                  p(l) = 1 + x1           
                p(max) = 0                
                p(min) = 0                
                  p(n) = 1 + x1 + x2 + x3 
                p(not) = 0                
               p(size) = x1               
               p(true) = 0                
                p(val) = 0                
                 p(wb) = 0                
                 p(+#) = x2               
                 p(-#) = 0                
                 p(0#) = 0                
               p(and#) = 0                
                p(bs#) = 0                
                p(ge#) = 0                
                p(if#) = 0                
               p(max#) = 0                
               p(min#) = 0                
               p(not#) = 0                
              p(size#) = x1^2             
               p(val#) = 0                
                p(wb#) = x1^2             
                p(c_1) = 0                
                p(c_2) = x1 + x2          
                p(c_3) = 0                
                p(c_4) = x1               
                p(c_5) = x1               
                p(c_6) = x1               
                p(c_7) = x1 + x2          
                p(c_8) = 0                
                p(c_9) = 0                
               p(c_10) = 0                
               p(c_11) = 0                
               p(c_12) = 0                
               p(c_13) = 0                
               p(c_14) = 0                
               p(c_15) = 0                
               p(c_16) = 0                
               p(c_17) = 0                
               p(c_18) = 0                
               p(c_19) = 0                
               p(c_20) = 0                
               p(c_21) = 0                
               p(c_22) = 0                
               p(c_23) = 0                
               p(c_24) = 0                
               p(c_25) = 0                
               p(c_26) = 0                
               p(c_27) = 0                
               p(c_28) = 0                
               p(c_29) = 0                
               p(c_30) = 0                
               p(c_31) = 0                
               p(c_32) = 0                
               p(c_33) = 0                
               p(c_34) = 0                
               p(c_35) = x1 + x2 + x3 + x4
               p(c_36) = 0                
               p(c_37) = 0                
               p(c_38) = 0                
               p(c_39) = 0                
            
            Following rules are strictly oriented:
            +#(0(x),1(y)) = 1 + y       
                          > y           
                          = c_5(+#(x,y))
            
            
            Following rules are (at-least) weakly oriented:
               +#(x,+(y,z)) =  y + z                                                        
                            >= y + z                                                        
                            =  c_2(+#(+(x,y),z),+#(x,y))                                    
            
              +#(0(x),0(y)) =  y                                                            
                            >= y                                                            
                            =  c_4(+#(x,y))                                                 
            
              +#(1(x),0(y)) =  y                                                            
                            >= y                                                            
                            =  c_6(+#(x,y))                                                 
            
              +#(1(x),1(y)) =  1 + y                                                        
                            >= 1 + y                                                        
                            =  c_7(+#(+(x,y),1(#())),+#(x,y))                               
            
            size#(n(x,y,z)) =  1 + 2*x + 2*x*y + 2*x*z + x^2 + 2*y + 2*y*z + y^2 + 2*z + z^2
                            >= 1 + x^2 + y + y^2                                            
                            =  c_35(+#(+(size(x),size(y))                                   
                                      ,1(#()))                                              
                                   ,+#(size(x),size(y))                                     
                                   ,size#(x)                                                
                                   ,size#(y))                                               
            
              wb#(n(x,y,z)) =  1 + 2*x + 2*x*y + 2*x*z + x^2 + 2*y + 2*y*z + y^2 + 2*z + z^2
                            >= y^2                                                          
                            =  size#(y)                                                     
            
              wb#(n(x,y,z)) =  1 + 2*x + 2*x*y + 2*x*z + x^2 + 2*y + 2*y*z + y^2 + 2*z + z^2
                            >= z^2                                                          
                            =  size#(z)                                                     
            
              wb#(n(x,y,z)) =  1 + 2*x + 2*x*y + 2*x*z + x^2 + 2*y + 2*y*z + y^2 + 2*z + z^2
                            >= y^2                                                          
                            =  wb#(y)                                                       
            
              wb#(n(x,y,z)) =  1 + 2*x + 2*x*y + 2*x*z + x^2 + 2*y + 2*y*z + y^2 + 2*z + z^2
                            >= z^2                                                          
                            =  wb#(z)                                                       
            
                   +(x,#()) =  x                                                            
                            >= x                                                            
                            =  x                                                            
            
                +(x,+(y,z)) =  x + y + z                                                    
                            >= x + y + z                                                    
                            =  +(+(x,y),z)                                                  
            
                   +(#(),x) =  x                                                            
                            >= x                                                            
                            =  x                                                            
            
               +(0(x),0(y)) =  x + y                                                        
                            >= x + y                                                        
                            =  0(+(x,y))                                                    
            
               +(0(x),1(y)) =  1 + x + y                                                    
                            >= 1 + x + y                                                    
                            =  1(+(x,y))                                                    
            
               +(1(x),0(y)) =  1 + x + y                                                    
                            >= 1 + x + y                                                    
                            =  1(+(x,y))                                                    
            
               +(1(x),1(y)) =  2 + x + y                                                    
                            >= 1 + x + y                                                    
                            =  0(+(+(x,y),1(#())))                                          
            
                     0(#()) =  0                                                            
                            >= 0                                                            
                            =  #()                                                          
            
                 size(l(x)) =  1 + x                                                        
                            >= 1                                                            
                            =  1(#())                                                       
            
             size(n(x,y,z)) =  1 + x + y + z                                                
                            >= 1 + x + y                                                    
                            =  +(+(size(x),size(y)),1(#()))                                 
            
      *** 1.1.1.1.1.1.1.1.1.1.1.2.1.1 Progress [(?,O(1))]  ***
          Considered Problem:
            Strict DP Rules:
              +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y))
              +#(0(x),0(y)) -> c_4(+#(x,y))
              +#(1(x),0(y)) -> c_6(+#(x,y))
              +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y))
            Strict TRS Rules:
              
            Weak DP Rules:
              +#(0(x),1(y)) -> c_5(+#(x,y))
              size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y))
              wb#(n(x,y,z)) -> size#(y)
              wb#(n(x,y,z)) -> size#(z)
              wb#(n(x,y,z)) -> wb#(y)
              wb#(n(x,y,z)) -> wb#(z)
            Weak TRS Rules:
              +(x,#()) -> x
              +(x,+(y,z)) -> +(+(x,y),z)
              +(#(),x) -> x
              +(0(x),0(y)) -> 0(+(x,y))
              +(0(x),1(y)) -> 1(+(x,y))
              +(1(x),0(y)) -> 1(+(x,y))
              +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
              0(#()) -> #()
              size(l(x)) -> 1(#())
              size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
            Signature:
              {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/4,c_36/0,c_37/0,c_38/0,c_39/8}
            Obligation:
              Innermost
              basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
          Applied Processor:
            Assumption
          Proof:
            ()
      
      *** 1.1.1.1.1.1.1.1.1.1.1.2.2 Progress [(?,O(n^3))]  ***
          Considered Problem:
            Strict DP Rules:
              +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y))
              +#(0(x),0(y)) -> c_4(+#(x,y))
              +#(1(x),0(y)) -> c_6(+#(x,y))
              +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y))
            Strict TRS Rules:
              
            Weak DP Rules:
              +#(0(x),1(y)) -> c_5(+#(x,y))
              size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y))
              wb#(n(x,y,z)) -> size#(y)
              wb#(n(x,y,z)) -> size#(z)
              wb#(n(x,y,z)) -> wb#(y)
              wb#(n(x,y,z)) -> wb#(z)
            Weak TRS Rules:
              +(x,#()) -> x
              +(x,+(y,z)) -> +(+(x,y),z)
              +(#(),x) -> x
              +(0(x),0(y)) -> 0(+(x,y))
              +(0(x),1(y)) -> 1(+(x,y))
              +(1(x),0(y)) -> 1(+(x,y))
              +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
              0(#()) -> #()
              size(l(x)) -> 1(#())
              size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
            Signature:
              {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/4,c_36/0,c_37/0,c_38/0,c_39/8}
            Obligation:
              Innermost
              basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
          Applied Processor:
            PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
          Proof:
            We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
              2: +#(0(x),0(y)) -> c_4(+#(x,y))
              
            The strictly oriented rules are moved into the weak component.
        *** 1.1.1.1.1.1.1.1.1.1.1.2.2.1 Progress [(?,O(n^2))]  ***
            Considered Problem:
              Strict DP Rules:
                +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y))
                +#(0(x),0(y)) -> c_4(+#(x,y))
                +#(1(x),0(y)) -> c_6(+#(x,y))
                +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y))
              Strict TRS Rules:
                
              Weak DP Rules:
                +#(0(x),1(y)) -> c_5(+#(x,y))
                size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y))
                wb#(n(x,y,z)) -> size#(y)
                wb#(n(x,y,z)) -> size#(z)
                wb#(n(x,y,z)) -> wb#(y)
                wb#(n(x,y,z)) -> wb#(z)
              Weak TRS Rules:
                +(x,#()) -> x
                +(x,+(y,z)) -> +(+(x,y),z)
                +(#(),x) -> x
                +(0(x),0(y)) -> 0(+(x,y))
                +(0(x),1(y)) -> 1(+(x,y))
                +(1(x),0(y)) -> 1(+(x,y))
                +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
                0(#()) -> #()
                size(l(x)) -> 1(#())
                size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
              Signature:
                {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/4,c_36/0,c_37/0,c_38/0,c_39/8}
              Obligation:
                Innermost
                basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
            Applied Processor:
              NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
            Proof:
              We apply a polynomial interpretation of kind constructor-based(mixed(2)):
              The following argument positions are considered usable:
                uargs(c_2) = {1,2},
                uargs(c_4) = {1},
                uargs(c_5) = {1},
                uargs(c_6) = {1},
                uargs(c_7) = {1,2},
                uargs(c_35) = {1,2,3,4}
              
              Following symbols are considered usable:
                {+,0,size,+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}
              TcT has computed the following interpretation:
                    p(#) = 0                
                    p(+) = x1 + x2          
                    p(-) = 0                
                    p(0) = 1 + x1           
                    p(1) = 1 + x1           
                  p(and) = 0                
                   p(bs) = 0                
                p(false) = 0                
                   p(ge) = 0                
                   p(if) = 0                
                    p(l) = 1                
                  p(max) = 0                
                  p(min) = 0                
                    p(n) = 1 + x1 + x2 + x3 
                  p(not) = 0                
                 p(size) = x1               
                 p(true) = 0                
                  p(val) = 0                
                   p(wb) = 0                
                   p(+#) = x2               
                   p(-#) = 0                
                   p(0#) = 0                
                 p(and#) = 0                
                  p(bs#) = 0                
                  p(ge#) = 0                
                  p(if#) = 0                
                 p(max#) = 0                
                 p(min#) = 0                
                 p(not#) = 0                
                p(size#) = 1 + x1 + x1^2    
                 p(val#) = 0                
                  p(wb#) = x1^2             
                  p(c_1) = 0                
                  p(c_2) = x1 + x2          
                  p(c_3) = 0                
                  p(c_4) = x1               
                  p(c_5) = 1 + x1           
                  p(c_6) = 1 + x1           
                  p(c_7) = x1 + x2          
                  p(c_8) = 0                
                  p(c_9) = 0                
                 p(c_10) = 0                
                 p(c_11) = 0                
                 p(c_12) = 0                
                 p(c_13) = 0                
                 p(c_14) = 0                
                 p(c_15) = 0                
                 p(c_16) = 0                
                 p(c_17) = 0                
                 p(c_18) = 0                
                 p(c_19) = 0                
                 p(c_20) = 0                
                 p(c_21) = 0                
                 p(c_22) = 0                
                 p(c_23) = 0                
                 p(c_24) = 0                
                 p(c_25) = 0                
                 p(c_26) = 0                
                 p(c_27) = 0                
                 p(c_28) = 0                
                 p(c_29) = 0                
                 p(c_30) = 0                
                 p(c_31) = 0                
                 p(c_32) = 0                
                 p(c_33) = 0                
                 p(c_34) = 0                
                 p(c_35) = x1 + x2 + x3 + x4
                 p(c_36) = 0                
                 p(c_37) = 0                
                 p(c_38) = 0                
                 p(c_39) = 0                
              
              Following rules are strictly oriented:
              +#(0(x),0(y)) = 1 + y       
                            > y           
                            = c_4(+#(x,y))
              
              
              Following rules are (at-least) weakly oriented:
                 +#(x,+(y,z)) =  y + z                                                        
                              >= y + z                                                        
                              =  c_2(+#(+(x,y),z),+#(x,y))                                    
              
                +#(0(x),1(y)) =  1 + y                                                        
                              >= 1 + y                                                        
                              =  c_5(+#(x,y))                                                 
              
                +#(1(x),0(y)) =  1 + y                                                        
                              >= 1 + y                                                        
                              =  c_6(+#(x,y))                                                 
              
                +#(1(x),1(y)) =  1 + y                                                        
                              >= 1 + y                                                        
                              =  c_7(+#(+(x,y),1(#())),+#(x,y))                               
              
              size#(n(x,y,z)) =  3 + 3*x + 2*x*y + 2*x*z + x^2 + 3*y + 2*y*z + y^2 + 3*z + z^2
                              >= 3 + x + x^2 + 2*y + y^2                                      
                              =  c_35(+#(+(size(x),size(y))                                   
                                        ,1(#()))                                              
                                     ,+#(size(x),size(y))                                     
                                     ,size#(x)                                                
                                     ,size#(y))                                               
              
                wb#(n(x,y,z)) =  1 + 2*x + 2*x*y + 2*x*z + x^2 + 2*y + 2*y*z + y^2 + 2*z + z^2
                              >= 1 + y + y^2                                                  
                              =  size#(y)                                                     
              
                wb#(n(x,y,z)) =  1 + 2*x + 2*x*y + 2*x*z + x^2 + 2*y + 2*y*z + y^2 + 2*z + z^2
                              >= 1 + z + z^2                                                  
                              =  size#(z)                                                     
              
                wb#(n(x,y,z)) =  1 + 2*x + 2*x*y + 2*x*z + x^2 + 2*y + 2*y*z + y^2 + 2*z + z^2
                              >= y^2                                                          
                              =  wb#(y)                                                       
              
                wb#(n(x,y,z)) =  1 + 2*x + 2*x*y + 2*x*z + x^2 + 2*y + 2*y*z + y^2 + 2*z + z^2
                              >= z^2                                                          
                              =  wb#(z)                                                       
              
                     +(x,#()) =  x                                                            
                              >= x                                                            
                              =  x                                                            
              
                  +(x,+(y,z)) =  x + y + z                                                    
                              >= x + y + z                                                    
                              =  +(+(x,y),z)                                                  
              
                     +(#(),x) =  x                                                            
                              >= x                                                            
                              =  x                                                            
              
                 +(0(x),0(y)) =  2 + x + y                                                    
                              >= 1 + x + y                                                    
                              =  0(+(x,y))                                                    
              
                 +(0(x),1(y)) =  2 + x + y                                                    
                              >= 1 + x + y                                                    
                              =  1(+(x,y))                                                    
              
                 +(1(x),0(y)) =  2 + x + y                                                    
                              >= 1 + x + y                                                    
                              =  1(+(x,y))                                                    
              
                 +(1(x),1(y)) =  2 + x + y                                                    
                              >= 2 + x + y                                                    
                              =  0(+(+(x,y),1(#())))                                          
              
                       0(#()) =  1                                                            
                              >= 0                                                            
                              =  #()                                                          
              
                   size(l(x)) =  1                                                            
                              >= 1                                                            
                              =  1(#())                                                       
              
               size(n(x,y,z)) =  1 + x + y + z                                                
                              >= 1 + x + y                                                    
                              =  +(+(size(x),size(y)),1(#()))                                 
              
        *** 1.1.1.1.1.1.1.1.1.1.1.2.2.1.1 Progress [(?,O(1))]  ***
            Considered Problem:
              Strict DP Rules:
                +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y))
                +#(1(x),0(y)) -> c_6(+#(x,y))
                +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y))
              Strict TRS Rules:
                
              Weak DP Rules:
                +#(0(x),0(y)) -> c_4(+#(x,y))
                +#(0(x),1(y)) -> c_5(+#(x,y))
                size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y))
                wb#(n(x,y,z)) -> size#(y)
                wb#(n(x,y,z)) -> size#(z)
                wb#(n(x,y,z)) -> wb#(y)
                wb#(n(x,y,z)) -> wb#(z)
              Weak TRS Rules:
                +(x,#()) -> x
                +(x,+(y,z)) -> +(+(x,y),z)
                +(#(),x) -> x
                +(0(x),0(y)) -> 0(+(x,y))
                +(0(x),1(y)) -> 1(+(x,y))
                +(1(x),0(y)) -> 1(+(x,y))
                +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
                0(#()) -> #()
                size(l(x)) -> 1(#())
                size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
              Signature:
                {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/4,c_36/0,c_37/0,c_38/0,c_39/8}
              Obligation:
                Innermost
                basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
            Applied Processor:
              Assumption
            Proof:
              ()
        
        *** 1.1.1.1.1.1.1.1.1.1.1.2.2.2 Progress [(?,O(n^3))]  ***
            Considered Problem:
              Strict DP Rules:
                +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y))
                +#(1(x),0(y)) -> c_6(+#(x,y))
                +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y))
              Strict TRS Rules:
                
              Weak DP Rules:
                +#(0(x),0(y)) -> c_4(+#(x,y))
                +#(0(x),1(y)) -> c_5(+#(x,y))
                size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y))
                wb#(n(x,y,z)) -> size#(y)
                wb#(n(x,y,z)) -> size#(z)
                wb#(n(x,y,z)) -> wb#(y)
                wb#(n(x,y,z)) -> wb#(z)
              Weak TRS Rules:
                +(x,#()) -> x
                +(x,+(y,z)) -> +(+(x,y),z)
                +(#(),x) -> x
                +(0(x),0(y)) -> 0(+(x,y))
                +(0(x),1(y)) -> 1(+(x,y))
                +(1(x),0(y)) -> 1(+(x,y))
                +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
                0(#()) -> #()
                size(l(x)) -> 1(#())
                size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
              Signature:
                {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/4,c_36/0,c_37/0,c_38/0,c_39/8}
              Obligation:
                Innermost
                basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
            Applied Processor:
              PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
            Proof:
              We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
                2: +#(1(x),0(y)) -> c_6(+#(x,y))
                
              The strictly oriented rules are moved into the weak component.
          *** 1.1.1.1.1.1.1.1.1.1.1.2.2.2.1 Progress [(?,O(n^2))]  ***
              Considered Problem:
                Strict DP Rules:
                  +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y))
                  +#(1(x),0(y)) -> c_6(+#(x,y))
                  +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y))
                Strict TRS Rules:
                  
                Weak DP Rules:
                  +#(0(x),0(y)) -> c_4(+#(x,y))
                  +#(0(x),1(y)) -> c_5(+#(x,y))
                  size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y))
                  wb#(n(x,y,z)) -> size#(y)
                  wb#(n(x,y,z)) -> size#(z)
                  wb#(n(x,y,z)) -> wb#(y)
                  wb#(n(x,y,z)) -> wb#(z)
                Weak TRS Rules:
                  +(x,#()) -> x
                  +(x,+(y,z)) -> +(+(x,y),z)
                  +(#(),x) -> x
                  +(0(x),0(y)) -> 0(+(x,y))
                  +(0(x),1(y)) -> 1(+(x,y))
                  +(1(x),0(y)) -> 1(+(x,y))
                  +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
                  0(#()) -> #()
                  size(l(x)) -> 1(#())
                  size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
                Signature:
                  {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/4,c_36/0,c_37/0,c_38/0,c_39/8}
                Obligation:
                  Innermost
                  basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
              Applied Processor:
                NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
              Proof:
                We apply a polynomial interpretation of kind constructor-based(mixed(2)):
                The following argument positions are considered usable:
                  uargs(c_2) = {1,2},
                  uargs(c_4) = {1},
                  uargs(c_5) = {1},
                  uargs(c_6) = {1},
                  uargs(c_7) = {1,2},
                  uargs(c_35) = {1,2,3,4}
                
                Following symbols are considered usable:
                  {+,0,size,+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}
                TcT has computed the following interpretation:
                      p(#) = 0                    
                      p(+) = x1 + x2              
                      p(-) = 0                    
                      p(0) = 1 + x1               
                      p(1) = 1 + x1               
                    p(and) = 0                    
                     p(bs) = 0                    
                  p(false) = 0                    
                     p(ge) = 0                    
                     p(if) = 0                    
                      p(l) = 1                    
                    p(max) = 0                    
                    p(min) = 0                    
                      p(n) = 1 + x1 + x2 + x3     
                    p(not) = 0                    
                   p(size) = x1                   
                   p(true) = 0                    
                    p(val) = 0                    
                     p(wb) = 0                    
                     p(+#) = x2                   
                     p(-#) = 0                    
                     p(0#) = 0                    
                   p(and#) = 0                    
                    p(bs#) = 0                    
                    p(ge#) = 0                    
                    p(if#) = 0                    
                   p(max#) = 0                    
                   p(min#) = 0                    
                   p(not#) = 0                    
                  p(size#) = x1 + x1^2            
                   p(val#) = 0                    
                    p(wb#) = x1^2                 
                    p(c_1) = 0                    
                    p(c_2) = x1 + x2              
                    p(c_3) = 0                    
                    p(c_4) = x1                   
                    p(c_5) = x1                   
                    p(c_6) = x1                   
                    p(c_7) = x1 + x2              
                    p(c_8) = 0                    
                    p(c_9) = 0                    
                   p(c_10) = 0                    
                   p(c_11) = 0                    
                   p(c_12) = 0                    
                   p(c_13) = 0                    
                   p(c_14) = 0                    
                   p(c_15) = 0                    
                   p(c_16) = 0                    
                   p(c_17) = 0                    
                   p(c_18) = 0                    
                   p(c_19) = 0                    
                   p(c_20) = 0                    
                   p(c_21) = 0                    
                   p(c_22) = 0                    
                   p(c_23) = 0                    
                   p(c_24) = 0                    
                   p(c_25) = 0                    
                   p(c_26) = 0                    
                   p(c_27) = 0                    
                   p(c_28) = 0                    
                   p(c_29) = 0                    
                   p(c_30) = 0                    
                   p(c_31) = 0                    
                   p(c_32) = 0                    
                   p(c_33) = 0                    
                   p(c_34) = 0                    
                   p(c_35) = 1 + x1 + x2 + x3 + x4
                   p(c_36) = 0                    
                   p(c_37) = 0                    
                   p(c_38) = 0                    
                   p(c_39) = 0                    
                
                Following rules are strictly oriented:
                +#(1(x),0(y)) = 1 + y       
                              > y           
                              = c_6(+#(x,y))
                
                
                Following rules are (at-least) weakly oriented:
                   +#(x,+(y,z)) =  y + z                                                        
                                >= y + z                                                        
                                =  c_2(+#(+(x,y),z),+#(x,y))                                    
                
                  +#(0(x),0(y)) =  1 + y                                                        
                                >= y                                                            
                                =  c_4(+#(x,y))                                                 
                
                  +#(0(x),1(y)) =  1 + y                                                        
                                >= y                                                            
                                =  c_5(+#(x,y))                                                 
                
                  +#(1(x),1(y)) =  1 + y                                                        
                                >= 1 + y                                                        
                                =  c_7(+#(+(x,y),1(#())),+#(x,y))                               
                
                size#(n(x,y,z)) =  2 + 3*x + 2*x*y + 2*x*z + x^2 + 3*y + 2*y*z + y^2 + 3*z + z^2
                                >= 2 + x + x^2 + 2*y + y^2                                      
                                =  c_35(+#(+(size(x),size(y))                                   
                                          ,1(#()))                                              
                                       ,+#(size(x),size(y))                                     
                                       ,size#(x)                                                
                                       ,size#(y))                                               
                
                  wb#(n(x,y,z)) =  1 + 2*x + 2*x*y + 2*x*z + x^2 + 2*y + 2*y*z + y^2 + 2*z + z^2
                                >= y + y^2                                                      
                                =  size#(y)                                                     
                
                  wb#(n(x,y,z)) =  1 + 2*x + 2*x*y + 2*x*z + x^2 + 2*y + 2*y*z + y^2 + 2*z + z^2
                                >= z + z^2                                                      
                                =  size#(z)                                                     
                
                  wb#(n(x,y,z)) =  1 + 2*x + 2*x*y + 2*x*z + x^2 + 2*y + 2*y*z + y^2 + 2*z + z^2
                                >= y^2                                                          
                                =  wb#(y)                                                       
                
                  wb#(n(x,y,z)) =  1 + 2*x + 2*x*y + 2*x*z + x^2 + 2*y + 2*y*z + y^2 + 2*z + z^2
                                >= z^2                                                          
                                =  wb#(z)                                                       
                
                       +(x,#()) =  x                                                            
                                >= x                                                            
                                =  x                                                            
                
                    +(x,+(y,z)) =  x + y + z                                                    
                                >= x + y + z                                                    
                                =  +(+(x,y),z)                                                  
                
                       +(#(),x) =  x                                                            
                                >= x                                                            
                                =  x                                                            
                
                   +(0(x),0(y)) =  2 + x + y                                                    
                                >= 1 + x + y                                                    
                                =  0(+(x,y))                                                    
                
                   +(0(x),1(y)) =  2 + x + y                                                    
                                >= 1 + x + y                                                    
                                =  1(+(x,y))                                                    
                
                   +(1(x),0(y)) =  2 + x + y                                                    
                                >= 1 + x + y                                                    
                                =  1(+(x,y))                                                    
                
                   +(1(x),1(y)) =  2 + x + y                                                    
                                >= 2 + x + y                                                    
                                =  0(+(+(x,y),1(#())))                                          
                
                         0(#()) =  1                                                            
                                >= 0                                                            
                                =  #()                                                          
                
                     size(l(x)) =  1                                                            
                                >= 1                                                            
                                =  1(#())                                                       
                
                 size(n(x,y,z)) =  1 + x + y + z                                                
                                >= 1 + x + y                                                    
                                =  +(+(size(x),size(y)),1(#()))                                 
                
          *** 1.1.1.1.1.1.1.1.1.1.1.2.2.2.1.1 Progress [(?,O(1))]  ***
              Considered Problem:
                Strict DP Rules:
                  +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y))
                  +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y))
                Strict TRS Rules:
                  
                Weak DP Rules:
                  +#(0(x),0(y)) -> c_4(+#(x,y))
                  +#(0(x),1(y)) -> c_5(+#(x,y))
                  +#(1(x),0(y)) -> c_6(+#(x,y))
                  size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y))
                  wb#(n(x,y,z)) -> size#(y)
                  wb#(n(x,y,z)) -> size#(z)
                  wb#(n(x,y,z)) -> wb#(y)
                  wb#(n(x,y,z)) -> wb#(z)
                Weak TRS Rules:
                  +(x,#()) -> x
                  +(x,+(y,z)) -> +(+(x,y),z)
                  +(#(),x) -> x
                  +(0(x),0(y)) -> 0(+(x,y))
                  +(0(x),1(y)) -> 1(+(x,y))
                  +(1(x),0(y)) -> 1(+(x,y))
                  +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
                  0(#()) -> #()
                  size(l(x)) -> 1(#())
                  size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
                Signature:
                  {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/4,c_36/0,c_37/0,c_38/0,c_39/8}
                Obligation:
                  Innermost
                  basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
              Applied Processor:
                Assumption
              Proof:
                ()
          
          *** 1.1.1.1.1.1.1.1.1.1.1.2.2.2.2 Progress [(?,O(n^3))]  ***
              Considered Problem:
                Strict DP Rules:
                  +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y))
                  +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y))
                Strict TRS Rules:
                  
                Weak DP Rules:
                  +#(0(x),0(y)) -> c_4(+#(x,y))
                  +#(0(x),1(y)) -> c_5(+#(x,y))
                  +#(1(x),0(y)) -> c_6(+#(x,y))
                  size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y))
                  wb#(n(x,y,z)) -> size#(y)
                  wb#(n(x,y,z)) -> size#(z)
                  wb#(n(x,y,z)) -> wb#(y)
                  wb#(n(x,y,z)) -> wb#(z)
                Weak TRS Rules:
                  +(x,#()) -> x
                  +(x,+(y,z)) -> +(+(x,y),z)
                  +(#(),x) -> x
                  +(0(x),0(y)) -> 0(+(x,y))
                  +(0(x),1(y)) -> 1(+(x,y))
                  +(1(x),0(y)) -> 1(+(x,y))
                  +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
                  0(#()) -> #()
                  size(l(x)) -> 1(#())
                  size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
                Signature:
                  {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/4,c_36/0,c_37/0,c_38/0,c_39/8}
                Obligation:
                  Innermost
                  basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
              Applied Processor:
                PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
              Proof:
                We first use the processor NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
                  1: +#(x,+(y,z)) -> c_2(+#(+(x,y),z)
                                        ,+#(x,y))    
                  
                The strictly oriented rules are moved into the weak component.
            *** 1.1.1.1.1.1.1.1.1.1.1.2.2.2.2.1 Progress [(?,O(n^2))]  ***
                Considered Problem:
                  Strict DP Rules:
                    +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y))
                    +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y))
                  Strict TRS Rules:
                    
                  Weak DP Rules:
                    +#(0(x),0(y)) -> c_4(+#(x,y))
                    +#(0(x),1(y)) -> c_5(+#(x,y))
                    +#(1(x),0(y)) -> c_6(+#(x,y))
                    size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y))
                    wb#(n(x,y,z)) -> size#(y)
                    wb#(n(x,y,z)) -> size#(z)
                    wb#(n(x,y,z)) -> wb#(y)
                    wb#(n(x,y,z)) -> wb#(z)
                  Weak TRS Rules:
                    +(x,#()) -> x
                    +(x,+(y,z)) -> +(+(x,y),z)
                    +(#(),x) -> x
                    +(0(x),0(y)) -> 0(+(x,y))
                    +(0(x),1(y)) -> 1(+(x,y))
                    +(1(x),0(y)) -> 1(+(x,y))
                    +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
                    0(#()) -> #()
                    size(l(x)) -> 1(#())
                    size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
                  Signature:
                    {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/4,c_36/0,c_37/0,c_38/0,c_39/8}
                  Obligation:
                    Innermost
                    basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
                Applied Processor:
                  NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
                Proof:
                  We apply a matrix interpretation of kind constructor based matrix interpretation:
                  The following argument positions are considered usable:
                    uargs(c_2) = {1,2},
                    uargs(c_4) = {1},
                    uargs(c_5) = {1},
                    uargs(c_6) = {1},
                    uargs(c_7) = {1,2},
                    uargs(c_35) = {1,2,3,4}
                  
                  Following symbols are considered usable:
                    {+,0,size,+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}
                  TcT has computed the following interpretation:
                        p(#) = [0]                             
                               [0]                             
                        p(+) = [1 0] x1 + [1 0] x2 + [1]       
                               [0 1]      [0 2]      [0]       
                        p(-) = [0 0] x2 + [0]                  
                               [1 0]      [0]                  
                        p(0) = [1 0] x1 + [1]                  
                               [0 0]      [0]                  
                        p(1) = [1 0] x1 + [2]                  
                               [0 0]      [0]                  
                      p(and) = [1 1] x2 + [0]                  
                               [0 0]      [1]                  
                       p(bs) = [0]                             
                               [2]                             
                    p(false) = [0]                             
                               [0]                             
                       p(ge) = [0 1] x1 + [2 0] x2 + [2]       
                               [2 0]      [1 1]      [1]       
                       p(if) = [1 2] x2 + [0 0] x3 + [1]       
                               [0 0]      [2 1]      [0]       
                        p(l) = [2]                             
                               [2]                             
                      p(max) = [0 0] x1 + [1]                  
                               [2 0]      [0]                  
                      p(min) = [2 0] x1 + [0]                  
                               [1 1]      [0]                  
                        p(n) = [1 3] x1 + [1 2] x2 + [1        
                               2] x3 + [1]                     
                               [0 1]      [0 1]      [0        
                               0]      [2]                     
                      p(not) = [0]                             
                               [0]                             
                     p(size) = [0 2] x1 + [0]                  
                               [0 0]      [0]                  
                     p(true) = [0]                             
                               [0]                             
                      p(val) = [0]                             
                               [2]                             
                       p(wb) = [2]                             
                               [0]                             
                       p(+#) = [0 0] x1 + [2 0] x2 + [0]       
                               [2 0]      [0 0]      [2]       
                       p(-#) = [0 1] x1 + [2 0] x2 + [0]       
                               [1 1]      [0 0]      [0]       
                       p(0#) = [1 0] x1 + [1]                  
                               [0 0]      [1]                  
                     p(and#) = [0 0] x2 + [0]                  
                               [1 0]      [0]                  
                      p(bs#) = [1]                             
                               [1]                             
                      p(ge#) = [0 2] x2 + [0]                  
                               [0 0]      [0]                  
                      p(if#) = [2]                             
                               [0]                             
                     p(max#) = [2 0] x1 + [0]                  
                               [2 2]      [1]                  
                     p(min#) = [1 2] x1 + [2]                  
                               [0 2]      [0]                  
                     p(not#) = [0]                             
                               [0]                             
                    p(size#) = [2 1] x1 + [0]                  
                               [0 0]      [0]                  
                     p(val#) = [2]                             
                               [0]                             
                      p(wb#) = [3 0] x1 + [0]                  
                               [1 0]      [2]                  
                      p(c_1) = [1]                             
                               [0]                             
                      p(c_2) = [1 0] x1 + [1 0] x2 + [0]       
                               [0 0]      [0 1]      [0]       
                      p(c_3) = [0]                             
                               [1]                             
                      p(c_4) = [1 0] x1 + [0]                  
                               [0 1]      [2]                  
                      p(c_5) = [1 0] x1 + [0]                  
                               [0 0]      [2]                  
                      p(c_6) = [1 0] x1 + [2]                  
                               [0 1]      [1]                  
                      p(c_7) = [1 0] x1 + [1 0] x2 + [0]       
                               [1 0]      [0 0]      [2]       
                      p(c_8) = [0]                             
                               [0]                             
                      p(c_9) = [1]                             
                               [1]                             
                     p(c_10) = [2 0] x1 + [0]                  
                               [0 0]      [1]                  
                     p(c_11) = [1 1] x2 + [0]                  
                               [2 0]      [0]                  
                     p(c_12) = [0 2] x1 + [0]                  
                               [1 2]      [1]                  
                     p(c_13) = [0 0] x1 + [0]                  
                               [2 0]      [2]                  
                     p(c_14) = [0]                             
                               [2]                             
                     p(c_15) = [1]                             
                               [0]                             
                     p(c_16) = [0]                             
                               [0]                             
                     p(c_17) = [1]                             
                               [1]                             
                     p(c_18) = [2 2] x2 + [0 2] x4 + [0]       
                               [2 1]      [0 2]      [0]       
                     p(c_19) = [2]                             
                               [1]                             
                     p(c_20) = [0]                             
                               [0]                             
                     p(c_21) = [1]                             
                               [0]                             
                     p(c_22) = [1]                             
                               [0]                             
                     p(c_23) = [2 0] x1 + [0]                  
                               [0 0]      [0]                  
                     p(c_24) = [0]                             
                               [0]                             
                     p(c_25) = [1]                             
                               [0]                             
                     p(c_26) = [1]                             
                               [2]                             
                     p(c_27) = [1]                             
                               [0]                             
                     p(c_28) = [2]                             
                               [0]                             
                     p(c_29) = [2 0] x1 + [2]                  
                               [0 0]      [0]                  
                     p(c_30) = [0]                             
                               [0]                             
                     p(c_31) = [0 2] x1 + [1]                  
                               [0 0]      [2]                  
                     p(c_32) = [0]                             
                               [1]                             
                     p(c_33) = [2]                             
                               [1]                             
                     p(c_34) = [0]                             
                               [0]                             
                     p(c_35) = [1 0] x1 + [1 0] x2 + [1        
                               1] x3 + [1 0] x4 + [0]          
                               [0 0]      [0 0]      [0        
                               0]      [0 0]      [0]          
                     p(c_36) = [0]                             
                               [0]                             
                     p(c_37) = [2]                             
                               [1]                             
                     p(c_38) = [0]                             
                               [0]                             
                     p(c_39) = [0 0] x1 + [0 0] x2 + [0        
                               0] x3 + [0 0] x4 + [0 1] x6 + [0
                               0] x7 + [0 2] x8 + [0]          
                               [2 1]      [0 1]      [1        
                               0]      [1 0]      [0 0]      [0
                               1]      [2 1]      [0]          
                  
                  Following rules are strictly oriented:
                  +#(x,+(y,z)) = [0 0] x + [2 0] y + [2   
                                 0] z + [2]               
                                 [2 0]     [0 0]     [0   
                                 0]     [2]               
                               > [0 0] x + [2 0] y + [2   
                                 0] z + [0]               
                                 [2 0]     [0 0]     [0   
                                 0]     [2]               
                               = c_2(+#(+(x,y),z),+#(x,y))
                  
                  
                  Following rules are (at-least) weakly oriented:
                    +#(0(x),0(y)) =  [0 0] x + [2 0] y + [2]       
                                     [2 0]     [0 0]     [4]       
                                  >= [0 0] x + [2 0] y + [0]       
                                     [2 0]     [0 0]     [4]       
                                  =  c_4(+#(x,y))                  
                  
                    +#(0(x),1(y)) =  [0 0] x + [2 0] y + [4]       
                                     [2 0]     [0 0]     [4]       
                                  >= [2 0] y + [0]                 
                                     [0 0]     [2]                 
                                  =  c_5(+#(x,y))                  
                  
                    +#(1(x),0(y)) =  [0 0] x + [2 0] y + [2]       
                                     [2 0]     [0 0]     [6]       
                                  >= [0 0] x + [2 0] y + [2]       
                                     [2 0]     [0 0]     [3]       
                                  =  c_6(+#(x,y))                  
                  
                    +#(1(x),1(y)) =  [0 0] x + [2 0] y + [4]       
                                     [2 0]     [0 0]     [6]       
                                  >= [2 0] y + [4]                 
                                     [0 0]     [6]                 
                                  =  c_7(+#(+(x,y),1(#())),+#(x,y))
                  
                  size#(n(x,y,z)) =  [2 7] x + [2 5] y + [2        
                                     4] z + [4]                    
                                     [0 0]     [0 0]     [0        
                                     0]     [0]                    
                                  >= [2 1] x + [2 5] y + [4]       
                                     [0 0]     [0 0]     [0]       
                                  =  c_35(+#(+(size(x),size(y))    
                                            ,1(#()))               
                                         ,+#(size(x),size(y))      
                                         ,size#(x)                 
                                         ,size#(y))                
                  
                    wb#(n(x,y,z)) =  [3 9] x + [3 6] y + [3        
                                     6] z + [3]                    
                                     [1 3]     [1 2]     [1        
                                     2]     [3]                    
                                  >= [2 1] y + [0]                 
                                     [0 0]     [0]                 
                                  =  size#(y)                      
                  
                    wb#(n(x,y,z)) =  [3 9] x + [3 6] y + [3        
                                     6] z + [3]                    
                                     [1 3]     [1 2]     [1        
                                     2]     [3]                    
                                  >= [2 1] z + [0]                 
                                     [0 0]     [0]                 
                                  =  size#(z)                      
                  
                    wb#(n(x,y,z)) =  [3 9] x + [3 6] y + [3        
                                     6] z + [3]                    
                                     [1 3]     [1 2]     [1        
                                     2]     [3]                    
                                  >= [3 0] y + [0]                 
                                     [1 0]     [2]                 
                                  =  wb#(y)                        
                  
                    wb#(n(x,y,z)) =  [3 9] x + [3 6] y + [3        
                                     6] z + [3]                    
                                     [1 3]     [1 2]     [1        
                                     2]     [3]                    
                                  >= [3 0] z + [0]                 
                                     [1 0]     [2]                 
                                  =  wb#(z)                        
                  
                         +(x,#()) =  [1 0] x + [1]                 
                                     [0 1]     [0]                 
                                  >= [1 0] x + [0]                 
                                     [0 1]     [0]                 
                                  =  x                             
                  
                      +(x,+(y,z)) =  [1 0] x + [1 0] y + [1        
                                     0] z + [2]                    
                                     [0 1]     [0 2]     [0        
                                     4]     [0]                    
                                  >= [1 0] x + [1 0] y + [1        
                                     0] z + [2]                    
                                     [0 1]     [0 2]     [0        
                                     2]     [0]                    
                                  =  +(+(x,y),z)                   
                  
                         +(#(),x) =  [1 0] x + [1]                 
                                     [0 2]     [0]                 
                                  >= [1 0] x + [0]                 
                                     [0 1]     [0]                 
                                  =  x                             
                  
                     +(0(x),0(y)) =  [1 0] x + [1 0] y + [3]       
                                     [0 0]     [0 0]     [0]       
                                  >= [1 0] x + [1 0] y + [2]       
                                     [0 0]     [0 0]     [0]       
                                  =  0(+(x,y))                     
                  
                     +(0(x),1(y)) =  [1 0] x + [1 0] y + [4]       
                                     [0 0]     [0 0]     [0]       
                                  >= [1 0] x + [1 0] y + [3]       
                                     [0 0]     [0 0]     [0]       
                                  =  1(+(x,y))                     
                  
                     +(1(x),0(y)) =  [1 0] x + [1 0] y + [4]       
                                     [0 0]     [0 0]     [0]       
                                  >= [1 0] x + [1 0] y + [3]       
                                     [0 0]     [0 0]     [0]       
                                  =  1(+(x,y))                     
                  
                     +(1(x),1(y)) =  [1 0] x + [1 0] y + [5]       
                                     [0 0]     [0 0]     [0]       
                                  >= [1 0] x + [1 0] y + [5]       
                                     [0 0]     [0 0]     [0]       
                                  =  0(+(+(x,y),1(#())))           
                  
                           0(#()) =  [1]                           
                                     [0]                           
                                  >= [0]                           
                                     [0]                           
                                  =  #()                           
                  
                       size(l(x)) =  [4]                           
                                     [0]                           
                                  >= [2]                           
                                     [0]                           
                                  =  1(#())                        
                  
                   size(n(x,y,z)) =  [0 2] x + [0 2] y + [4]       
                                     [0 0]     [0 0]     [0]       
                                  >= [0 2] x + [0 2] y + [4]       
                                     [0 0]     [0 0]     [0]       
                                  =  +(+(size(x),size(y)),1(#()))  
                  
            *** 1.1.1.1.1.1.1.1.1.1.1.2.2.2.2.1.1 Progress [(?,O(1))]  ***
                Considered Problem:
                  Strict DP Rules:
                    +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y))
                  Strict TRS Rules:
                    
                  Weak DP Rules:
                    +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y))
                    +#(0(x),0(y)) -> c_4(+#(x,y))
                    +#(0(x),1(y)) -> c_5(+#(x,y))
                    +#(1(x),0(y)) -> c_6(+#(x,y))
                    size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y))
                    wb#(n(x,y,z)) -> size#(y)
                    wb#(n(x,y,z)) -> size#(z)
                    wb#(n(x,y,z)) -> wb#(y)
                    wb#(n(x,y,z)) -> wb#(z)
                  Weak TRS Rules:
                    +(x,#()) -> x
                    +(x,+(y,z)) -> +(+(x,y),z)
                    +(#(),x) -> x
                    +(0(x),0(y)) -> 0(+(x,y))
                    +(0(x),1(y)) -> 1(+(x,y))
                    +(1(x),0(y)) -> 1(+(x,y))
                    +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
                    0(#()) -> #()
                    size(l(x)) -> 1(#())
                    size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
                  Signature:
                    {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/4,c_36/0,c_37/0,c_38/0,c_39/8}
                  Obligation:
                    Innermost
                    basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
                Applied Processor:
                  Assumption
                Proof:
                  ()
            
            *** 1.1.1.1.1.1.1.1.1.1.1.2.2.2.2.2 Progress [(?,O(n^3))]  ***
                Considered Problem:
                  Strict DP Rules:
                    +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y))
                  Strict TRS Rules:
                    
                  Weak DP Rules:
                    +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y))
                    +#(0(x),0(y)) -> c_4(+#(x,y))
                    +#(0(x),1(y)) -> c_5(+#(x,y))
                    +#(1(x),0(y)) -> c_6(+#(x,y))
                    size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y))
                    wb#(n(x,y,z)) -> size#(y)
                    wb#(n(x,y,z)) -> size#(z)
                    wb#(n(x,y,z)) -> wb#(y)
                    wb#(n(x,y,z)) -> wb#(z)
                  Weak TRS Rules:
                    +(x,#()) -> x
                    +(x,+(y,z)) -> +(+(x,y),z)
                    +(#(),x) -> x
                    +(0(x),0(y)) -> 0(+(x,y))
                    +(0(x),1(y)) -> 1(+(x,y))
                    +(1(x),0(y)) -> 1(+(x,y))
                    +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
                    0(#()) -> #()
                    size(l(x)) -> 1(#())
                    size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
                  Signature:
                    {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/4,c_36/0,c_37/0,c_38/0,c_39/8}
                  Obligation:
                    Innermost
                    basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
                Applied Processor:
                  DecomposeDG {onSelection = all below first cut in WDG, onUpper = Just someStrategy, onLower = Nothing}
                Proof:
                  We decompose the input problem according to the dependency graph into the upper component
                    size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y))
                    wb#(n(x,y,z)) -> size#(y)
                    wb#(n(x,y,z)) -> size#(z)
                    wb#(n(x,y,z)) -> wb#(y)
                    wb#(n(x,y,z)) -> wb#(z)
                  and a lower component
                    +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y))
                    +#(0(x),0(y)) -> c_4(+#(x,y))
                    +#(0(x),1(y)) -> c_5(+#(x,y))
                    +#(1(x),0(y)) -> c_6(+#(x,y))
                    +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y))
                  Further, following extension rules are added to the lower component.
                    size#(n(x,y,z)) -> +#(+(size(x),size(y)),1(#()))
                    size#(n(x,y,z)) -> +#(size(x),size(y))
                    size#(n(x,y,z)) -> size#(x)
                    size#(n(x,y,z)) -> size#(y)
                    wb#(n(x,y,z)) -> size#(y)
                    wb#(n(x,y,z)) -> size#(z)
                    wb#(n(x,y,z)) -> wb#(y)
                    wb#(n(x,y,z)) -> wb#(z)
              *** 1.1.1.1.1.1.1.1.1.1.1.2.2.2.2.2.1 Progress [(?,O(n^1))]  ***
                  Considered Problem:
                    Strict DP Rules:
                      size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y))
                    Strict TRS Rules:
                      
                    Weak DP Rules:
                      wb#(n(x,y,z)) -> size#(y)
                      wb#(n(x,y,z)) -> size#(z)
                      wb#(n(x,y,z)) -> wb#(y)
                      wb#(n(x,y,z)) -> wb#(z)
                    Weak TRS Rules:
                      +(x,#()) -> x
                      +(x,+(y,z)) -> +(+(x,y),z)
                      +(#(),x) -> x
                      +(0(x),0(y)) -> 0(+(x,y))
                      +(0(x),1(y)) -> 1(+(x,y))
                      +(1(x),0(y)) -> 1(+(x,y))
                      +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
                      0(#()) -> #()
                      size(l(x)) -> 1(#())
                      size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
                    Signature:
                      {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/4,c_36/0,c_37/0,c_38/0,c_39/8}
                    Obligation:
                      Innermost
                      basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
                  Applied Processor:
                    PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
                  Proof:
                    We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
                      1: size#(n(x,y,z)) ->          
                           c_35(+#(+(size(x),size(y))
                                  ,1(#()))           
                               ,+#(size(x),size(y))  
                               ,size#(x)             
                               ,size#(y))            
                      
                    The strictly oriented rules are moved into the weak component.
                *** 1.1.1.1.1.1.1.1.1.1.1.2.2.2.2.2.1.1 Progress [(?,O(n^1))]  ***
                    Considered Problem:
                      Strict DP Rules:
                        size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y))
                      Strict TRS Rules:
                        
                      Weak DP Rules:
                        wb#(n(x,y,z)) -> size#(y)
                        wb#(n(x,y,z)) -> size#(z)
                        wb#(n(x,y,z)) -> wb#(y)
                        wb#(n(x,y,z)) -> wb#(z)
                      Weak TRS Rules:
                        +(x,#()) -> x
                        +(x,+(y,z)) -> +(+(x,y),z)
                        +(#(),x) -> x
                        +(0(x),0(y)) -> 0(+(x,y))
                        +(0(x),1(y)) -> 1(+(x,y))
                        +(1(x),0(y)) -> 1(+(x,y))
                        +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
                        0(#()) -> #()
                        size(l(x)) -> 1(#())
                        size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
                      Signature:
                        {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/4,c_36/0,c_37/0,c_38/0,c_39/8}
                      Obligation:
                        Innermost
                        basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
                    Applied Processor:
                      NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
                    Proof:
                      We apply a matrix interpretation of kind constructor based matrix interpretation:
                      The following argument positions are considered usable:
                        uargs(c_35) = {1,2,3,4}
                      
                      Following symbols are considered usable:
                        {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}
                      TcT has computed the following interpretation:
                            p(#) = [7]                                    
                            p(+) = [4]                                    
                            p(-) = [0]                                    
                            p(0) = [3] x1 + [0]                           
                            p(1) = [0]                                    
                          p(and) = [0]                                    
                           p(bs) = [0]                                    
                        p(false) = [0]                                    
                           p(ge) = [0]                                    
                           p(if) = [1] x3 + [0]                           
                            p(l) = [1]                                    
                          p(max) = [0]                                    
                          p(min) = [1] x1 + [1]                           
                            p(n) = [1] x1 + [1] x2 + [1] x3 + [2]         
                          p(not) = [2] x1 + [0]                           
                         p(size) = [6] x1 + [0]                           
                         p(true) = [1]                                    
                          p(val) = [4] x1 + [1]                           
                           p(wb) = [1] x1 + [1]                           
                           p(+#) = [0]                                    
                           p(-#) = [1]                                    
                           p(0#) = [1] x1 + [1]                           
                         p(and#) = [1] x1 + [0]                           
                          p(bs#) = [8] x1 + [4]                           
                          p(ge#) = [1] x1 + [2] x2 + [0]                  
                          p(if#) = [4] x3 + [8]                           
                         p(max#) = [1] x1 + [0]                           
                         p(min#) = [0]                                    
                         p(not#) = [1] x1 + [0]                           
                        p(size#) = [4] x1 + [5]                           
                         p(val#) = [2] x1 + [1]                           
                          p(wb#) = [4] x1 + [8]                           
                          p(c_1) = [1]                                    
                          p(c_2) = [1] x2 + [2]                           
                          p(c_3) = [1]                                    
                          p(c_4) = [1]                                    
                          p(c_5) = [1] x1 + [0]                           
                          p(c_6) = [1] x1 + [1]                           
                          p(c_7) = [1] x2 + [0]                           
                          p(c_8) = [2]                                    
                          p(c_9) = [0]                                    
                         p(c_10) = [4] x1 + [1]                           
                         p(c_11) = [1] x1 + [1] x2 + [1]                  
                         p(c_12) = [0]                                    
                         p(c_13) = [0]                                    
                         p(c_14) = [0]                                    
                         p(c_15) = [2]                                    
                         p(c_16) = [0]                                    
                         p(c_17) = [0]                                    
                         p(c_18) = [1] x1 + [8] x2 + [1] x3 + [2] x4 + [0]
                         p(c_19) = [0]                                    
                         p(c_20) = [0]                                    
                         p(c_21) = [8]                                    
                         p(c_22) = [2]                                    
                         p(c_23) = [2] x1 + [4]                           
                         p(c_24) = [2]                                    
                         p(c_25) = [1] x1 + [1]                           
                         p(c_26) = [0]                                    
                         p(c_27) = [1]                                    
                         p(c_28) = [2]                                    
                         p(c_29) = [2] x1 + [1]                           
                         p(c_30) = [2]                                    
                         p(c_31) = [1] x1 + [1]                           
                         p(c_32) = [1]                                    
                         p(c_33) = [1]                                    
                         p(c_34) = [1]                                    
                         p(c_35) = [8] x1 + [8] x2 + [1] x3 + [1] x4 + [0]
                         p(c_36) = [1]                                    
                         p(c_37) = [2]                                    
                         p(c_38) = [0]                                    
                         p(c_39) = [1] x4 + [4] x6 + [8] x7 + [1]         
                      
                      Following rules are strictly oriented:
                      size#(n(x,y,z)) = [4] x + [4] y + [4] z + [13]
                                      > [4] x + [4] y + [10]        
                                      = c_35(+#(+(size(x),size(y))  
                                               ,1(#()))             
                                            ,+#(size(x),size(y))    
                                            ,size#(x)               
                                            ,size#(y))              
                      
                      
                      Following rules are (at-least) weakly oriented:
                      wb#(n(x,y,z)) =  [4] x + [4] y + [4] z + [16]
                                    >= [4] y + [5]                 
                                    =  size#(y)                    
                      
                      wb#(n(x,y,z)) =  [4] x + [4] y + [4] z + [16]
                                    >= [4] z + [5]                 
                                    =  size#(z)                    
                      
                      wb#(n(x,y,z)) =  [4] x + [4] y + [4] z + [16]
                                    >= [4] y + [8]                 
                                    =  wb#(y)                      
                      
                      wb#(n(x,y,z)) =  [4] x + [4] y + [4] z + [16]
                                    >= [4] z + [8]                 
                                    =  wb#(z)                      
                      
                *** 1.1.1.1.1.1.1.1.1.1.1.2.2.2.2.2.1.1.1 Progress [(?,O(1))]  ***
                    Considered Problem:
                      Strict DP Rules:
                        
                      Strict TRS Rules:
                        
                      Weak DP Rules:
                        size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y))
                        wb#(n(x,y,z)) -> size#(y)
                        wb#(n(x,y,z)) -> size#(z)
                        wb#(n(x,y,z)) -> wb#(y)
                        wb#(n(x,y,z)) -> wb#(z)
                      Weak TRS Rules:
                        +(x,#()) -> x
                        +(x,+(y,z)) -> +(+(x,y),z)
                        +(#(),x) -> x
                        +(0(x),0(y)) -> 0(+(x,y))
                        +(0(x),1(y)) -> 1(+(x,y))
                        +(1(x),0(y)) -> 1(+(x,y))
                        +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
                        0(#()) -> #()
                        size(l(x)) -> 1(#())
                        size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
                      Signature:
                        {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/4,c_36/0,c_37/0,c_38/0,c_39/8}
                      Obligation:
                        Innermost
                        basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
                    Applied Processor:
                      Assumption
                    Proof:
                      ()
                
                *** 1.1.1.1.1.1.1.1.1.1.1.2.2.2.2.2.1.2 Progress [(O(1),O(1))]  ***
                    Considered Problem:
                      Strict DP Rules:
                        
                      Strict TRS Rules:
                        
                      Weak DP Rules:
                        size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y))
                        wb#(n(x,y,z)) -> size#(y)
                        wb#(n(x,y,z)) -> size#(z)
                        wb#(n(x,y,z)) -> wb#(y)
                        wb#(n(x,y,z)) -> wb#(z)
                      Weak TRS Rules:
                        +(x,#()) -> x
                        +(x,+(y,z)) -> +(+(x,y),z)
                        +(#(),x) -> x
                        +(0(x),0(y)) -> 0(+(x,y))
                        +(0(x),1(y)) -> 1(+(x,y))
                        +(1(x),0(y)) -> 1(+(x,y))
                        +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
                        0(#()) -> #()
                        size(l(x)) -> 1(#())
                        size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
                      Signature:
                        {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/4,c_36/0,c_37/0,c_38/0,c_39/8}
                      Obligation:
                        Innermost
                        basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
                    Applied Processor:
                      RemoveWeakSuffixes
                    Proof:
                      Consider the dependency graph
                        1:W:size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y))
                           -->_4 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):1
                           -->_3 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):1
                        
                        2:W:wb#(n(x,y,z)) -> size#(y)
                           -->_1 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):1
                        
                        3:W:wb#(n(x,y,z)) -> size#(z)
                           -->_1 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):1
                        
                        4:W:wb#(n(x,y,z)) -> wb#(y)
                           -->_1 wb#(n(x,y,z)) -> wb#(z):5
                           -->_1 wb#(n(x,y,z)) -> wb#(y):4
                           -->_1 wb#(n(x,y,z)) -> size#(z):3
                           -->_1 wb#(n(x,y,z)) -> size#(y):2
                        
                        5:W:wb#(n(x,y,z)) -> wb#(z)
                           -->_1 wb#(n(x,y,z)) -> wb#(z):5
                           -->_1 wb#(n(x,y,z)) -> wb#(y):4
                           -->_1 wb#(n(x,y,z)) -> size#(z):3
                           -->_1 wb#(n(x,y,z)) -> size#(y):2
                        
                      The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
                        4: wb#(n(x,y,z)) -> wb#(y)     
                        5: wb#(n(x,y,z)) -> wb#(z)     
                        3: wb#(n(x,y,z)) -> size#(z)   
                        2: wb#(n(x,y,z)) -> size#(y)   
                        1: size#(n(x,y,z)) ->          
                             c_35(+#(+(size(x),size(y))
                                    ,1(#()))           
                                 ,+#(size(x),size(y))  
                                 ,size#(x)             
                                 ,size#(y))            
                *** 1.1.1.1.1.1.1.1.1.1.1.2.2.2.2.2.1.2.1 Progress [(O(1),O(1))]  ***
                    Considered Problem:
                      Strict DP Rules:
                        
                      Strict TRS Rules:
                        
                      Weak DP Rules:
                        
                      Weak TRS Rules:
                        +(x,#()) -> x
                        +(x,+(y,z)) -> +(+(x,y),z)
                        +(#(),x) -> x
                        +(0(x),0(y)) -> 0(+(x,y))
                        +(0(x),1(y)) -> 1(+(x,y))
                        +(1(x),0(y)) -> 1(+(x,y))
                        +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
                        0(#()) -> #()
                        size(l(x)) -> 1(#())
                        size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
                      Signature:
                        {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/4,c_36/0,c_37/0,c_38/0,c_39/8}
                      Obligation:
                        Innermost
                        basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
                    Applied Processor:
                      EmptyProcessor
                    Proof:
                      The problem is already closed. The intended complexity is O(1).
                
              *** 1.1.1.1.1.1.1.1.1.1.1.2.2.2.2.2.2 Progress [(?,O(n^2))]  ***
                  Considered Problem:
                    Strict DP Rules:
                      +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y))
                    Strict TRS Rules:
                      
                    Weak DP Rules:
                      +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y))
                      +#(0(x),0(y)) -> c_4(+#(x,y))
                      +#(0(x),1(y)) -> c_5(+#(x,y))
                      +#(1(x),0(y)) -> c_6(+#(x,y))
                      size#(n(x,y,z)) -> +#(+(size(x),size(y)),1(#()))
                      size#(n(x,y,z)) -> +#(size(x),size(y))
                      size#(n(x,y,z)) -> size#(x)
                      size#(n(x,y,z)) -> size#(y)
                      wb#(n(x,y,z)) -> size#(y)
                      wb#(n(x,y,z)) -> size#(z)
                      wb#(n(x,y,z)) -> wb#(y)
                      wb#(n(x,y,z)) -> wb#(z)
                    Weak TRS Rules:
                      +(x,#()) -> x
                      +(x,+(y,z)) -> +(+(x,y),z)
                      +(#(),x) -> x
                      +(0(x),0(y)) -> 0(+(x,y))
                      +(0(x),1(y)) -> 1(+(x,y))
                      +(1(x),0(y)) -> 1(+(x,y))
                      +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
                      0(#()) -> #()
                      size(l(x)) -> 1(#())
                      size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
                    Signature:
                      {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/4,c_36/0,c_37/0,c_38/0,c_39/8}
                    Obligation:
                      Innermost
                      basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
                  Applied Processor:
                    PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
                  Proof:
                    We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
                      1: +#(1(x),1(y)) -> c_7(+#(+(x,y) 
                                                ,1(#()))
                                             ,+#(x,y))  
                      
                    The strictly oriented rules are moved into the weak component.
                *** 1.1.1.1.1.1.1.1.1.1.1.2.2.2.2.2.2.1 Progress [(?,O(n^2))]  ***
                    Considered Problem:
                      Strict DP Rules:
                        +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y))
                      Strict TRS Rules:
                        
                      Weak DP Rules:
                        +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y))
                        +#(0(x),0(y)) -> c_4(+#(x,y))
                        +#(0(x),1(y)) -> c_5(+#(x,y))
                        +#(1(x),0(y)) -> c_6(+#(x,y))
                        size#(n(x,y,z)) -> +#(+(size(x),size(y)),1(#()))
                        size#(n(x,y,z)) -> +#(size(x),size(y))
                        size#(n(x,y,z)) -> size#(x)
                        size#(n(x,y,z)) -> size#(y)
                        wb#(n(x,y,z)) -> size#(y)
                        wb#(n(x,y,z)) -> size#(z)
                        wb#(n(x,y,z)) -> wb#(y)
                        wb#(n(x,y,z)) -> wb#(z)
                      Weak TRS Rules:
                        +(x,#()) -> x
                        +(x,+(y,z)) -> +(+(x,y),z)
                        +(#(),x) -> x
                        +(0(x),0(y)) -> 0(+(x,y))
                        +(0(x),1(y)) -> 1(+(x,y))
                        +(1(x),0(y)) -> 1(+(x,y))
                        +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
                        0(#()) -> #()
                        size(l(x)) -> 1(#())
                        size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
                      Signature:
                        {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/4,c_36/0,c_37/0,c_38/0,c_39/8}
                      Obligation:
                        Innermost
                        basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
                    Applied Processor:
                      NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
                    Proof:
                      We apply a polynomial interpretation of kind constructor-based(mixed(2)):
                      The following argument positions are considered usable:
                        uargs(c_2) = {1,2},
                        uargs(c_4) = {1},
                        uargs(c_5) = {1},
                        uargs(c_6) = {1},
                        uargs(c_7) = {1,2}
                      
                      Following symbols are considered usable:
                        {+,0,size,+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}
                      TcT has computed the following interpretation:
                            p(#) = 0               
                            p(+) = x1 + x2         
                            p(-) = 0               
                            p(0) = x1              
                            p(1) = 1 + x1          
                          p(and) = 0               
                           p(bs) = 0               
                        p(false) = 0               
                           p(ge) = 0               
                           p(if) = 0               
                            p(l) = 1               
                          p(max) = 0               
                          p(min) = 0               
                            p(n) = 1 + x1 + x2 + x3
                          p(not) = 0               
                         p(size) = x1              
                         p(true) = 0               
                          p(val) = 0               
                           p(wb) = 0               
                           p(+#) = x1*x2 + x2^2    
                           p(-#) = 0               
                           p(0#) = 0               
                         p(and#) = 0               
                          p(bs#) = 0               
                          p(ge#) = 0               
                          p(if#) = 0               
                         p(max#) = 0               
                         p(min#) = 0               
                         p(not#) = 0               
                        p(size#) = x1^2            
                         p(val#) = 0               
                          p(wb#) = 1 + x1^2        
                          p(c_1) = 0               
                          p(c_2) = x1 + x2         
                          p(c_3) = 0               
                          p(c_4) = x1              
                          p(c_5) = x1              
                          p(c_6) = x1              
                          p(c_7) = x1 + x2         
                          p(c_8) = 0               
                          p(c_9) = 0               
                         p(c_10) = 0               
                         p(c_11) = 0               
                         p(c_12) = 0               
                         p(c_13) = 0               
                         p(c_14) = 0               
                         p(c_15) = 0               
                         p(c_16) = 0               
                         p(c_17) = 0               
                         p(c_18) = 0               
                         p(c_19) = 0               
                         p(c_20) = 0               
                         p(c_21) = 0               
                         p(c_22) = 0               
                         p(c_23) = 0               
                         p(c_24) = 0               
                         p(c_25) = 0               
                         p(c_26) = 0               
                         p(c_27) = 0               
                         p(c_28) = 0               
                         p(c_29) = 0               
                         p(c_30) = 0               
                         p(c_31) = 0               
                         p(c_32) = 0               
                         p(c_33) = 0               
                         p(c_34) = 0               
                         p(c_35) = 0               
                         p(c_36) = 0               
                         p(c_37) = 0               
                         p(c_38) = 0               
                         p(c_39) = 0               
                      
                      Following rules are strictly oriented:
                      +#(1(x),1(y)) = 2 + x + x*y + 3*y + y^2       
                                    > 1 + x + x*y + y + y^2         
                                    = c_7(+#(+(x,y),1(#())),+#(x,y))
                      
                      
                      Following rules are (at-least) weakly oriented:
                         +#(x,+(y,z)) =  x*y + x*z + 2*y*z + y^2 + z^2                                
                                      >= x*y + x*z + y*z + y^2 + z^2                                  
                                      =  c_2(+#(+(x,y),z),+#(x,y))                                    
                      
                        +#(0(x),0(y)) =  x*y + y^2                                                    
                                      >= x*y + y^2                                                    
                                      =  c_4(+#(x,y))                                                 
                      
                        +#(0(x),1(y)) =  1 + x + x*y + 2*y + y^2                                      
                                      >= x*y + y^2                                                    
                                      =  c_5(+#(x,y))                                                 
                      
                        +#(1(x),0(y)) =  x*y + y + y^2                                                
                                      >= x*y + y^2                                                    
                                      =  c_6(+#(x,y))                                                 
                      
                      size#(n(x,y,z)) =  1 + 2*x + 2*x*y + 2*x*z + x^2 + 2*y + 2*y*z + y^2 + 2*z + z^2
                                      >= 1 + x + y                                                    
                                      =  +#(+(size(x),size(y)),1(#()))                                
                      
                      size#(n(x,y,z)) =  1 + 2*x + 2*x*y + 2*x*z + x^2 + 2*y + 2*y*z + y^2 + 2*z + z^2
                                      >= x*y + y^2                                                    
                                      =  +#(size(x),size(y))                                          
                      
                      size#(n(x,y,z)) =  1 + 2*x + 2*x*y + 2*x*z + x^2 + 2*y + 2*y*z + y^2 + 2*z + z^2
                                      >= x^2                                                          
                                      =  size#(x)                                                     
                      
                      size#(n(x,y,z)) =  1 + 2*x + 2*x*y + 2*x*z + x^2 + 2*y + 2*y*z + y^2 + 2*z + z^2
                                      >= y^2                                                          
                                      =  size#(y)                                                     
                      
                        wb#(n(x,y,z)) =  2 + 2*x + 2*x*y + 2*x*z + x^2 + 2*y + 2*y*z + y^2 + 2*z + z^2
                                      >= y^2                                                          
                                      =  size#(y)                                                     
                      
                        wb#(n(x,y,z)) =  2 + 2*x + 2*x*y + 2*x*z + x^2 + 2*y + 2*y*z + y^2 + 2*z + z^2
                                      >= z^2                                                          
                                      =  size#(z)                                                     
                      
                        wb#(n(x,y,z)) =  2 + 2*x + 2*x*y + 2*x*z + x^2 + 2*y + 2*y*z + y^2 + 2*z + z^2
                                      >= 1 + y^2                                                      
                                      =  wb#(y)                                                       
                      
                        wb#(n(x,y,z)) =  2 + 2*x + 2*x*y + 2*x*z + x^2 + 2*y + 2*y*z + y^2 + 2*z + z^2
                                      >= 1 + z^2                                                      
                                      =  wb#(z)                                                       
                      
                             +(x,#()) =  x                                                            
                                      >= x                                                            
                                      =  x                                                            
                      
                          +(x,+(y,z)) =  x + y + z                                                    
                                      >= x + y + z                                                    
                                      =  +(+(x,y),z)                                                  
                      
                             +(#(),x) =  x                                                            
                                      >= x                                                            
                                      =  x                                                            
                      
                         +(0(x),0(y)) =  x + y                                                        
                                      >= x + y                                                        
                                      =  0(+(x,y))                                                    
                      
                         +(0(x),1(y)) =  1 + x + y                                                    
                                      >= 1 + x + y                                                    
                                      =  1(+(x,y))                                                    
                      
                         +(1(x),0(y)) =  1 + x + y                                                    
                                      >= 1 + x + y                                                    
                                      =  1(+(x,y))                                                    
                      
                         +(1(x),1(y)) =  2 + x + y                                                    
                                      >= 1 + x + y                                                    
                                      =  0(+(+(x,y),1(#())))                                          
                      
                               0(#()) =  0                                                            
                                      >= 0                                                            
                                      =  #()                                                          
                      
                           size(l(x)) =  1                                                            
                                      >= 1                                                            
                                      =  1(#())                                                       
                      
                       size(n(x,y,z)) =  1 + x + y + z                                                
                                      >= 1 + x + y                                                    
                                      =  +(+(size(x),size(y)),1(#()))                                 
                      
                *** 1.1.1.1.1.1.1.1.1.1.1.2.2.2.2.2.2.1.1 Progress [(?,O(1))]  ***
                    Considered Problem:
                      Strict DP Rules:
                        
                      Strict TRS Rules:
                        
                      Weak DP Rules:
                        +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y))
                        +#(0(x),0(y)) -> c_4(+#(x,y))
                        +#(0(x),1(y)) -> c_5(+#(x,y))
                        +#(1(x),0(y)) -> c_6(+#(x,y))
                        +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y))
                        size#(n(x,y,z)) -> +#(+(size(x),size(y)),1(#()))
                        size#(n(x,y,z)) -> +#(size(x),size(y))
                        size#(n(x,y,z)) -> size#(x)
                        size#(n(x,y,z)) -> size#(y)
                        wb#(n(x,y,z)) -> size#(y)
                        wb#(n(x,y,z)) -> size#(z)
                        wb#(n(x,y,z)) -> wb#(y)
                        wb#(n(x,y,z)) -> wb#(z)
                      Weak TRS Rules:
                        +(x,#()) -> x
                        +(x,+(y,z)) -> +(+(x,y),z)
                        +(#(),x) -> x
                        +(0(x),0(y)) -> 0(+(x,y))
                        +(0(x),1(y)) -> 1(+(x,y))
                        +(1(x),0(y)) -> 1(+(x,y))
                        +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
                        0(#()) -> #()
                        size(l(x)) -> 1(#())
                        size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
                      Signature:
                        {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/4,c_36/0,c_37/0,c_38/0,c_39/8}
                      Obligation:
                        Innermost
                        basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
                    Applied Processor:
                      Assumption
                    Proof:
                      ()
                
                *** 1.1.1.1.1.1.1.1.1.1.1.2.2.2.2.2.2.2 Progress [(O(1),O(1))]  ***
                    Considered Problem:
                      Strict DP Rules:
                        
                      Strict TRS Rules:
                        
                      Weak DP Rules:
                        +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y))
                        +#(0(x),0(y)) -> c_4(+#(x,y))
                        +#(0(x),1(y)) -> c_5(+#(x,y))
                        +#(1(x),0(y)) -> c_6(+#(x,y))
                        +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y))
                        size#(n(x,y,z)) -> +#(+(size(x),size(y)),1(#()))
                        size#(n(x,y,z)) -> +#(size(x),size(y))
                        size#(n(x,y,z)) -> size#(x)
                        size#(n(x,y,z)) -> size#(y)
                        wb#(n(x,y,z)) -> size#(y)
                        wb#(n(x,y,z)) -> size#(z)
                        wb#(n(x,y,z)) -> wb#(y)
                        wb#(n(x,y,z)) -> wb#(z)
                      Weak TRS Rules:
                        +(x,#()) -> x
                        +(x,+(y,z)) -> +(+(x,y),z)
                        +(#(),x) -> x
                        +(0(x),0(y)) -> 0(+(x,y))
                        +(0(x),1(y)) -> 1(+(x,y))
                        +(1(x),0(y)) -> 1(+(x,y))
                        +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
                        0(#()) -> #()
                        size(l(x)) -> 1(#())
                        size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
                      Signature:
                        {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/4,c_36/0,c_37/0,c_38/0,c_39/8}
                      Obligation:
                        Innermost
                        basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
                    Applied Processor:
                      RemoveWeakSuffixes
                    Proof:
                      Consider the dependency graph
                        1:W:+#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y))
                           -->_2 +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y)):5
                           -->_1 +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y)):5
                           -->_2 +#(1(x),0(y)) -> c_6(+#(x,y)):4
                           -->_1 +#(1(x),0(y)) -> c_6(+#(x,y)):4
                           -->_2 +#(0(x),1(y)) -> c_5(+#(x,y)):3
                           -->_1 +#(0(x),1(y)) -> c_5(+#(x,y)):3
                           -->_2 +#(0(x),0(y)) -> c_4(+#(x,y)):2
                           -->_1 +#(0(x),0(y)) -> c_4(+#(x,y)):2
                           -->_2 +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y)):1
                           -->_1 +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y)):1
                        
                        2:W:+#(0(x),0(y)) -> c_4(+#(x,y))
                           -->_1 +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y)):5
                           -->_1 +#(1(x),0(y)) -> c_6(+#(x,y)):4
                           -->_1 +#(0(x),1(y)) -> c_5(+#(x,y)):3
                           -->_1 +#(0(x),0(y)) -> c_4(+#(x,y)):2
                           -->_1 +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y)):1
                        
                        3:W:+#(0(x),1(y)) -> c_5(+#(x,y))
                           -->_1 +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y)):5
                           -->_1 +#(1(x),0(y)) -> c_6(+#(x,y)):4
                           -->_1 +#(0(x),1(y)) -> c_5(+#(x,y)):3
                           -->_1 +#(0(x),0(y)) -> c_4(+#(x,y)):2
                           -->_1 +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y)):1
                        
                        4:W:+#(1(x),0(y)) -> c_6(+#(x,y))
                           -->_1 +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y)):5
                           -->_1 +#(1(x),0(y)) -> c_6(+#(x,y)):4
                           -->_1 +#(0(x),1(y)) -> c_5(+#(x,y)):3
                           -->_1 +#(0(x),0(y)) -> c_4(+#(x,y)):2
                           -->_1 +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y)):1
                        
                        5:W:+#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y))
                           -->_2 +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y)):5
                           -->_1 +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y)):5
                           -->_2 +#(1(x),0(y)) -> c_6(+#(x,y)):4
                           -->_2 +#(0(x),1(y)) -> c_5(+#(x,y)):3
                           -->_1 +#(0(x),1(y)) -> c_5(+#(x,y)):3
                           -->_2 +#(0(x),0(y)) -> c_4(+#(x,y)):2
                           -->_2 +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y)):1
                        
                        6:W:size#(n(x,y,z)) -> +#(+(size(x),size(y)),1(#()))
                           -->_1 +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y)):5
                           -->_1 +#(0(x),1(y)) -> c_5(+#(x,y)):3
                        
                        7:W:size#(n(x,y,z)) -> +#(size(x),size(y))
                           -->_1 +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y)):5
                           -->_1 +#(1(x),0(y)) -> c_6(+#(x,y)):4
                           -->_1 +#(0(x),1(y)) -> c_5(+#(x,y)):3
                           -->_1 +#(0(x),0(y)) -> c_4(+#(x,y)):2
                           -->_1 +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y)):1
                        
                        8:W:size#(n(x,y,z)) -> size#(x)
                           -->_1 size#(n(x,y,z)) -> size#(y):9
                           -->_1 size#(n(x,y,z)) -> size#(x):8
                           -->_1 size#(n(x,y,z)) -> +#(size(x),size(y)):7
                           -->_1 size#(n(x,y,z)) -> +#(+(size(x),size(y)),1(#())):6
                        
                        9:W:size#(n(x,y,z)) -> size#(y)
                           -->_1 size#(n(x,y,z)) -> size#(y):9
                           -->_1 size#(n(x,y,z)) -> size#(x):8
                           -->_1 size#(n(x,y,z)) -> +#(size(x),size(y)):7
                           -->_1 size#(n(x,y,z)) -> +#(+(size(x),size(y)),1(#())):6
                        
                        10:W:wb#(n(x,y,z)) -> size#(y)
                           -->_1 size#(n(x,y,z)) -> size#(y):9
                           -->_1 size#(n(x,y,z)) -> size#(x):8
                           -->_1 size#(n(x,y,z)) -> +#(size(x),size(y)):7
                           -->_1 size#(n(x,y,z)) -> +#(+(size(x),size(y)),1(#())):6
                        
                        11:W:wb#(n(x,y,z)) -> size#(z)
                           -->_1 size#(n(x,y,z)) -> size#(y):9
                           -->_1 size#(n(x,y,z)) -> size#(x):8
                           -->_1 size#(n(x,y,z)) -> +#(size(x),size(y)):7
                           -->_1 size#(n(x,y,z)) -> +#(+(size(x),size(y)),1(#())):6
                        
                        12:W:wb#(n(x,y,z)) -> wb#(y)
                           -->_1 wb#(n(x,y,z)) -> wb#(z):13
                           -->_1 wb#(n(x,y,z)) -> wb#(y):12
                           -->_1 wb#(n(x,y,z)) -> size#(z):11
                           -->_1 wb#(n(x,y,z)) -> size#(y):10
                        
                        13:W:wb#(n(x,y,z)) -> wb#(z)
                           -->_1 wb#(n(x,y,z)) -> wb#(z):13
                           -->_1 wb#(n(x,y,z)) -> wb#(y):12
                           -->_1 wb#(n(x,y,z)) -> size#(z):11
                           -->_1 wb#(n(x,y,z)) -> size#(y):10
                        
                      The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
                        12: wb#(n(x,y,z)) -> wb#(y)         
                        13: wb#(n(x,y,z)) -> wb#(z)         
                        11: wb#(n(x,y,z)) -> size#(z)       
                        10: wb#(n(x,y,z)) -> size#(y)       
                        8:  size#(n(x,y,z)) -> size#(x)     
                        9:  size#(n(x,y,z)) -> size#(y)     
                        7:  size#(n(x,y,z)) -> +#(size(x)   
                                                 ,size(y))  
                        6:  size#(n(x,y,z)) -> +#(+(size(x) 
                                                   ,size(y))
                                                 ,1(#()))   
                        1:  +#(x,+(y,z)) -> c_2(+#(+(x,y),z)
                                               ,+#(x,y))    
                        5:  +#(1(x),1(y)) -> c_7(+#(+(x,y)  
                                                   ,1(#())) 
                                                ,+#(x,y))   
                        4:  +#(1(x),0(y)) -> c_6(+#(x,y))   
                        3:  +#(0(x),1(y)) -> c_5(+#(x,y))   
                        2:  +#(0(x),0(y)) -> c_4(+#(x,y))   
                *** 1.1.1.1.1.1.1.1.1.1.1.2.2.2.2.2.2.2.1 Progress [(O(1),O(1))]  ***
                    Considered Problem:
                      Strict DP Rules:
                        
                      Strict TRS Rules:
                        
                      Weak DP Rules:
                        
                      Weak TRS Rules:
                        +(x,#()) -> x
                        +(x,+(y,z)) -> +(+(x,y),z)
                        +(#(),x) -> x
                        +(0(x),0(y)) -> 0(+(x,y))
                        +(0(x),1(y)) -> 1(+(x,y))
                        +(1(x),0(y)) -> 1(+(x,y))
                        +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
                        0(#()) -> #()
                        size(l(x)) -> 1(#())
                        size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
                      Signature:
                        {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/4,c_36/0,c_37/0,c_38/0,c_39/8}
                      Obligation:
                        Innermost
                        basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
                    Applied Processor:
                      EmptyProcessor
                    Proof:
                      The problem is already closed. The intended complexity is O(1).
                
  *** 1.1.1.1.1.1.1.2 Progress [(?,O(n^2))]  ***
      Considered Problem:
        Strict DP Rules:
          -#(0(x),0(y)) -> c_10(-#(x,y))
          -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y))
          -#(1(x),0(y)) -> c_12(-#(x,y))
          -#(1(x),1(y)) -> c_13(-#(x,y))
          bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z))
          ge#(#(),0(x)) -> c_20(ge#(#(),x))
          ge#(0(x),0(y)) -> c_22(ge#(x,y))
          ge#(0(x),1(y)) -> c_23(ge#(y,x))
          ge#(1(x),0(y)) -> c_24(ge#(x,y))
          ge#(1(x),1(y)) -> c_25(ge#(x,y))
          max#(n(x,y,z)) -> c_29(max#(z))
          min#(n(x,y,z)) -> c_31(min#(y))
          size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y))
          wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(y),size(z))),-#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(z),size(y))),-#(size(z),size(y)),size#(z),size#(y),wb#(y),wb#(z))
        Strict TRS Rules:
          
        Weak DP Rules:
          +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y))
          +#(0(x),0(y)) -> c_4(+#(x,y))
          +#(0(x),1(y)) -> c_5(+#(x,y))
          +#(1(x),0(y)) -> c_6(+#(x,y))
          +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y))
        Weak TRS Rules:
          +(x,#()) -> x
          +(x,+(y,z)) -> +(+(x,y),z)
          +(#(),x) -> x
          +(0(x),0(y)) -> 0(+(x,y))
          +(0(x),1(y)) -> 1(+(x,y))
          +(1(x),0(y)) -> 1(+(x,y))
          +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
          -(x,#()) -> x
          -(#(),x) -> #()
          -(0(x),0(y)) -> 0(-(x,y))
          -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
          -(1(x),0(y)) -> 1(-(x,y))
          -(1(x),1(y)) -> 0(-(x,y))
          0(#()) -> #()
          max(l(x)) -> x
          max(n(x,y,z)) -> max(z)
          min(l(x)) -> x
          min(n(x,y,z)) -> min(y)
          size(l(x)) -> 1(#())
          size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
        Signature:
          {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/4,c_36/0,c_37/0,c_38/0,c_39/13}
        Obligation:
          Innermost
          basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
      Applied Processor:
        RemoveWeakSuffixes
      Proof:
        Consider the dependency graph
          1:S:-#(0(x),0(y)) -> c_10(-#(x,y))
             -->_1 -#(1(x),1(y)) -> c_13(-#(x,y)):4
             -->_1 -#(1(x),0(y)) -> c_12(-#(x,y)):3
             -->_1 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):2
             -->_1 -#(0(x),0(y)) -> c_10(-#(x,y)):1
          
          2:S:-#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y))
             -->_2 -#(1(x),1(y)) -> c_13(-#(x,y)):4
             -->_1 -#(1(x),1(y)) -> c_13(-#(x,y)):4
             -->_2 -#(1(x),0(y)) -> c_12(-#(x,y)):3
             -->_2 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):2
             -->_1 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):2
             -->_2 -#(0(x),0(y)) -> c_10(-#(x,y)):1
          
          3:S:-#(1(x),0(y)) -> c_12(-#(x,y))
             -->_1 -#(1(x),1(y)) -> c_13(-#(x,y)):4
             -->_1 -#(1(x),0(y)) -> c_12(-#(x,y)):3
             -->_1 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):2
             -->_1 -#(0(x),0(y)) -> c_10(-#(x,y)):1
          
          4:S:-#(1(x),1(y)) -> c_13(-#(x,y))
             -->_1 -#(1(x),1(y)) -> c_13(-#(x,y)):4
             -->_1 -#(1(x),0(y)) -> c_12(-#(x,y)):3
             -->_1 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):2
             -->_1 -#(0(x),0(y)) -> c_10(-#(x,y)):1
          
          5:S:bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z))
             -->_4 min#(n(x,y,z)) -> c_31(min#(y)):12
             -->_2 max#(n(x,y,z)) -> c_29(max#(z)):11
             -->_3 ge#(1(x),1(y)) -> c_25(ge#(x,y)):10
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):10
             -->_3 ge#(1(x),0(y)) -> c_24(ge#(x,y)):9
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):9
             -->_3 ge#(0(x),1(y)) -> c_23(ge#(y,x)):8
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):8
             -->_3 ge#(0(x),0(y)) -> c_22(ge#(x,y)):7
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):7
             -->_3 ge#(#(),0(x)) -> c_20(ge#(#(),x)):6
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):6
             -->_6 bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z)):5
             -->_5 bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z)):5
          
          6:S:ge#(#(),0(x)) -> c_20(ge#(#(),x))
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):6
          
          7:S:ge#(0(x),0(y)) -> c_22(ge#(x,y))
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):10
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):9
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):8
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):7
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):6
          
          8:S:ge#(0(x),1(y)) -> c_23(ge#(y,x))
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):10
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):9
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):8
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):7
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):6
          
          9:S:ge#(1(x),0(y)) -> c_24(ge#(x,y))
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):10
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):9
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):8
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):7
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):6
          
          10:S:ge#(1(x),1(y)) -> c_25(ge#(x,y))
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):10
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):9
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):8
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):7
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):6
          
          11:S:max#(n(x,y,z)) -> c_29(max#(z))
             -->_1 max#(n(x,y,z)) -> c_29(max#(z)):11
          
          12:S:min#(n(x,y,z)) -> c_31(min#(y))
             -->_1 min#(n(x,y,z)) -> c_31(min#(y)):12
          
          13:S:size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y))
             -->_2 +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y)):19
             -->_1 +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y)):19
             -->_2 +#(1(x),0(y)) -> c_6(+#(x,y)):18
             -->_2 +#(0(x),1(y)) -> c_5(+#(x,y)):17
             -->_1 +#(0(x),1(y)) -> c_5(+#(x,y)):17
             -->_2 +#(0(x),0(y)) -> c_4(+#(x,y)):16
             -->_2 +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y)):15
             -->_4 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):13
             -->_3 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):13
          
          14:S:wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(y),size(z))),-#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(z),size(y))),-#(size(z),size(y)),size#(z),size#(y),wb#(y),wb#(z))
             -->_13 wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(y),size(z))),-#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(z),size(y))),-#(size(z),size(y)),size#(z),size#(y),wb#(y),wb#(z)):14
             -->_12 wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(y),size(z))),-#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(z),size(y))),-#(size(z),size(y)),size#(z),size#(y),wb#(y),wb#(z)):14
             -->_11 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):13
             -->_10 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):13
             -->_7 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):13
             -->_6 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):13
             -->_3 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):13
             -->_2 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):13
             -->_8 ge#(1(x),1(y)) -> c_25(ge#(x,y)):10
             -->_4 ge#(1(x),1(y)) -> c_25(ge#(x,y)):10
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):10
             -->_8 ge#(1(x),0(y)) -> c_24(ge#(x,y)):9
             -->_4 ge#(1(x),0(y)) -> c_24(ge#(x,y)):9
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):9
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):8
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):7
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):6
             -->_9 -#(1(x),1(y)) -> c_13(-#(x,y)):4
             -->_5 -#(1(x),1(y)) -> c_13(-#(x,y)):4
             -->_9 -#(1(x),0(y)) -> c_12(-#(x,y)):3
             -->_5 -#(1(x),0(y)) -> c_12(-#(x,y)):3
             -->_9 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):2
             -->_5 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):2
             -->_9 -#(0(x),0(y)) -> c_10(-#(x,y)):1
             -->_5 -#(0(x),0(y)) -> c_10(-#(x,y)):1
          
          15:W:+#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y))
             -->_2 +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y)):19
             -->_1 +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y)):19
             -->_2 +#(1(x),0(y)) -> c_6(+#(x,y)):18
             -->_1 +#(1(x),0(y)) -> c_6(+#(x,y)):18
             -->_2 +#(0(x),1(y)) -> c_5(+#(x,y)):17
             -->_1 +#(0(x),1(y)) -> c_5(+#(x,y)):17
             -->_2 +#(0(x),0(y)) -> c_4(+#(x,y)):16
             -->_1 +#(0(x),0(y)) -> c_4(+#(x,y)):16
             -->_2 +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y)):15
             -->_1 +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y)):15
          
          16:W:+#(0(x),0(y)) -> c_4(+#(x,y))
             -->_1 +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y)):19
             -->_1 +#(1(x),0(y)) -> c_6(+#(x,y)):18
             -->_1 +#(0(x),1(y)) -> c_5(+#(x,y)):17
             -->_1 +#(0(x),0(y)) -> c_4(+#(x,y)):16
             -->_1 +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y)):15
          
          17:W:+#(0(x),1(y)) -> c_5(+#(x,y))
             -->_1 +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y)):19
             -->_1 +#(1(x),0(y)) -> c_6(+#(x,y)):18
             -->_1 +#(0(x),1(y)) -> c_5(+#(x,y)):17
             -->_1 +#(0(x),0(y)) -> c_4(+#(x,y)):16
             -->_1 +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y)):15
          
          18:W:+#(1(x),0(y)) -> c_6(+#(x,y))
             -->_1 +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y)):19
             -->_1 +#(1(x),0(y)) -> c_6(+#(x,y)):18
             -->_1 +#(0(x),1(y)) -> c_5(+#(x,y)):17
             -->_1 +#(0(x),0(y)) -> c_4(+#(x,y)):16
             -->_1 +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y)):15
          
          19:W:+#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y))
             -->_2 +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y)):19
             -->_1 +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y)):19
             -->_2 +#(1(x),0(y)) -> c_6(+#(x,y)):18
             -->_2 +#(0(x),1(y)) -> c_5(+#(x,y)):17
             -->_1 +#(0(x),1(y)) -> c_5(+#(x,y)):17
             -->_2 +#(0(x),0(y)) -> c_4(+#(x,y)):16
             -->_2 +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y)):15
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          19: +#(1(x),1(y)) -> c_7(+#(+(x,y)  
                                     ,1(#())) 
                                  ,+#(x,y))   
          18: +#(1(x),0(y)) -> c_6(+#(x,y))   
          17: +#(0(x),1(y)) -> c_5(+#(x,y))   
          16: +#(0(x),0(y)) -> c_4(+#(x,y))   
          15: +#(x,+(y,z)) -> c_2(+#(+(x,y),z)
                                 ,+#(x,y))    
  *** 1.1.1.1.1.1.1.2.1 Progress [(?,O(n^2))]  ***
      Considered Problem:
        Strict DP Rules:
          -#(0(x),0(y)) -> c_10(-#(x,y))
          -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y))
          -#(1(x),0(y)) -> c_12(-#(x,y))
          -#(1(x),1(y)) -> c_13(-#(x,y))
          bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z))
          ge#(#(),0(x)) -> c_20(ge#(#(),x))
          ge#(0(x),0(y)) -> c_22(ge#(x,y))
          ge#(0(x),1(y)) -> c_23(ge#(y,x))
          ge#(1(x),0(y)) -> c_24(ge#(x,y))
          ge#(1(x),1(y)) -> c_25(ge#(x,y))
          max#(n(x,y,z)) -> c_29(max#(z))
          min#(n(x,y,z)) -> c_31(min#(y))
          size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y))
          wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(y),size(z))),-#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(z),size(y))),-#(size(z),size(y)),size#(z),size#(y),wb#(y),wb#(z))
        Strict TRS Rules:
          
        Weak DP Rules:
          
        Weak TRS Rules:
          +(x,#()) -> x
          +(x,+(y,z)) -> +(+(x,y),z)
          +(#(),x) -> x
          +(0(x),0(y)) -> 0(+(x,y))
          +(0(x),1(y)) -> 1(+(x,y))
          +(1(x),0(y)) -> 1(+(x,y))
          +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
          -(x,#()) -> x
          -(#(),x) -> #()
          -(0(x),0(y)) -> 0(-(x,y))
          -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
          -(1(x),0(y)) -> 1(-(x,y))
          -(1(x),1(y)) -> 0(-(x,y))
          0(#()) -> #()
          max(l(x)) -> x
          max(n(x,y,z)) -> max(z)
          min(l(x)) -> x
          min(n(x,y,z)) -> min(y)
          size(l(x)) -> 1(#())
          size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
        Signature:
          {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/4,c_36/0,c_37/0,c_38/0,c_39/13}
        Obligation:
          Innermost
          basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
      Applied Processor:
        SimplifyRHS
      Proof:
        Consider the dependency graph
          1:S:-#(0(x),0(y)) -> c_10(-#(x,y))
             -->_1 -#(1(x),1(y)) -> c_13(-#(x,y)):4
             -->_1 -#(1(x),0(y)) -> c_12(-#(x,y)):3
             -->_1 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):2
             -->_1 -#(0(x),0(y)) -> c_10(-#(x,y)):1
          
          2:S:-#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y))
             -->_2 -#(1(x),1(y)) -> c_13(-#(x,y)):4
             -->_1 -#(1(x),1(y)) -> c_13(-#(x,y)):4
             -->_2 -#(1(x),0(y)) -> c_12(-#(x,y)):3
             -->_2 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):2
             -->_1 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):2
             -->_2 -#(0(x),0(y)) -> c_10(-#(x,y)):1
          
          3:S:-#(1(x),0(y)) -> c_12(-#(x,y))
             -->_1 -#(1(x),1(y)) -> c_13(-#(x,y)):4
             -->_1 -#(1(x),0(y)) -> c_12(-#(x,y)):3
             -->_1 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):2
             -->_1 -#(0(x),0(y)) -> c_10(-#(x,y)):1
          
          4:S:-#(1(x),1(y)) -> c_13(-#(x,y))
             -->_1 -#(1(x),1(y)) -> c_13(-#(x,y)):4
             -->_1 -#(1(x),0(y)) -> c_12(-#(x,y)):3
             -->_1 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):2
             -->_1 -#(0(x),0(y)) -> c_10(-#(x,y)):1
          
          5:S:bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z))
             -->_4 min#(n(x,y,z)) -> c_31(min#(y)):12
             -->_2 max#(n(x,y,z)) -> c_29(max#(z)):11
             -->_3 ge#(1(x),1(y)) -> c_25(ge#(x,y)):10
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):10
             -->_3 ge#(1(x),0(y)) -> c_24(ge#(x,y)):9
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):9
             -->_3 ge#(0(x),1(y)) -> c_23(ge#(y,x)):8
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):8
             -->_3 ge#(0(x),0(y)) -> c_22(ge#(x,y)):7
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):7
             -->_3 ge#(#(),0(x)) -> c_20(ge#(#(),x)):6
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):6
             -->_6 bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z)):5
             -->_5 bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z)):5
          
          6:S:ge#(#(),0(x)) -> c_20(ge#(#(),x))
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):6
          
          7:S:ge#(0(x),0(y)) -> c_22(ge#(x,y))
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):10
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):9
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):8
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):7
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):6
          
          8:S:ge#(0(x),1(y)) -> c_23(ge#(y,x))
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):10
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):9
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):8
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):7
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):6
          
          9:S:ge#(1(x),0(y)) -> c_24(ge#(x,y))
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):10
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):9
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):8
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):7
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):6
          
          10:S:ge#(1(x),1(y)) -> c_25(ge#(x,y))
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):10
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):9
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):8
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):7
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):6
          
          11:S:max#(n(x,y,z)) -> c_29(max#(z))
             -->_1 max#(n(x,y,z)) -> c_29(max#(z)):11
          
          12:S:min#(n(x,y,z)) -> c_31(min#(y))
             -->_1 min#(n(x,y,z)) -> c_31(min#(y)):12
          
          13:S:size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y))
             -->_4 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):13
             -->_3 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):13
          
          14:S:wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(y),size(z))),-#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(z),size(y))),-#(size(z),size(y)),size#(z),size#(y),wb#(y),wb#(z))
             -->_13 wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(y),size(z))),-#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(z),size(y))),-#(size(z),size(y)),size#(z),size#(y),wb#(y),wb#(z)):14
             -->_12 wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(y),size(z))),-#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(z),size(y))),-#(size(z),size(y)),size#(z),size#(y),wb#(y),wb#(z)):14
             -->_11 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):13
             -->_10 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):13
             -->_7 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):13
             -->_6 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):13
             -->_3 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):13
             -->_2 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):13
             -->_8 ge#(1(x),1(y)) -> c_25(ge#(x,y)):10
             -->_4 ge#(1(x),1(y)) -> c_25(ge#(x,y)):10
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):10
             -->_8 ge#(1(x),0(y)) -> c_24(ge#(x,y)):9
             -->_4 ge#(1(x),0(y)) -> c_24(ge#(x,y)):9
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):9
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):8
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):7
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):6
             -->_9 -#(1(x),1(y)) -> c_13(-#(x,y)):4
             -->_5 -#(1(x),1(y)) -> c_13(-#(x,y)):4
             -->_9 -#(1(x),0(y)) -> c_12(-#(x,y)):3
             -->_5 -#(1(x),0(y)) -> c_12(-#(x,y)):3
             -->_9 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):2
             -->_5 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):2
             -->_9 -#(0(x),0(y)) -> c_10(-#(x,y)):1
             -->_5 -#(0(x),0(y)) -> c_10(-#(x,y)):1
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          size#(n(x,y,z)) -> c_35(size#(x),size#(y))
  *** 1.1.1.1.1.1.1.2.1.1 Progress [(?,O(n^2))]  ***
      Considered Problem:
        Strict DP Rules:
          -#(0(x),0(y)) -> c_10(-#(x,y))
          -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y))
          -#(1(x),0(y)) -> c_12(-#(x,y))
          -#(1(x),1(y)) -> c_13(-#(x,y))
          bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z))
          ge#(#(),0(x)) -> c_20(ge#(#(),x))
          ge#(0(x),0(y)) -> c_22(ge#(x,y))
          ge#(0(x),1(y)) -> c_23(ge#(y,x))
          ge#(1(x),0(y)) -> c_24(ge#(x,y))
          ge#(1(x),1(y)) -> c_25(ge#(x,y))
          max#(n(x,y,z)) -> c_29(max#(z))
          min#(n(x,y,z)) -> c_31(min#(y))
          size#(n(x,y,z)) -> c_35(size#(x),size#(y))
          wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(y),size(z))),-#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(z),size(y))),-#(size(z),size(y)),size#(z),size#(y),wb#(y),wb#(z))
        Strict TRS Rules:
          
        Weak DP Rules:
          
        Weak TRS Rules:
          +(x,#()) -> x
          +(x,+(y,z)) -> +(+(x,y),z)
          +(#(),x) -> x
          +(0(x),0(y)) -> 0(+(x,y))
          +(0(x),1(y)) -> 1(+(x,y))
          +(1(x),0(y)) -> 1(+(x,y))
          +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
          -(x,#()) -> x
          -(#(),x) -> #()
          -(0(x),0(y)) -> 0(-(x,y))
          -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
          -(1(x),0(y)) -> 1(-(x,y))
          -(1(x),1(y)) -> 0(-(x,y))
          0(#()) -> #()
          max(l(x)) -> x
          max(n(x,y,z)) -> max(z)
          min(l(x)) -> x
          min(n(x,y,z)) -> min(y)
          size(l(x)) -> 1(#())
          size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
        Signature:
          {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2,c_36/0,c_37/0,c_38/0,c_39/13}
        Obligation:
          Innermost
          basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
      Applied Processor:
        Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd}
      Proof:
        We analyse the complexity of following sub-problems (R) and (S).
        Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component.
        
        Problem (R)
          Strict DP Rules:
            -#(0(x),0(y)) -> c_10(-#(x,y))
            -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y))
            -#(1(x),0(y)) -> c_12(-#(x,y))
            -#(1(x),1(y)) -> c_13(-#(x,y))
          Strict TRS Rules:
            
          Weak DP Rules:
            bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z))
            ge#(#(),0(x)) -> c_20(ge#(#(),x))
            ge#(0(x),0(y)) -> c_22(ge#(x,y))
            ge#(0(x),1(y)) -> c_23(ge#(y,x))
            ge#(1(x),0(y)) -> c_24(ge#(x,y))
            ge#(1(x),1(y)) -> c_25(ge#(x,y))
            max#(n(x,y,z)) -> c_29(max#(z))
            min#(n(x,y,z)) -> c_31(min#(y))
            size#(n(x,y,z)) -> c_35(size#(x),size#(y))
            wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(y),size(z))),-#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(z),size(y))),-#(size(z),size(y)),size#(z),size#(y),wb#(y),wb#(z))
          Weak TRS Rules:
            +(x,#()) -> x
            +(x,+(y,z)) -> +(+(x,y),z)
            +(#(),x) -> x
            +(0(x),0(y)) -> 0(+(x,y))
            +(0(x),1(y)) -> 1(+(x,y))
            +(1(x),0(y)) -> 1(+(x,y))
            +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
            -(x,#()) -> x
            -(#(),x) -> #()
            -(0(x),0(y)) -> 0(-(x,y))
            -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
            -(1(x),0(y)) -> 1(-(x,y))
            -(1(x),1(y)) -> 0(-(x,y))
            0(#()) -> #()
            max(l(x)) -> x
            max(n(x,y,z)) -> max(z)
            min(l(x)) -> x
            min(n(x,y,z)) -> min(y)
            size(l(x)) -> 1(#())
            size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
          Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2,c_36/0,c_37/0,c_38/0,c_39/13}
          Obligation:
            Innermost
            basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
        
        Problem (S)
          Strict DP Rules:
            bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z))
            ge#(#(),0(x)) -> c_20(ge#(#(),x))
            ge#(0(x),0(y)) -> c_22(ge#(x,y))
            ge#(0(x),1(y)) -> c_23(ge#(y,x))
            ge#(1(x),0(y)) -> c_24(ge#(x,y))
            ge#(1(x),1(y)) -> c_25(ge#(x,y))
            max#(n(x,y,z)) -> c_29(max#(z))
            min#(n(x,y,z)) -> c_31(min#(y))
            size#(n(x,y,z)) -> c_35(size#(x),size#(y))
            wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(y),size(z))),-#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(z),size(y))),-#(size(z),size(y)),size#(z),size#(y),wb#(y),wb#(z))
          Strict TRS Rules:
            
          Weak DP Rules:
            -#(0(x),0(y)) -> c_10(-#(x,y))
            -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y))
            -#(1(x),0(y)) -> c_12(-#(x,y))
            -#(1(x),1(y)) -> c_13(-#(x,y))
          Weak TRS Rules:
            +(x,#()) -> x
            +(x,+(y,z)) -> +(+(x,y),z)
            +(#(),x) -> x
            +(0(x),0(y)) -> 0(+(x,y))
            +(0(x),1(y)) -> 1(+(x,y))
            +(1(x),0(y)) -> 1(+(x,y))
            +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
            -(x,#()) -> x
            -(#(),x) -> #()
            -(0(x),0(y)) -> 0(-(x,y))
            -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
            -(1(x),0(y)) -> 1(-(x,y))
            -(1(x),1(y)) -> 0(-(x,y))
            0(#()) -> #()
            max(l(x)) -> x
            max(n(x,y,z)) -> max(z)
            min(l(x)) -> x
            min(n(x,y,z)) -> min(y)
            size(l(x)) -> 1(#())
            size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
          Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2,c_36/0,c_37/0,c_38/0,c_39/13}
          Obligation:
            Innermost
            basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
    *** 1.1.1.1.1.1.1.2.1.1.1 Progress [(?,O(n^2))]  ***
        Considered Problem:
          Strict DP Rules:
            -#(0(x),0(y)) -> c_10(-#(x,y))
            -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y))
            -#(1(x),0(y)) -> c_12(-#(x,y))
            -#(1(x),1(y)) -> c_13(-#(x,y))
          Strict TRS Rules:
            
          Weak DP Rules:
            bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z))
            ge#(#(),0(x)) -> c_20(ge#(#(),x))
            ge#(0(x),0(y)) -> c_22(ge#(x,y))
            ge#(0(x),1(y)) -> c_23(ge#(y,x))
            ge#(1(x),0(y)) -> c_24(ge#(x,y))
            ge#(1(x),1(y)) -> c_25(ge#(x,y))
            max#(n(x,y,z)) -> c_29(max#(z))
            min#(n(x,y,z)) -> c_31(min#(y))
            size#(n(x,y,z)) -> c_35(size#(x),size#(y))
            wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(y),size(z))),-#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(z),size(y))),-#(size(z),size(y)),size#(z),size#(y),wb#(y),wb#(z))
          Weak TRS Rules:
            +(x,#()) -> x
            +(x,+(y,z)) -> +(+(x,y),z)
            +(#(),x) -> x
            +(0(x),0(y)) -> 0(+(x,y))
            +(0(x),1(y)) -> 1(+(x,y))
            +(1(x),0(y)) -> 1(+(x,y))
            +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
            -(x,#()) -> x
            -(#(),x) -> #()
            -(0(x),0(y)) -> 0(-(x,y))
            -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
            -(1(x),0(y)) -> 1(-(x,y))
            -(1(x),1(y)) -> 0(-(x,y))
            0(#()) -> #()
            max(l(x)) -> x
            max(n(x,y,z)) -> max(z)
            min(l(x)) -> x
            min(n(x,y,z)) -> min(y)
            size(l(x)) -> 1(#())
            size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
          Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2,c_36/0,c_37/0,c_38/0,c_39/13}
          Obligation:
            Innermost
            basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
        Applied Processor:
          RemoveWeakSuffixes
        Proof:
          Consider the dependency graph
            1:S:-#(0(x),0(y)) -> c_10(-#(x,y))
               -->_1 -#(1(x),1(y)) -> c_13(-#(x,y)):4
               -->_1 -#(1(x),0(y)) -> c_12(-#(x,y)):3
               -->_1 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):2
               -->_1 -#(0(x),0(y)) -> c_10(-#(x,y)):1
            
            2:S:-#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y))
               -->_2 -#(1(x),1(y)) -> c_13(-#(x,y)):4
               -->_1 -#(1(x),1(y)) -> c_13(-#(x,y)):4
               -->_2 -#(1(x),0(y)) -> c_12(-#(x,y)):3
               -->_2 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):2
               -->_1 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):2
               -->_2 -#(0(x),0(y)) -> c_10(-#(x,y)):1
            
            3:S:-#(1(x),0(y)) -> c_12(-#(x,y))
               -->_1 -#(1(x),1(y)) -> c_13(-#(x,y)):4
               -->_1 -#(1(x),0(y)) -> c_12(-#(x,y)):3
               -->_1 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):2
               -->_1 -#(0(x),0(y)) -> c_10(-#(x,y)):1
            
            4:S:-#(1(x),1(y)) -> c_13(-#(x,y))
               -->_1 -#(1(x),1(y)) -> c_13(-#(x,y)):4
               -->_1 -#(1(x),0(y)) -> c_12(-#(x,y)):3
               -->_1 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):2
               -->_1 -#(0(x),0(y)) -> c_10(-#(x,y)):1
            
            5:W:bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z))
               -->_3 ge#(#(),0(x)) -> c_20(ge#(#(),x)):6
               -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):6
               -->_4 min#(n(x,y,z)) -> c_31(min#(y)):12
               -->_2 max#(n(x,y,z)) -> c_29(max#(z)):11
               -->_3 ge#(1(x),1(y)) -> c_25(ge#(x,y)):10
               -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):10
               -->_3 ge#(1(x),0(y)) -> c_24(ge#(x,y)):9
               -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):9
               -->_3 ge#(0(x),1(y)) -> c_23(ge#(y,x)):8
               -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):8
               -->_3 ge#(0(x),0(y)) -> c_22(ge#(x,y)):7
               -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):7
               -->_6 bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z)):5
               -->_5 bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z)):5
            
            6:W:ge#(#(),0(x)) -> c_20(ge#(#(),x))
               -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):6
            
            7:W:ge#(0(x),0(y)) -> c_22(ge#(x,y))
               -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):6
               -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):10
               -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):9
               -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):8
               -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):7
            
            8:W:ge#(0(x),1(y)) -> c_23(ge#(y,x))
               -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):6
               -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):10
               -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):9
               -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):8
               -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):7
            
            9:W:ge#(1(x),0(y)) -> c_24(ge#(x,y))
               -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):6
               -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):10
               -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):9
               -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):8
               -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):7
            
            10:W:ge#(1(x),1(y)) -> c_25(ge#(x,y))
               -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):6
               -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):10
               -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):9
               -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):8
               -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):7
            
            11:W:max#(n(x,y,z)) -> c_29(max#(z))
               -->_1 max#(n(x,y,z)) -> c_29(max#(z)):11
            
            12:W:min#(n(x,y,z)) -> c_31(min#(y))
               -->_1 min#(n(x,y,z)) -> c_31(min#(y)):12
            
            13:W:size#(n(x,y,z)) -> c_35(size#(x),size#(y))
               -->_2 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):13
               -->_1 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):13
            
            14:W:wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(y),size(z))),-#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(z),size(y))),-#(size(z),size(y)),size#(z),size#(y),wb#(y),wb#(z))
               -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):6
               -->_8 ge#(1(x),1(y)) -> c_25(ge#(x,y)):10
               -->_4 ge#(1(x),1(y)) -> c_25(ge#(x,y)):10
               -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):10
               -->_8 ge#(1(x),0(y)) -> c_24(ge#(x,y)):9
               -->_4 ge#(1(x),0(y)) -> c_24(ge#(x,y)):9
               -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):9
               -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):8
               -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):7
               -->_9 -#(1(x),1(y)) -> c_13(-#(x,y)):4
               -->_5 -#(1(x),1(y)) -> c_13(-#(x,y)):4
               -->_9 -#(1(x),0(y)) -> c_12(-#(x,y)):3
               -->_5 -#(1(x),0(y)) -> c_12(-#(x,y)):3
               -->_9 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):2
               -->_5 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):2
               -->_11 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):13
               -->_10 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):13
               -->_7 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):13
               -->_6 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):13
               -->_3 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):13
               -->_2 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):13
               -->_9 -#(0(x),0(y)) -> c_10(-#(x,y)):1
               -->_5 -#(0(x),0(y)) -> c_10(-#(x,y)):1
               -->_13 wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(y),size(z))),-#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(z),size(y))),-#(size(z),size(y)),size#(z),size#(y),wb#(y),wb#(z)):14
               -->_12 wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(y),size(z))),-#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(z),size(y))),-#(size(z),size(y)),size#(z),size#(y),wb#(y),wb#(z)):14
            
          The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
            13: size#(n(x,y,z)) -> c_35(size#(x)   
                                       ,size#(y))  
            5:  bs#(n(x,y,z)) -> c_18(ge#(x        
                                         ,max(y))  
                                     ,max#(y)      
                                     ,ge#(min(z),x)
                                     ,min#(z)      
                                     ,bs#(y)       
                                     ,bs#(z))      
            10: ge#(1(x),1(y)) -> c_25(ge#(x,y))   
            9:  ge#(1(x),0(y)) -> c_24(ge#(x,y))   
            8:  ge#(0(x),1(y)) -> c_23(ge#(y,x))   
            7:  ge#(0(x),0(y)) -> c_22(ge#(x,y))   
            6:  ge#(#(),0(x)) -> c_20(ge#(#()      
                                         ,x))      
            11: max#(n(x,y,z)) -> c_29(max#(z))    
            12: min#(n(x,y,z)) -> c_31(min#(y))    
    *** 1.1.1.1.1.1.1.2.1.1.1.1 Progress [(?,O(n^2))]  ***
        Considered Problem:
          Strict DP Rules:
            -#(0(x),0(y)) -> c_10(-#(x,y))
            -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y))
            -#(1(x),0(y)) -> c_12(-#(x,y))
            -#(1(x),1(y)) -> c_13(-#(x,y))
          Strict TRS Rules:
            
          Weak DP Rules:
            wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(y),size(z))),-#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(z),size(y))),-#(size(z),size(y)),size#(z),size#(y),wb#(y),wb#(z))
          Weak TRS Rules:
            +(x,#()) -> x
            +(x,+(y,z)) -> +(+(x,y),z)
            +(#(),x) -> x
            +(0(x),0(y)) -> 0(+(x,y))
            +(0(x),1(y)) -> 1(+(x,y))
            +(1(x),0(y)) -> 1(+(x,y))
            +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
            -(x,#()) -> x
            -(#(),x) -> #()
            -(0(x),0(y)) -> 0(-(x,y))
            -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
            -(1(x),0(y)) -> 1(-(x,y))
            -(1(x),1(y)) -> 0(-(x,y))
            0(#()) -> #()
            max(l(x)) -> x
            max(n(x,y,z)) -> max(z)
            min(l(x)) -> x
            min(n(x,y,z)) -> min(y)
            size(l(x)) -> 1(#())
            size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
          Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2,c_36/0,c_37/0,c_38/0,c_39/13}
          Obligation:
            Innermost
            basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
        Applied Processor:
          SimplifyRHS
        Proof:
          Consider the dependency graph
            1:S:-#(0(x),0(y)) -> c_10(-#(x,y))
               -->_1 -#(1(x),1(y)) -> c_13(-#(x,y)):4
               -->_1 -#(1(x),0(y)) -> c_12(-#(x,y)):3
               -->_1 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):2
               -->_1 -#(0(x),0(y)) -> c_10(-#(x,y)):1
            
            2:S:-#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y))
               -->_2 -#(1(x),1(y)) -> c_13(-#(x,y)):4
               -->_1 -#(1(x),1(y)) -> c_13(-#(x,y)):4
               -->_2 -#(1(x),0(y)) -> c_12(-#(x,y)):3
               -->_2 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):2
               -->_1 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):2
               -->_2 -#(0(x),0(y)) -> c_10(-#(x,y)):1
            
            3:S:-#(1(x),0(y)) -> c_12(-#(x,y))
               -->_1 -#(1(x),1(y)) -> c_13(-#(x,y)):4
               -->_1 -#(1(x),0(y)) -> c_12(-#(x,y)):3
               -->_1 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):2
               -->_1 -#(0(x),0(y)) -> c_10(-#(x,y)):1
            
            4:S:-#(1(x),1(y)) -> c_13(-#(x,y))
               -->_1 -#(1(x),1(y)) -> c_13(-#(x,y)):4
               -->_1 -#(1(x),0(y)) -> c_12(-#(x,y)):3
               -->_1 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):2
               -->_1 -#(0(x),0(y)) -> c_10(-#(x,y)):1
            
            14:W:wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(y),size(z))),-#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(z),size(y))),-#(size(z),size(y)),size#(z),size#(y),wb#(y),wb#(z))
               -->_9 -#(1(x),1(y)) -> c_13(-#(x,y)):4
               -->_5 -#(1(x),1(y)) -> c_13(-#(x,y)):4
               -->_9 -#(1(x),0(y)) -> c_12(-#(x,y)):3
               -->_5 -#(1(x),0(y)) -> c_12(-#(x,y)):3
               -->_9 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):2
               -->_5 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):2
               -->_9 -#(0(x),0(y)) -> c_10(-#(x,y)):1
               -->_5 -#(0(x),0(y)) -> c_10(-#(x,y)):1
               -->_13 wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(y),size(z))),-#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(z),size(y))),-#(size(z),size(y)),size#(z),size#(y),wb#(y),wb#(z)):14
               -->_12 wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(y),size(z))),-#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(z),size(y))),-#(size(z),size(y)),size#(z),size#(y),wb#(y),wb#(z)):14
            
          Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
            wb#(n(x,y,z)) -> c_39(-#(size(y),size(z)),-#(size(z),size(y)),wb#(y),wb#(z))
    *** 1.1.1.1.1.1.1.2.1.1.1.1.1 Progress [(?,O(n^2))]  ***
        Considered Problem:
          Strict DP Rules:
            -#(0(x),0(y)) -> c_10(-#(x,y))
            -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y))
            -#(1(x),0(y)) -> c_12(-#(x,y))
            -#(1(x),1(y)) -> c_13(-#(x,y))
          Strict TRS Rules:
            
          Weak DP Rules:
            wb#(n(x,y,z)) -> c_39(-#(size(y),size(z)),-#(size(z),size(y)),wb#(y),wb#(z))
          Weak TRS Rules:
            +(x,#()) -> x
            +(x,+(y,z)) -> +(+(x,y),z)
            +(#(),x) -> x
            +(0(x),0(y)) -> 0(+(x,y))
            +(0(x),1(y)) -> 1(+(x,y))
            +(1(x),0(y)) -> 1(+(x,y))
            +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
            -(x,#()) -> x
            -(#(),x) -> #()
            -(0(x),0(y)) -> 0(-(x,y))
            -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
            -(1(x),0(y)) -> 1(-(x,y))
            -(1(x),1(y)) -> 0(-(x,y))
            0(#()) -> #()
            max(l(x)) -> x
            max(n(x,y,z)) -> max(z)
            min(l(x)) -> x
            min(n(x,y,z)) -> min(y)
            size(l(x)) -> 1(#())
            size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
          Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2,c_36/0,c_37/0,c_38/0,c_39/4}
          Obligation:
            Innermost
            basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
        Applied Processor:
          UsableRules
        Proof:
          We replace rewrite rules by usable rules:
            +(x,#()) -> x
            +(x,+(y,z)) -> +(+(x,y),z)
            +(#(),x) -> x
            +(0(x),0(y)) -> 0(+(x,y))
            +(0(x),1(y)) -> 1(+(x,y))
            +(1(x),0(y)) -> 1(+(x,y))
            +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
            -(x,#()) -> x
            -(#(),x) -> #()
            -(0(x),0(y)) -> 0(-(x,y))
            -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
            -(1(x),0(y)) -> 1(-(x,y))
            -(1(x),1(y)) -> 0(-(x,y))
            0(#()) -> #()
            size(l(x)) -> 1(#())
            size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
            -#(0(x),0(y)) -> c_10(-#(x,y))
            -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y))
            -#(1(x),0(y)) -> c_12(-#(x,y))
            -#(1(x),1(y)) -> c_13(-#(x,y))
            wb#(n(x,y,z)) -> c_39(-#(size(y),size(z)),-#(size(z),size(y)),wb#(y),wb#(z))
    *** 1.1.1.1.1.1.1.2.1.1.1.1.1.1 Progress [(?,O(n^2))]  ***
        Considered Problem:
          Strict DP Rules:
            -#(0(x),0(y)) -> c_10(-#(x,y))
            -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y))
            -#(1(x),0(y)) -> c_12(-#(x,y))
            -#(1(x),1(y)) -> c_13(-#(x,y))
          Strict TRS Rules:
            
          Weak DP Rules:
            wb#(n(x,y,z)) -> c_39(-#(size(y),size(z)),-#(size(z),size(y)),wb#(y),wb#(z))
          Weak TRS Rules:
            +(x,#()) -> x
            +(x,+(y,z)) -> +(+(x,y),z)
            +(#(),x) -> x
            +(0(x),0(y)) -> 0(+(x,y))
            +(0(x),1(y)) -> 1(+(x,y))
            +(1(x),0(y)) -> 1(+(x,y))
            +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
            -(x,#()) -> x
            -(#(),x) -> #()
            -(0(x),0(y)) -> 0(-(x,y))
            -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
            -(1(x),0(y)) -> 1(-(x,y))
            -(1(x),1(y)) -> 0(-(x,y))
            0(#()) -> #()
            size(l(x)) -> 1(#())
            size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
          Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2,c_36/0,c_37/0,c_38/0,c_39/4}
          Obligation:
            Innermost
            basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
        Applied Processor:
          PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
        Proof:
          We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
            3: -#(1(x),0(y)) -> c_12(-#(x,y))
            4: -#(1(x),1(y)) -> c_13(-#(x,y))
            
          The strictly oriented rules are moved into the weak component.
      *** 1.1.1.1.1.1.1.2.1.1.1.1.1.1.1 Progress [(?,O(n^2))]  ***
          Considered Problem:
            Strict DP Rules:
              -#(0(x),0(y)) -> c_10(-#(x,y))
              -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y))
              -#(1(x),0(y)) -> c_12(-#(x,y))
              -#(1(x),1(y)) -> c_13(-#(x,y))
            Strict TRS Rules:
              
            Weak DP Rules:
              wb#(n(x,y,z)) -> c_39(-#(size(y),size(z)),-#(size(z),size(y)),wb#(y),wb#(z))
            Weak TRS Rules:
              +(x,#()) -> x
              +(x,+(y,z)) -> +(+(x,y),z)
              +(#(),x) -> x
              +(0(x),0(y)) -> 0(+(x,y))
              +(0(x),1(y)) -> 1(+(x,y))
              +(1(x),0(y)) -> 1(+(x,y))
              +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
              -(x,#()) -> x
              -(#(),x) -> #()
              -(0(x),0(y)) -> 0(-(x,y))
              -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
              -(1(x),0(y)) -> 1(-(x,y))
              -(1(x),1(y)) -> 0(-(x,y))
              0(#()) -> #()
              size(l(x)) -> 1(#())
              size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
            Signature:
              {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2,c_36/0,c_37/0,c_38/0,c_39/4}
            Obligation:
              Innermost
              basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
          Applied Processor:
            NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
          Proof:
            We apply a polynomial interpretation of kind constructor-based(mixed(2)):
            The following argument positions are considered usable:
              uargs(c_10) = {1},
              uargs(c_11) = {1,2},
              uargs(c_12) = {1},
              uargs(c_13) = {1},
              uargs(c_39) = {1,2,3,4}
            
            Following symbols are considered usable:
              {+,-,0,size,+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}
            TcT has computed the following interpretation:
                  p(#) = 0                
                  p(+) = x1 + x2          
                  p(-) = x1 + x2          
                  p(0) = 1 + x1           
                  p(1) = 1 + x1           
                p(and) = 0                
                 p(bs) = 0                
              p(false) = 0                
                 p(ge) = 0                
                 p(if) = 0                
                  p(l) = 1 + x1           
                p(max) = 0                
                p(min) = 0                
                  p(n) = 1 + x1 + x2 + x3 
                p(not) = 0                
               p(size) = x1               
               p(true) = 0                
                p(val) = 0                
                 p(wb) = 0                
                 p(+#) = 0                
                 p(-#) = x1*x2            
                 p(0#) = 0                
               p(and#) = 0                
                p(bs#) = 0                
                p(ge#) = 0                
                p(if#) = 0                
               p(max#) = 0                
               p(min#) = 0                
               p(not#) = 0                
              p(size#) = 0                
               p(val#) = 0                
                p(wb#) = 1 + x1^2         
                p(c_1) = 0                
                p(c_2) = 0                
                p(c_3) = 0                
                p(c_4) = 0                
                p(c_5) = 0                
                p(c_6) = 0                
                p(c_7) = 0                
                p(c_8) = 0                
                p(c_9) = 0                
               p(c_10) = 1 + x1           
               p(c_11) = 1 + x1 + x2      
               p(c_12) = x1               
               p(c_13) = x1               
               p(c_14) = 0                
               p(c_15) = 0                
               p(c_16) = 0                
               p(c_17) = 0                
               p(c_18) = 0                
               p(c_19) = 0                
               p(c_20) = 0                
               p(c_21) = 0                
               p(c_22) = 0                
               p(c_23) = 0                
               p(c_24) = 0                
               p(c_25) = 0                
               p(c_26) = 0                
               p(c_27) = 0                
               p(c_28) = 0                
               p(c_29) = 0                
               p(c_30) = 0                
               p(c_31) = 0                
               p(c_32) = 0                
               p(c_33) = 0                
               p(c_34) = 0                
               p(c_35) = 0                
               p(c_36) = 0                
               p(c_37) = 0                
               p(c_38) = 0                
               p(c_39) = x1 + x2 + x3 + x4
            
            Following rules are strictly oriented:
            -#(1(x),0(y)) = 1 + x + x*y + y
                          > x*y            
                          = c_12(-#(x,y))  
            
            -#(1(x),1(y)) = 1 + x + x*y + y
                          > x*y            
                          = c_13(-#(x,y))  
            
            
            Following rules are (at-least) weakly oriented:
             -#(0(x),0(y)) =  1 + x + x*y + y                                              
                           >= 1 + x*y                                                      
                           =  c_10(-#(x,y))                                                
            
             -#(0(x),1(y)) =  1 + x + x*y + y                                              
                           >= 1 + x + x*y + y                                              
                           =  c_11(-#(-(x,y),1(#())),-#(x,y))                              
            
             wb#(n(x,y,z)) =  2 + 2*x + 2*x*y + 2*x*z + x^2 + 2*y + 2*y*z + y^2 + 2*z + z^2
                           >= 2 + 2*y*z + y^2 + z^2                                        
                           =  c_39(-#(size(y),size(z))                                     
                                  ,-#(size(z),size(y))                                     
                                  ,wb#(y)                                                  
                                  ,wb#(z))                                                 
            
                  +(x,#()) =  x                                                            
                           >= x                                                            
                           =  x                                                            
            
               +(x,+(y,z)) =  x + y + z                                                    
                           >= x + y + z                                                    
                           =  +(+(x,y),z)                                                  
            
                  +(#(),x) =  x                                                            
                           >= x                                                            
                           =  x                                                            
            
              +(0(x),0(y)) =  2 + x + y                                                    
                           >= 1 + x + y                                                    
                           =  0(+(x,y))                                                    
            
              +(0(x),1(y)) =  2 + x + y                                                    
                           >= 1 + x + y                                                    
                           =  1(+(x,y))                                                    
            
              +(1(x),0(y)) =  2 + x + y                                                    
                           >= 1 + x + y                                                    
                           =  1(+(x,y))                                                    
            
              +(1(x),1(y)) =  2 + x + y                                                    
                           >= 2 + x + y                                                    
                           =  0(+(+(x,y),1(#())))                                          
            
                  -(x,#()) =  x                                                            
                           >= x                                                            
                           =  x                                                            
            
                  -(#(),x) =  x                                                            
                           >= 0                                                            
                           =  #()                                                          
            
              -(0(x),0(y)) =  2 + x + y                                                    
                           >= 1 + x + y                                                    
                           =  0(-(x,y))                                                    
            
              -(0(x),1(y)) =  2 + x + y                                                    
                           >= 2 + x + y                                                    
                           =  1(-(-(x,y),1(#())))                                          
            
              -(1(x),0(y)) =  2 + x + y                                                    
                           >= 1 + x + y                                                    
                           =  1(-(x,y))                                                    
            
              -(1(x),1(y)) =  2 + x + y                                                    
                           >= 1 + x + y                                                    
                           =  0(-(x,y))                                                    
            
                    0(#()) =  1                                                            
                           >= 0                                                            
                           =  #()                                                          
            
                size(l(x)) =  1 + x                                                        
                           >= 1                                                            
                           =  1(#())                                                       
            
            size(n(x,y,z)) =  1 + x + y + z                                                
                           >= 1 + x + y                                                    
                           =  +(+(size(x),size(y)),1(#()))                                 
            
      *** 1.1.1.1.1.1.1.2.1.1.1.1.1.1.1.1 Progress [(?,O(1))]  ***
          Considered Problem:
            Strict DP Rules:
              -#(0(x),0(y)) -> c_10(-#(x,y))
              -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y))
            Strict TRS Rules:
              
            Weak DP Rules:
              -#(1(x),0(y)) -> c_12(-#(x,y))
              -#(1(x),1(y)) -> c_13(-#(x,y))
              wb#(n(x,y,z)) -> c_39(-#(size(y),size(z)),-#(size(z),size(y)),wb#(y),wb#(z))
            Weak TRS Rules:
              +(x,#()) -> x
              +(x,+(y,z)) -> +(+(x,y),z)
              +(#(),x) -> x
              +(0(x),0(y)) -> 0(+(x,y))
              +(0(x),1(y)) -> 1(+(x,y))
              +(1(x),0(y)) -> 1(+(x,y))
              +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
              -(x,#()) -> x
              -(#(),x) -> #()
              -(0(x),0(y)) -> 0(-(x,y))
              -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
              -(1(x),0(y)) -> 1(-(x,y))
              -(1(x),1(y)) -> 0(-(x,y))
              0(#()) -> #()
              size(l(x)) -> 1(#())
              size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
            Signature:
              {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2,c_36/0,c_37/0,c_38/0,c_39/4}
            Obligation:
              Innermost
              basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
          Applied Processor:
            Assumption
          Proof:
            ()
      
      *** 1.1.1.1.1.1.1.2.1.1.1.1.1.1.2 Progress [(?,O(n^2))]  ***
          Considered Problem:
            Strict DP Rules:
              -#(0(x),0(y)) -> c_10(-#(x,y))
              -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y))
            Strict TRS Rules:
              
            Weak DP Rules:
              -#(1(x),0(y)) -> c_12(-#(x,y))
              -#(1(x),1(y)) -> c_13(-#(x,y))
              wb#(n(x,y,z)) -> c_39(-#(size(y),size(z)),-#(size(z),size(y)),wb#(y),wb#(z))
            Weak TRS Rules:
              +(x,#()) -> x
              +(x,+(y,z)) -> +(+(x,y),z)
              +(#(),x) -> x
              +(0(x),0(y)) -> 0(+(x,y))
              +(0(x),1(y)) -> 1(+(x,y))
              +(1(x),0(y)) -> 1(+(x,y))
              +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
              -(x,#()) -> x
              -(#(),x) -> #()
              -(0(x),0(y)) -> 0(-(x,y))
              -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
              -(1(x),0(y)) -> 1(-(x,y))
              -(1(x),1(y)) -> 0(-(x,y))
              0(#()) -> #()
              size(l(x)) -> 1(#())
              size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
            Signature:
              {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2,c_36/0,c_37/0,c_38/0,c_39/4}
            Obligation:
              Innermost
              basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
          Applied Processor:
            PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
          Proof:
            We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
              1: -#(0(x),0(y)) -> c_10(-#(x,y))
              
            The strictly oriented rules are moved into the weak component.
        *** 1.1.1.1.1.1.1.2.1.1.1.1.1.1.2.1 Progress [(?,O(n^2))]  ***
            Considered Problem:
              Strict DP Rules:
                -#(0(x),0(y)) -> c_10(-#(x,y))
                -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y))
              Strict TRS Rules:
                
              Weak DP Rules:
                -#(1(x),0(y)) -> c_12(-#(x,y))
                -#(1(x),1(y)) -> c_13(-#(x,y))
                wb#(n(x,y,z)) -> c_39(-#(size(y),size(z)),-#(size(z),size(y)),wb#(y),wb#(z))
              Weak TRS Rules:
                +(x,#()) -> x
                +(x,+(y,z)) -> +(+(x,y),z)
                +(#(),x) -> x
                +(0(x),0(y)) -> 0(+(x,y))
                +(0(x),1(y)) -> 1(+(x,y))
                +(1(x),0(y)) -> 1(+(x,y))
                +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
                -(x,#()) -> x
                -(#(),x) -> #()
                -(0(x),0(y)) -> 0(-(x,y))
                -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
                -(1(x),0(y)) -> 1(-(x,y))
                -(1(x),1(y)) -> 0(-(x,y))
                0(#()) -> #()
                size(l(x)) -> 1(#())
                size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
              Signature:
                {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2,c_36/0,c_37/0,c_38/0,c_39/4}
              Obligation:
                Innermost
                basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
            Applied Processor:
              NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
            Proof:
              We apply a polynomial interpretation of kind constructor-based(mixed(2)):
              The following argument positions are considered usable:
                uargs(c_10) = {1},
                uargs(c_11) = {1,2},
                uargs(c_12) = {1},
                uargs(c_13) = {1},
                uargs(c_39) = {1,2,3,4}
              
              Following symbols are considered usable:
                {+,0,size,+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}
              TcT has computed the following interpretation:
                    p(#) = 0                    
                    p(+) = x1 + x2              
                    p(-) = x1*x2 + x2           
                    p(0) = 1 + x1               
                    p(1) = 1 + x1               
                  p(and) = 0                    
                   p(bs) = 0                    
                p(false) = 0                    
                   p(ge) = 0                    
                   p(if) = 0                    
                    p(l) = 1                    
                  p(max) = 0                    
                  p(min) = 0                    
                    p(n) = 1 + x1 + x2 + x3     
                  p(not) = 0                    
                 p(size) = x1                   
                 p(true) = 0                    
                  p(val) = 0                    
                   p(wb) = 0                    
                   p(+#) = 0                    
                   p(-#) = x2                   
                   p(0#) = 0                    
                 p(and#) = 0                    
                  p(bs#) = 0                    
                  p(ge#) = 0                    
                  p(if#) = 0                    
                 p(max#) = 0                    
                 p(min#) = 0                    
                 p(not#) = 0                    
                p(size#) = 0                    
                 p(val#) = 0                    
                  p(wb#) = x1^2                 
                  p(c_1) = 0                    
                  p(c_2) = 0                    
                  p(c_3) = 0                    
                  p(c_4) = 0                    
                  p(c_5) = 0                    
                  p(c_6) = 0                    
                  p(c_7) = 0                    
                  p(c_8) = 0                    
                  p(c_9) = 0                    
                 p(c_10) = x1                   
                 p(c_11) = x1 + x2              
                 p(c_12) = 1 + x1               
                 p(c_13) = 1 + x1               
                 p(c_14) = 0                    
                 p(c_15) = 0                    
                 p(c_16) = 0                    
                 p(c_17) = 0                    
                 p(c_18) = 0                    
                 p(c_19) = 0                    
                 p(c_20) = 0                    
                 p(c_21) = 0                    
                 p(c_22) = 0                    
                 p(c_23) = 0                    
                 p(c_24) = 0                    
                 p(c_25) = 0                    
                 p(c_26) = 0                    
                 p(c_27) = 0                    
                 p(c_28) = 0                    
                 p(c_29) = 0                    
                 p(c_30) = 0                    
                 p(c_31) = 0                    
                 p(c_32) = 0                    
                 p(c_33) = 0                    
                 p(c_34) = 0                    
                 p(c_35) = 0                    
                 p(c_36) = 0                    
                 p(c_37) = 0                    
                 p(c_38) = 0                    
                 p(c_39) = 1 + x1 + x2 + x3 + x4
              
              Following rules are strictly oriented:
              -#(0(x),0(y)) = 1 + y        
                            > y            
                            = c_10(-#(x,y))
              
              
              Following rules are (at-least) weakly oriented:
               -#(0(x),1(y)) =  1 + y                                                        
                             >= 1 + y                                                        
                             =  c_11(-#(-(x,y),1(#())),-#(x,y))                              
              
               -#(1(x),0(y)) =  1 + y                                                        
                             >= 1 + y                                                        
                             =  c_12(-#(x,y))                                                
              
               -#(1(x),1(y)) =  1 + y                                                        
                             >= 1 + y                                                        
                             =  c_13(-#(x,y))                                                
              
               wb#(n(x,y,z)) =  1 + 2*x + 2*x*y + 2*x*z + x^2 + 2*y + 2*y*z + y^2 + 2*z + z^2
                             >= 1 + y + y^2 + z + z^2                                        
                             =  c_39(-#(size(y),size(z))                                     
                                    ,-#(size(z),size(y))                                     
                                    ,wb#(y)                                                  
                                    ,wb#(z))                                                 
              
                    +(x,#()) =  x                                                            
                             >= x                                                            
                             =  x                                                            
              
                 +(x,+(y,z)) =  x + y + z                                                    
                             >= x + y + z                                                    
                             =  +(+(x,y),z)                                                  
              
                    +(#(),x) =  x                                                            
                             >= x                                                            
                             =  x                                                            
              
                +(0(x),0(y)) =  2 + x + y                                                    
                             >= 1 + x + y                                                    
                             =  0(+(x,y))                                                    
              
                +(0(x),1(y)) =  2 + x + y                                                    
                             >= 1 + x + y                                                    
                             =  1(+(x,y))                                                    
              
                +(1(x),0(y)) =  2 + x + y                                                    
                             >= 1 + x + y                                                    
                             =  1(+(x,y))                                                    
              
                +(1(x),1(y)) =  2 + x + y                                                    
                             >= 2 + x + y                                                    
                             =  0(+(+(x,y),1(#())))                                          
              
                      0(#()) =  1                                                            
                             >= 0                                                            
                             =  #()                                                          
              
                  size(l(x)) =  1                                                            
                             >= 1                                                            
                             =  1(#())                                                       
              
              size(n(x,y,z)) =  1 + x + y + z                                                
                             >= 1 + x + y                                                    
                             =  +(+(size(x),size(y)),1(#()))                                 
              
        *** 1.1.1.1.1.1.1.2.1.1.1.1.1.1.2.1.1 Progress [(?,O(1))]  ***
            Considered Problem:
              Strict DP Rules:
                -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y))
              Strict TRS Rules:
                
              Weak DP Rules:
                -#(0(x),0(y)) -> c_10(-#(x,y))
                -#(1(x),0(y)) -> c_12(-#(x,y))
                -#(1(x),1(y)) -> c_13(-#(x,y))
                wb#(n(x,y,z)) -> c_39(-#(size(y),size(z)),-#(size(z),size(y)),wb#(y),wb#(z))
              Weak TRS Rules:
                +(x,#()) -> x
                +(x,+(y,z)) -> +(+(x,y),z)
                +(#(),x) -> x
                +(0(x),0(y)) -> 0(+(x,y))
                +(0(x),1(y)) -> 1(+(x,y))
                +(1(x),0(y)) -> 1(+(x,y))
                +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
                -(x,#()) -> x
                -(#(),x) -> #()
                -(0(x),0(y)) -> 0(-(x,y))
                -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
                -(1(x),0(y)) -> 1(-(x,y))
                -(1(x),1(y)) -> 0(-(x,y))
                0(#()) -> #()
                size(l(x)) -> 1(#())
                size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
              Signature:
                {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2,c_36/0,c_37/0,c_38/0,c_39/4}
              Obligation:
                Innermost
                basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
            Applied Processor:
              Assumption
            Proof:
              ()
        
        *** 1.1.1.1.1.1.1.2.1.1.1.1.1.1.2.2 Progress [(?,O(n^2))]  ***
            Considered Problem:
              Strict DP Rules:
                -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y))
              Strict TRS Rules:
                
              Weak DP Rules:
                -#(0(x),0(y)) -> c_10(-#(x,y))
                -#(1(x),0(y)) -> c_12(-#(x,y))
                -#(1(x),1(y)) -> c_13(-#(x,y))
                wb#(n(x,y,z)) -> c_39(-#(size(y),size(z)),-#(size(z),size(y)),wb#(y),wb#(z))
              Weak TRS Rules:
                +(x,#()) -> x
                +(x,+(y,z)) -> +(+(x,y),z)
                +(#(),x) -> x
                +(0(x),0(y)) -> 0(+(x,y))
                +(0(x),1(y)) -> 1(+(x,y))
                +(1(x),0(y)) -> 1(+(x,y))
                +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
                -(x,#()) -> x
                -(#(),x) -> #()
                -(0(x),0(y)) -> 0(-(x,y))
                -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
                -(1(x),0(y)) -> 1(-(x,y))
                -(1(x),1(y)) -> 0(-(x,y))
                0(#()) -> #()
                size(l(x)) -> 1(#())
                size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
              Signature:
                {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2,c_36/0,c_37/0,c_38/0,c_39/4}
              Obligation:
                Innermost
                basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
            Applied Processor:
              PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
            Proof:
              We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
                1: -#(0(x),1(y)) -> c_11(-#(-(x,y) 
                                           ,1(#()))
                                        ,-#(x,y))  
                
              The strictly oriented rules are moved into the weak component.
          *** 1.1.1.1.1.1.1.2.1.1.1.1.1.1.2.2.1 Progress [(?,O(n^2))]  ***
              Considered Problem:
                Strict DP Rules:
                  -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y))
                Strict TRS Rules:
                  
                Weak DP Rules:
                  -#(0(x),0(y)) -> c_10(-#(x,y))
                  -#(1(x),0(y)) -> c_12(-#(x,y))
                  -#(1(x),1(y)) -> c_13(-#(x,y))
                  wb#(n(x,y,z)) -> c_39(-#(size(y),size(z)),-#(size(z),size(y)),wb#(y),wb#(z))
                Weak TRS Rules:
                  +(x,#()) -> x
                  +(x,+(y,z)) -> +(+(x,y),z)
                  +(#(),x) -> x
                  +(0(x),0(y)) -> 0(+(x,y))
                  +(0(x),1(y)) -> 1(+(x,y))
                  +(1(x),0(y)) -> 1(+(x,y))
                  +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
                  -(x,#()) -> x
                  -(#(),x) -> #()
                  -(0(x),0(y)) -> 0(-(x,y))
                  -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
                  -(1(x),0(y)) -> 1(-(x,y))
                  -(1(x),1(y)) -> 0(-(x,y))
                  0(#()) -> #()
                  size(l(x)) -> 1(#())
                  size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
                Signature:
                  {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2,c_36/0,c_37/0,c_38/0,c_39/4}
                Obligation:
                  Innermost
                  basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
              Applied Processor:
                NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
              Proof:
                We apply a polynomial interpretation of kind constructor-based(mixed(2)):
                The following argument positions are considered usable:
                  uargs(c_10) = {1},
                  uargs(c_11) = {1,2},
                  uargs(c_12) = {1},
                  uargs(c_13) = {1},
                  uargs(c_39) = {1,2,3,4}
                
                Following symbols are considered usable:
                  {+,-,0,size,+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}
                TcT has computed the following interpretation:
                      p(#) = 0                
                      p(+) = x1 + x2          
                      p(-) = x1               
                      p(0) = 1 + x1           
                      p(1) = 1 + x1           
                    p(and) = 0                
                     p(bs) = 0                
                  p(false) = 0                
                     p(ge) = 0                
                     p(if) = 0                
                      p(l) = 1 + x1           
                    p(max) = 0                
                    p(min) = 0                
                      p(n) = 1 + x1 + x2 + x3 
                    p(not) = 0                
                   p(size) = x1               
                   p(true) = 0                
                    p(val) = 0                
                     p(wb) = 0                
                     p(+#) = 0                
                     p(-#) = x1*x2 + x2       
                     p(0#) = 0                
                   p(and#) = 0                
                    p(bs#) = 0                
                    p(ge#) = 0                
                    p(if#) = 0                
                   p(max#) = 0                
                   p(min#) = 0                
                   p(not#) = 0                
                  p(size#) = 0                
                   p(val#) = 0                
                    p(wb#) = 1 + x1^2         
                    p(c_1) = 0                
                    p(c_2) = 0                
                    p(c_3) = 0                
                    p(c_4) = 0                
                    p(c_5) = 0                
                    p(c_6) = 0                
                    p(c_7) = 0                
                    p(c_8) = 0                
                    p(c_9) = 0                
                   p(c_10) = 1 + x1           
                   p(c_11) = x1 + x2          
                   p(c_12) = x1               
                   p(c_13) = x1               
                   p(c_14) = 0                
                   p(c_15) = 0                
                   p(c_16) = 0                
                   p(c_17) = 0                
                   p(c_18) = 0                
                   p(c_19) = 0                
                   p(c_20) = 0                
                   p(c_21) = 0                
                   p(c_22) = 0                
                   p(c_23) = 0                
                   p(c_24) = 0                
                   p(c_25) = 0                
                   p(c_26) = 0                
                   p(c_27) = 0                
                   p(c_28) = 0                
                   p(c_29) = 0                
                   p(c_30) = 0                
                   p(c_31) = 0                
                   p(c_32) = 0                
                   p(c_33) = 0                
                   p(c_34) = 0                
                   p(c_35) = 0                
                   p(c_36) = 0                
                   p(c_37) = 0                
                   p(c_38) = 0                
                   p(c_39) = x1 + x2 + x3 + x4
                
                Following rules are strictly oriented:
                -#(0(x),1(y)) = 2 + x + x*y + 2*y              
                              > 1 + x + x*y + y                
                              = c_11(-#(-(x,y),1(#())),-#(x,y))
                
                
                Following rules are (at-least) weakly oriented:
                 -#(0(x),0(y)) =  2 + x + x*y + 2*y                                            
                               >= 1 + x*y + y                                                  
                               =  c_10(-#(x,y))                                                
                
                 -#(1(x),0(y)) =  2 + x + x*y + 2*y                                            
                               >= x*y + y                                                      
                               =  c_12(-#(x,y))                                                
                
                 -#(1(x),1(y)) =  2 + x + x*y + 2*y                                            
                               >= x*y + y                                                      
                               =  c_13(-#(x,y))                                                
                
                 wb#(n(x,y,z)) =  2 + 2*x + 2*x*y + 2*x*z + x^2 + 2*y + 2*y*z + y^2 + 2*z + z^2
                               >= 2 + y + 2*y*z + y^2 + z + z^2                                
                               =  c_39(-#(size(y),size(z))                                     
                                      ,-#(size(z),size(y))                                     
                                      ,wb#(y)                                                  
                                      ,wb#(z))                                                 
                
                      +(x,#()) =  x                                                            
                               >= x                                                            
                               =  x                                                            
                
                   +(x,+(y,z)) =  x + y + z                                                    
                               >= x + y + z                                                    
                               =  +(+(x,y),z)                                                  
                
                      +(#(),x) =  x                                                            
                               >= x                                                            
                               =  x                                                            
                
                  +(0(x),0(y)) =  2 + x + y                                                    
                               >= 1 + x + y                                                    
                               =  0(+(x,y))                                                    
                
                  +(0(x),1(y)) =  2 + x + y                                                    
                               >= 1 + x + y                                                    
                               =  1(+(x,y))                                                    
                
                  +(1(x),0(y)) =  2 + x + y                                                    
                               >= 1 + x + y                                                    
                               =  1(+(x,y))                                                    
                
                  +(1(x),1(y)) =  2 + x + y                                                    
                               >= 2 + x + y                                                    
                               =  0(+(+(x,y),1(#())))                                          
                
                      -(x,#()) =  x                                                            
                               >= x                                                            
                               =  x                                                            
                
                      -(#(),x) =  0                                                            
                               >= 0                                                            
                               =  #()                                                          
                
                  -(0(x),0(y)) =  1 + x                                                        
                               >= 1 + x                                                        
                               =  0(-(x,y))                                                    
                
                  -(0(x),1(y)) =  1 + x                                                        
                               >= 1 + x                                                        
                               =  1(-(-(x,y),1(#())))                                          
                
                  -(1(x),0(y)) =  1 + x                                                        
                               >= 1 + x                                                        
                               =  1(-(x,y))                                                    
                
                  -(1(x),1(y)) =  1 + x                                                        
                               >= 1 + x                                                        
                               =  0(-(x,y))                                                    
                
                        0(#()) =  1                                                            
                               >= 0                                                            
                               =  #()                                                          
                
                    size(l(x)) =  1 + x                                                        
                               >= 1                                                            
                               =  1(#())                                                       
                
                size(n(x,y,z)) =  1 + x + y + z                                                
                               >= 1 + x + y                                                    
                               =  +(+(size(x),size(y)),1(#()))                                 
                
          *** 1.1.1.1.1.1.1.2.1.1.1.1.1.1.2.2.1.1 Progress [(?,O(1))]  ***
              Considered Problem:
                Strict DP Rules:
                  
                Strict TRS Rules:
                  
                Weak DP Rules:
                  -#(0(x),0(y)) -> c_10(-#(x,y))
                  -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y))
                  -#(1(x),0(y)) -> c_12(-#(x,y))
                  -#(1(x),1(y)) -> c_13(-#(x,y))
                  wb#(n(x,y,z)) -> c_39(-#(size(y),size(z)),-#(size(z),size(y)),wb#(y),wb#(z))
                Weak TRS Rules:
                  +(x,#()) -> x
                  +(x,+(y,z)) -> +(+(x,y),z)
                  +(#(),x) -> x
                  +(0(x),0(y)) -> 0(+(x,y))
                  +(0(x),1(y)) -> 1(+(x,y))
                  +(1(x),0(y)) -> 1(+(x,y))
                  +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
                  -(x,#()) -> x
                  -(#(),x) -> #()
                  -(0(x),0(y)) -> 0(-(x,y))
                  -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
                  -(1(x),0(y)) -> 1(-(x,y))
                  -(1(x),1(y)) -> 0(-(x,y))
                  0(#()) -> #()
                  size(l(x)) -> 1(#())
                  size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
                Signature:
                  {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2,c_36/0,c_37/0,c_38/0,c_39/4}
                Obligation:
                  Innermost
                  basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
              Applied Processor:
                Assumption
              Proof:
                ()
          
          *** 1.1.1.1.1.1.1.2.1.1.1.1.1.1.2.2.2 Progress [(O(1),O(1))]  ***
              Considered Problem:
                Strict DP Rules:
                  
                Strict TRS Rules:
                  
                Weak DP Rules:
                  -#(0(x),0(y)) -> c_10(-#(x,y))
                  -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y))
                  -#(1(x),0(y)) -> c_12(-#(x,y))
                  -#(1(x),1(y)) -> c_13(-#(x,y))
                  wb#(n(x,y,z)) -> c_39(-#(size(y),size(z)),-#(size(z),size(y)),wb#(y),wb#(z))
                Weak TRS Rules:
                  +(x,#()) -> x
                  +(x,+(y,z)) -> +(+(x,y),z)
                  +(#(),x) -> x
                  +(0(x),0(y)) -> 0(+(x,y))
                  +(0(x),1(y)) -> 1(+(x,y))
                  +(1(x),0(y)) -> 1(+(x,y))
                  +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
                  -(x,#()) -> x
                  -(#(),x) -> #()
                  -(0(x),0(y)) -> 0(-(x,y))
                  -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
                  -(1(x),0(y)) -> 1(-(x,y))
                  -(1(x),1(y)) -> 0(-(x,y))
                  0(#()) -> #()
                  size(l(x)) -> 1(#())
                  size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
                Signature:
                  {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2,c_36/0,c_37/0,c_38/0,c_39/4}
                Obligation:
                  Innermost
                  basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
              Applied Processor:
                RemoveWeakSuffixes
              Proof:
                Consider the dependency graph
                  1:W:-#(0(x),0(y)) -> c_10(-#(x,y))
                     -->_1 -#(1(x),1(y)) -> c_13(-#(x,y)):4
                     -->_1 -#(1(x),0(y)) -> c_12(-#(x,y)):3
                     -->_1 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):2
                     -->_1 -#(0(x),0(y)) -> c_10(-#(x,y)):1
                  
                  2:W:-#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y))
                     -->_2 -#(1(x),1(y)) -> c_13(-#(x,y)):4
                     -->_1 -#(1(x),1(y)) -> c_13(-#(x,y)):4
                     -->_2 -#(1(x),0(y)) -> c_12(-#(x,y)):3
                     -->_2 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):2
                     -->_1 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):2
                     -->_2 -#(0(x),0(y)) -> c_10(-#(x,y)):1
                  
                  3:W:-#(1(x),0(y)) -> c_12(-#(x,y))
                     -->_1 -#(1(x),1(y)) -> c_13(-#(x,y)):4
                     -->_1 -#(1(x),0(y)) -> c_12(-#(x,y)):3
                     -->_1 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):2
                     -->_1 -#(0(x),0(y)) -> c_10(-#(x,y)):1
                  
                  4:W:-#(1(x),1(y)) -> c_13(-#(x,y))
                     -->_1 -#(1(x),1(y)) -> c_13(-#(x,y)):4
                     -->_1 -#(1(x),0(y)) -> c_12(-#(x,y)):3
                     -->_1 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):2
                     -->_1 -#(0(x),0(y)) -> c_10(-#(x,y)):1
                  
                  5:W:wb#(n(x,y,z)) -> c_39(-#(size(y),size(z)),-#(size(z),size(y)),wb#(y),wb#(z))
                     -->_4 wb#(n(x,y,z)) -> c_39(-#(size(y),size(z)),-#(size(z),size(y)),wb#(y),wb#(z)):5
                     -->_3 wb#(n(x,y,z)) -> c_39(-#(size(y),size(z)),-#(size(z),size(y)),wb#(y),wb#(z)):5
                     -->_2 -#(1(x),1(y)) -> c_13(-#(x,y)):4
                     -->_1 -#(1(x),1(y)) -> c_13(-#(x,y)):4
                     -->_2 -#(1(x),0(y)) -> c_12(-#(x,y)):3
                     -->_1 -#(1(x),0(y)) -> c_12(-#(x,y)):3
                     -->_2 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):2
                     -->_1 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):2
                     -->_2 -#(0(x),0(y)) -> c_10(-#(x,y)):1
                     -->_1 -#(0(x),0(y)) -> c_10(-#(x,y)):1
                  
                The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
                  5: wb#(n(x,y,z)) -> c_39(-#(size(y)         
                                             ,size(z))        
                                          ,-#(size(z),size(y))
                                          ,wb#(y)             
                                          ,wb#(z))            
                  1: -#(0(x),0(y)) -> c_10(-#(x,y))           
                  4: -#(1(x),1(y)) -> c_13(-#(x,y))           
                  3: -#(1(x),0(y)) -> c_12(-#(x,y))           
                  2: -#(0(x),1(y)) -> c_11(-#(-(x,y)          
                                             ,1(#()))         
                                          ,-#(x,y))           
          *** 1.1.1.1.1.1.1.2.1.1.1.1.1.1.2.2.2.1 Progress [(O(1),O(1))]  ***
              Considered Problem:
                Strict DP Rules:
                  
                Strict TRS Rules:
                  
                Weak DP Rules:
                  
                Weak TRS Rules:
                  +(x,#()) -> x
                  +(x,+(y,z)) -> +(+(x,y),z)
                  +(#(),x) -> x
                  +(0(x),0(y)) -> 0(+(x,y))
                  +(0(x),1(y)) -> 1(+(x,y))
                  +(1(x),0(y)) -> 1(+(x,y))
                  +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
                  -(x,#()) -> x
                  -(#(),x) -> #()
                  -(0(x),0(y)) -> 0(-(x,y))
                  -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
                  -(1(x),0(y)) -> 1(-(x,y))
                  -(1(x),1(y)) -> 0(-(x,y))
                  0(#()) -> #()
                  size(l(x)) -> 1(#())
                  size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
                Signature:
                  {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2,c_36/0,c_37/0,c_38/0,c_39/4}
                Obligation:
                  Innermost
                  basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
              Applied Processor:
                EmptyProcessor
              Proof:
                The problem is already closed. The intended complexity is O(1).
          
    *** 1.1.1.1.1.1.1.2.1.1.2 Progress [(?,O(n^2))]  ***
        Considered Problem:
          Strict DP Rules:
            bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z))
            ge#(#(),0(x)) -> c_20(ge#(#(),x))
            ge#(0(x),0(y)) -> c_22(ge#(x,y))
            ge#(0(x),1(y)) -> c_23(ge#(y,x))
            ge#(1(x),0(y)) -> c_24(ge#(x,y))
            ge#(1(x),1(y)) -> c_25(ge#(x,y))
            max#(n(x,y,z)) -> c_29(max#(z))
            min#(n(x,y,z)) -> c_31(min#(y))
            size#(n(x,y,z)) -> c_35(size#(x),size#(y))
            wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(y),size(z))),-#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(z),size(y))),-#(size(z),size(y)),size#(z),size#(y),wb#(y),wb#(z))
          Strict TRS Rules:
            
          Weak DP Rules:
            -#(0(x),0(y)) -> c_10(-#(x,y))
            -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y))
            -#(1(x),0(y)) -> c_12(-#(x,y))
            -#(1(x),1(y)) -> c_13(-#(x,y))
          Weak TRS Rules:
            +(x,#()) -> x
            +(x,+(y,z)) -> +(+(x,y),z)
            +(#(),x) -> x
            +(0(x),0(y)) -> 0(+(x,y))
            +(0(x),1(y)) -> 1(+(x,y))
            +(1(x),0(y)) -> 1(+(x,y))
            +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
            -(x,#()) -> x
            -(#(),x) -> #()
            -(0(x),0(y)) -> 0(-(x,y))
            -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
            -(1(x),0(y)) -> 1(-(x,y))
            -(1(x),1(y)) -> 0(-(x,y))
            0(#()) -> #()
            max(l(x)) -> x
            max(n(x,y,z)) -> max(z)
            min(l(x)) -> x
            min(n(x,y,z)) -> min(y)
            size(l(x)) -> 1(#())
            size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
          Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2,c_36/0,c_37/0,c_38/0,c_39/13}
          Obligation:
            Innermost
            basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
        Applied Processor:
          RemoveWeakSuffixes
        Proof:
          Consider the dependency graph
            1:S:bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z))
               -->_4 min#(n(x,y,z)) -> c_31(min#(y)):8
               -->_2 max#(n(x,y,z)) -> c_29(max#(z)):7
               -->_3 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
               -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
               -->_3 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
               -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
               -->_3 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
               -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
               -->_3 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
               -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
               -->_3 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
               -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
               -->_6 bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z)):1
               -->_5 bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z)):1
            
            2:S:ge#(#(),0(x)) -> c_20(ge#(#(),x))
               -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
            
            3:S:ge#(0(x),0(y)) -> c_22(ge#(x,y))
               -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
               -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
               -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
               -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
               -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
            
            4:S:ge#(0(x),1(y)) -> c_23(ge#(y,x))
               -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
               -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
               -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
               -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
               -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
            
            5:S:ge#(1(x),0(y)) -> c_24(ge#(x,y))
               -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
               -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
               -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
               -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
               -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
            
            6:S:ge#(1(x),1(y)) -> c_25(ge#(x,y))
               -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
               -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
               -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
               -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
               -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
            
            7:S:max#(n(x,y,z)) -> c_29(max#(z))
               -->_1 max#(n(x,y,z)) -> c_29(max#(z)):7
            
            8:S:min#(n(x,y,z)) -> c_31(min#(y))
               -->_1 min#(n(x,y,z)) -> c_31(min#(y)):8
            
            9:S:size#(n(x,y,z)) -> c_35(size#(x),size#(y))
               -->_2 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):9
               -->_1 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):9
            
            10:S:wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(y),size(z))),-#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(z),size(y))),-#(size(z),size(y)),size#(z),size#(y),wb#(y),wb#(z))
               -->_9 -#(1(x),1(y)) -> c_13(-#(x,y)):14
               -->_5 -#(1(x),1(y)) -> c_13(-#(x,y)):14
               -->_9 -#(1(x),0(y)) -> c_12(-#(x,y)):13
               -->_5 -#(1(x),0(y)) -> c_12(-#(x,y)):13
               -->_9 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):12
               -->_5 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):12
               -->_9 -#(0(x),0(y)) -> c_10(-#(x,y)):11
               -->_5 -#(0(x),0(y)) -> c_10(-#(x,y)):11
               -->_13 wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(y),size(z))),-#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(z),size(y))),-#(size(z),size(y)),size#(z),size#(y),wb#(y),wb#(z)):10
               -->_12 wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(y),size(z))),-#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(z),size(y))),-#(size(z),size(y)),size#(z),size#(y),wb#(y),wb#(z)):10
               -->_11 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):9
               -->_10 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):9
               -->_7 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):9
               -->_6 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):9
               -->_3 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):9
               -->_2 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):9
               -->_8 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
               -->_4 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
               -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
               -->_8 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
               -->_4 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
               -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
               -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
               -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
               -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
            
            11:W:-#(0(x),0(y)) -> c_10(-#(x,y))
               -->_1 -#(1(x),1(y)) -> c_13(-#(x,y)):14
               -->_1 -#(1(x),0(y)) -> c_12(-#(x,y)):13
               -->_1 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):12
               -->_1 -#(0(x),0(y)) -> c_10(-#(x,y)):11
            
            12:W:-#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y))
               -->_2 -#(1(x),1(y)) -> c_13(-#(x,y)):14
               -->_1 -#(1(x),1(y)) -> c_13(-#(x,y)):14
               -->_2 -#(1(x),0(y)) -> c_12(-#(x,y)):13
               -->_2 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):12
               -->_1 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):12
               -->_2 -#(0(x),0(y)) -> c_10(-#(x,y)):11
            
            13:W:-#(1(x),0(y)) -> c_12(-#(x,y))
               -->_1 -#(1(x),1(y)) -> c_13(-#(x,y)):14
               -->_1 -#(1(x),0(y)) -> c_12(-#(x,y)):13
               -->_1 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):12
               -->_1 -#(0(x),0(y)) -> c_10(-#(x,y)):11
            
            14:W:-#(1(x),1(y)) -> c_13(-#(x,y))
               -->_1 -#(1(x),1(y)) -> c_13(-#(x,y)):14
               -->_1 -#(1(x),0(y)) -> c_12(-#(x,y)):13
               -->_1 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):12
               -->_1 -#(0(x),0(y)) -> c_10(-#(x,y)):11
            
          The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
            14: -#(1(x),1(y)) -> c_13(-#(x,y))  
            13: -#(1(x),0(y)) -> c_12(-#(x,y))  
            12: -#(0(x),1(y)) -> c_11(-#(-(x,y) 
                                        ,1(#()))
                                     ,-#(x,y))  
            11: -#(0(x),0(y)) -> c_10(-#(x,y))  
    *** 1.1.1.1.1.1.1.2.1.1.2.1 Progress [(?,O(n^2))]  ***
        Considered Problem:
          Strict DP Rules:
            bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z))
            ge#(#(),0(x)) -> c_20(ge#(#(),x))
            ge#(0(x),0(y)) -> c_22(ge#(x,y))
            ge#(0(x),1(y)) -> c_23(ge#(y,x))
            ge#(1(x),0(y)) -> c_24(ge#(x,y))
            ge#(1(x),1(y)) -> c_25(ge#(x,y))
            max#(n(x,y,z)) -> c_29(max#(z))
            min#(n(x,y,z)) -> c_31(min#(y))
            size#(n(x,y,z)) -> c_35(size#(x),size#(y))
            wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(y),size(z))),-#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(z),size(y))),-#(size(z),size(y)),size#(z),size#(y),wb#(y),wb#(z))
          Strict TRS Rules:
            
          Weak DP Rules:
            
          Weak TRS Rules:
            +(x,#()) -> x
            +(x,+(y,z)) -> +(+(x,y),z)
            +(#(),x) -> x
            +(0(x),0(y)) -> 0(+(x,y))
            +(0(x),1(y)) -> 1(+(x,y))
            +(1(x),0(y)) -> 1(+(x,y))
            +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
            -(x,#()) -> x
            -(#(),x) -> #()
            -(0(x),0(y)) -> 0(-(x,y))
            -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
            -(1(x),0(y)) -> 1(-(x,y))
            -(1(x),1(y)) -> 0(-(x,y))
            0(#()) -> #()
            max(l(x)) -> x
            max(n(x,y,z)) -> max(z)
            min(l(x)) -> x
            min(n(x,y,z)) -> min(y)
            size(l(x)) -> 1(#())
            size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
          Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2,c_36/0,c_37/0,c_38/0,c_39/13}
          Obligation:
            Innermost
            basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
        Applied Processor:
          SimplifyRHS
        Proof:
          Consider the dependency graph
            1:S:bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z))
               -->_4 min#(n(x,y,z)) -> c_31(min#(y)):8
               -->_2 max#(n(x,y,z)) -> c_29(max#(z)):7
               -->_3 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
               -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
               -->_3 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
               -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
               -->_3 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
               -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
               -->_3 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
               -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
               -->_3 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
               -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
               -->_6 bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z)):1
               -->_5 bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z)):1
            
            2:S:ge#(#(),0(x)) -> c_20(ge#(#(),x))
               -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
            
            3:S:ge#(0(x),0(y)) -> c_22(ge#(x,y))
               -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
               -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
               -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
               -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
               -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
            
            4:S:ge#(0(x),1(y)) -> c_23(ge#(y,x))
               -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
               -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
               -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
               -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
               -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
            
            5:S:ge#(1(x),0(y)) -> c_24(ge#(x,y))
               -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
               -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
               -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
               -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
               -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
            
            6:S:ge#(1(x),1(y)) -> c_25(ge#(x,y))
               -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
               -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
               -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
               -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
               -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
            
            7:S:max#(n(x,y,z)) -> c_29(max#(z))
               -->_1 max#(n(x,y,z)) -> c_29(max#(z)):7
            
            8:S:min#(n(x,y,z)) -> c_31(min#(y))
               -->_1 min#(n(x,y,z)) -> c_31(min#(y)):8
            
            9:S:size#(n(x,y,z)) -> c_35(size#(x),size#(y))
               -->_2 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):9
               -->_1 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):9
            
            10:S:wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(y),size(z))),-#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(z),size(y))),-#(size(z),size(y)),size#(z),size#(y),wb#(y),wb#(z))
               -->_13 wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(y),size(z))),-#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(z),size(y))),-#(size(z),size(y)),size#(z),size#(y),wb#(y),wb#(z)):10
               -->_12 wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(y),size(z))),-#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(z),size(y))),-#(size(z),size(y)),size#(z),size#(y),wb#(y),wb#(z)):10
               -->_11 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):9
               -->_10 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):9
               -->_7 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):9
               -->_6 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):9
               -->_3 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):9
               -->_2 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):9
               -->_8 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
               -->_4 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
               -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
               -->_8 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
               -->_4 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
               -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
               -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
               -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
               -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
            
          Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
            wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(y),size(z))),size#(y),size#(z),ge#(1(#()),-(size(z),size(y))),size#(z),size#(y),wb#(y),wb#(z))
    *** 1.1.1.1.1.1.1.2.1.1.2.1.1 Progress [(?,O(n^2))]  ***
        Considered Problem:
          Strict DP Rules:
            bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z))
            ge#(#(),0(x)) -> c_20(ge#(#(),x))
            ge#(0(x),0(y)) -> c_22(ge#(x,y))
            ge#(0(x),1(y)) -> c_23(ge#(y,x))
            ge#(1(x),0(y)) -> c_24(ge#(x,y))
            ge#(1(x),1(y)) -> c_25(ge#(x,y))
            max#(n(x,y,z)) -> c_29(max#(z))
            min#(n(x,y,z)) -> c_31(min#(y))
            size#(n(x,y,z)) -> c_35(size#(x),size#(y))
            wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(y),size(z))),size#(y),size#(z),ge#(1(#()),-(size(z),size(y))),size#(z),size#(y),wb#(y),wb#(z))
          Strict TRS Rules:
            
          Weak DP Rules:
            
          Weak TRS Rules:
            +(x,#()) -> x
            +(x,+(y,z)) -> +(+(x,y),z)
            +(#(),x) -> x
            +(0(x),0(y)) -> 0(+(x,y))
            +(0(x),1(y)) -> 1(+(x,y))
            +(1(x),0(y)) -> 1(+(x,y))
            +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
            -(x,#()) -> x
            -(#(),x) -> #()
            -(0(x),0(y)) -> 0(-(x,y))
            -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
            -(1(x),0(y)) -> 1(-(x,y))
            -(1(x),1(y)) -> 0(-(x,y))
            0(#()) -> #()
            max(l(x)) -> x
            max(n(x,y,z)) -> max(z)
            min(l(x)) -> x
            min(n(x,y,z)) -> min(y)
            size(l(x)) -> 1(#())
            size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
          Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2,c_36/0,c_37/0,c_38/0,c_39/11}
          Obligation:
            Innermost
            basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
        Applied Processor:
          Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd}
        Proof:
          We analyse the complexity of following sub-problems (R) and (S).
          Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component.
          
          Problem (R)
            Strict DP Rules:
              bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z))
              ge#(#(),0(x)) -> c_20(ge#(#(),x))
              ge#(0(x),0(y)) -> c_22(ge#(x,y))
              ge#(0(x),1(y)) -> c_23(ge#(y,x))
              ge#(1(x),0(y)) -> c_24(ge#(x,y))
              ge#(1(x),1(y)) -> c_25(ge#(x,y))
              max#(n(x,y,z)) -> c_29(max#(z))
              min#(n(x,y,z)) -> c_31(min#(y))
            Strict TRS Rules:
              
            Weak DP Rules:
              size#(n(x,y,z)) -> c_35(size#(x),size#(y))
              wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(y),size(z))),size#(y),size#(z),ge#(1(#()),-(size(z),size(y))),size#(z),size#(y),wb#(y),wb#(z))
            Weak TRS Rules:
              +(x,#()) -> x
              +(x,+(y,z)) -> +(+(x,y),z)
              +(#(),x) -> x
              +(0(x),0(y)) -> 0(+(x,y))
              +(0(x),1(y)) -> 1(+(x,y))
              +(1(x),0(y)) -> 1(+(x,y))
              +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
              -(x,#()) -> x
              -(#(),x) -> #()
              -(0(x),0(y)) -> 0(-(x,y))
              -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
              -(1(x),0(y)) -> 1(-(x,y))
              -(1(x),1(y)) -> 0(-(x,y))
              0(#()) -> #()
              max(l(x)) -> x
              max(n(x,y,z)) -> max(z)
              min(l(x)) -> x
              min(n(x,y,z)) -> min(y)
              size(l(x)) -> 1(#())
              size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
            Signature:
              {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2,c_36/0,c_37/0,c_38/0,c_39/11}
            Obligation:
              Innermost
              basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
          
          Problem (S)
            Strict DP Rules:
              size#(n(x,y,z)) -> c_35(size#(x),size#(y))
              wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(y),size(z))),size#(y),size#(z),ge#(1(#()),-(size(z),size(y))),size#(z),size#(y),wb#(y),wb#(z))
            Strict TRS Rules:
              
            Weak DP Rules:
              bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z))
              ge#(#(),0(x)) -> c_20(ge#(#(),x))
              ge#(0(x),0(y)) -> c_22(ge#(x,y))
              ge#(0(x),1(y)) -> c_23(ge#(y,x))
              ge#(1(x),0(y)) -> c_24(ge#(x,y))
              ge#(1(x),1(y)) -> c_25(ge#(x,y))
              max#(n(x,y,z)) -> c_29(max#(z))
              min#(n(x,y,z)) -> c_31(min#(y))
            Weak TRS Rules:
              +(x,#()) -> x
              +(x,+(y,z)) -> +(+(x,y),z)
              +(#(),x) -> x
              +(0(x),0(y)) -> 0(+(x,y))
              +(0(x),1(y)) -> 1(+(x,y))
              +(1(x),0(y)) -> 1(+(x,y))
              +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
              -(x,#()) -> x
              -(#(),x) -> #()
              -(0(x),0(y)) -> 0(-(x,y))
              -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
              -(1(x),0(y)) -> 1(-(x,y))
              -(1(x),1(y)) -> 0(-(x,y))
              0(#()) -> #()
              max(l(x)) -> x
              max(n(x,y,z)) -> max(z)
              min(l(x)) -> x
              min(n(x,y,z)) -> min(y)
              size(l(x)) -> 1(#())
              size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
            Signature:
              {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2,c_36/0,c_37/0,c_38/0,c_39/11}
            Obligation:
              Innermost
              basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
      *** 1.1.1.1.1.1.1.2.1.1.2.1.1.1 Progress [(?,O(n^2))]  ***
          Considered Problem:
            Strict DP Rules:
              bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z))
              ge#(#(),0(x)) -> c_20(ge#(#(),x))
              ge#(0(x),0(y)) -> c_22(ge#(x,y))
              ge#(0(x),1(y)) -> c_23(ge#(y,x))
              ge#(1(x),0(y)) -> c_24(ge#(x,y))
              ge#(1(x),1(y)) -> c_25(ge#(x,y))
              max#(n(x,y,z)) -> c_29(max#(z))
              min#(n(x,y,z)) -> c_31(min#(y))
            Strict TRS Rules:
              
            Weak DP Rules:
              size#(n(x,y,z)) -> c_35(size#(x),size#(y))
              wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(y),size(z))),size#(y),size#(z),ge#(1(#()),-(size(z),size(y))),size#(z),size#(y),wb#(y),wb#(z))
            Weak TRS Rules:
              +(x,#()) -> x
              +(x,+(y,z)) -> +(+(x,y),z)
              +(#(),x) -> x
              +(0(x),0(y)) -> 0(+(x,y))
              +(0(x),1(y)) -> 1(+(x,y))
              +(1(x),0(y)) -> 1(+(x,y))
              +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
              -(x,#()) -> x
              -(#(),x) -> #()
              -(0(x),0(y)) -> 0(-(x,y))
              -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
              -(1(x),0(y)) -> 1(-(x,y))
              -(1(x),1(y)) -> 0(-(x,y))
              0(#()) -> #()
              max(l(x)) -> x
              max(n(x,y,z)) -> max(z)
              min(l(x)) -> x
              min(n(x,y,z)) -> min(y)
              size(l(x)) -> 1(#())
              size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
            Signature:
              {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2,c_36/0,c_37/0,c_38/0,c_39/11}
            Obligation:
              Innermost
              basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
          Applied Processor:
            RemoveWeakSuffixes
          Proof:
            Consider the dependency graph
              1:S:bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z))
                 -->_3 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
                 -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
                 -->_3 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
                 -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
                 -->_3 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
                 -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
                 -->_3 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
                 -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
                 -->_4 min#(n(x,y,z)) -> c_31(min#(y)):8
                 -->_2 max#(n(x,y,z)) -> c_29(max#(z)):7
                 -->_3 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
                 -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
                 -->_6 bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z)):1
                 -->_5 bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z)):1
              
              2:S:ge#(#(),0(x)) -> c_20(ge#(#(),x))
                 -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
              
              3:S:ge#(0(x),0(y)) -> c_22(ge#(x,y))
                 -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
                 -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
                 -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
                 -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
                 -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
              
              4:S:ge#(0(x),1(y)) -> c_23(ge#(y,x))
                 -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
                 -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
                 -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
                 -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
                 -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
              
              5:S:ge#(1(x),0(y)) -> c_24(ge#(x,y))
                 -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
                 -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
                 -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
                 -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
                 -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
              
              6:S:ge#(1(x),1(y)) -> c_25(ge#(x,y))
                 -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
                 -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
                 -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
                 -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
                 -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
              
              7:S:max#(n(x,y,z)) -> c_29(max#(z))
                 -->_1 max#(n(x,y,z)) -> c_29(max#(z)):7
              
              8:S:min#(n(x,y,z)) -> c_31(min#(y))
                 -->_1 min#(n(x,y,z)) -> c_31(min#(y)):8
              
              9:W:size#(n(x,y,z)) -> c_35(size#(x),size#(y))
                 -->_2 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):9
                 -->_1 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):9
              
              10:W:wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(y),size(z))),size#(y),size#(z),ge#(1(#()),-(size(z),size(y))),size#(z),size#(y),wb#(y),wb#(z))
                 -->_7 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
                 -->_4 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
                 -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
                 -->_7 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
                 -->_4 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
                 -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
                 -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
                 -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
                 -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
                 -->_9 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):9
                 -->_8 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):9
                 -->_6 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):9
                 -->_5 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):9
                 -->_3 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):9
                 -->_2 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):9
                 -->_11 wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(y),size(z))),size#(y),size#(z),ge#(1(#()),-(size(z),size(y))),size#(z),size#(y),wb#(y),wb#(z)):10
                 -->_10 wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(y),size(z))),size#(y),size#(z),ge#(1(#()),-(size(z),size(y))),size#(z),size#(y),wb#(y),wb#(z)):10
              
            The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
              9: size#(n(x,y,z)) -> c_35(size#(x) 
                                        ,size#(y))
      *** 1.1.1.1.1.1.1.2.1.1.2.1.1.1.1 Progress [(?,O(n^2))]  ***
          Considered Problem:
            Strict DP Rules:
              bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z))
              ge#(#(),0(x)) -> c_20(ge#(#(),x))
              ge#(0(x),0(y)) -> c_22(ge#(x,y))
              ge#(0(x),1(y)) -> c_23(ge#(y,x))
              ge#(1(x),0(y)) -> c_24(ge#(x,y))
              ge#(1(x),1(y)) -> c_25(ge#(x,y))
              max#(n(x,y,z)) -> c_29(max#(z))
              min#(n(x,y,z)) -> c_31(min#(y))
            Strict TRS Rules:
              
            Weak DP Rules:
              wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(y),size(z))),size#(y),size#(z),ge#(1(#()),-(size(z),size(y))),size#(z),size#(y),wb#(y),wb#(z))
            Weak TRS Rules:
              +(x,#()) -> x
              +(x,+(y,z)) -> +(+(x,y),z)
              +(#(),x) -> x
              +(0(x),0(y)) -> 0(+(x,y))
              +(0(x),1(y)) -> 1(+(x,y))
              +(1(x),0(y)) -> 1(+(x,y))
              +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
              -(x,#()) -> x
              -(#(),x) -> #()
              -(0(x),0(y)) -> 0(-(x,y))
              -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
              -(1(x),0(y)) -> 1(-(x,y))
              -(1(x),1(y)) -> 0(-(x,y))
              0(#()) -> #()
              max(l(x)) -> x
              max(n(x,y,z)) -> max(z)
              min(l(x)) -> x
              min(n(x,y,z)) -> min(y)
              size(l(x)) -> 1(#())
              size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
            Signature:
              {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2,c_36/0,c_37/0,c_38/0,c_39/11}
            Obligation:
              Innermost
              basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
          Applied Processor:
            SimplifyRHS
          Proof:
            Consider the dependency graph
              1:S:bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z))
                 -->_3 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
                 -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
                 -->_3 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
                 -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
                 -->_3 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
                 -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
                 -->_3 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
                 -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
                 -->_4 min#(n(x,y,z)) -> c_31(min#(y)):8
                 -->_2 max#(n(x,y,z)) -> c_29(max#(z)):7
                 -->_3 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
                 -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
                 -->_6 bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z)):1
                 -->_5 bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z)):1
              
              2:S:ge#(#(),0(x)) -> c_20(ge#(#(),x))
                 -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
              
              3:S:ge#(0(x),0(y)) -> c_22(ge#(x,y))
                 -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
                 -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
                 -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
                 -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
                 -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
              
              4:S:ge#(0(x),1(y)) -> c_23(ge#(y,x))
                 -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
                 -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
                 -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
                 -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
                 -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
              
              5:S:ge#(1(x),0(y)) -> c_24(ge#(x,y))
                 -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
                 -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
                 -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
                 -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
                 -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
              
              6:S:ge#(1(x),1(y)) -> c_25(ge#(x,y))
                 -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
                 -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
                 -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
                 -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
                 -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
              
              7:S:max#(n(x,y,z)) -> c_29(max#(z))
                 -->_1 max#(n(x,y,z)) -> c_29(max#(z)):7
              
              8:S:min#(n(x,y,z)) -> c_31(min#(y))
                 -->_1 min#(n(x,y,z)) -> c_31(min#(y)):8
              
              10:W:wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(y),size(z))),size#(y),size#(z),ge#(1(#()),-(size(z),size(y))),size#(z),size#(y),wb#(y),wb#(z))
                 -->_7 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
                 -->_4 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
                 -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
                 -->_7 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
                 -->_4 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
                 -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
                 -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
                 -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
                 -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
                 -->_11 wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(y),size(z))),size#(y),size#(z),ge#(1(#()),-(size(z),size(y))),size#(z),size#(y),wb#(y),wb#(z)):10
                 -->_10 wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(y),size(z))),size#(y),size#(z),ge#(1(#()),-(size(z),size(y))),size#(z),size#(y),wb#(y),wb#(z)):10
              
            Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
              wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z)),ge#(1(#()),-(size(y),size(z))),ge#(1(#()),-(size(z),size(y))),wb#(y),wb#(z))
      *** 1.1.1.1.1.1.1.2.1.1.2.1.1.1.1.1 Progress [(?,O(n^2))]  ***
          Considered Problem:
            Strict DP Rules:
              bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z))
              ge#(#(),0(x)) -> c_20(ge#(#(),x))
              ge#(0(x),0(y)) -> c_22(ge#(x,y))
              ge#(0(x),1(y)) -> c_23(ge#(y,x))
              ge#(1(x),0(y)) -> c_24(ge#(x,y))
              ge#(1(x),1(y)) -> c_25(ge#(x,y))
              max#(n(x,y,z)) -> c_29(max#(z))
              min#(n(x,y,z)) -> c_31(min#(y))
            Strict TRS Rules:
              
            Weak DP Rules:
              wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z)),ge#(1(#()),-(size(y),size(z))),ge#(1(#()),-(size(z),size(y))),wb#(y),wb#(z))
            Weak TRS Rules:
              +(x,#()) -> x
              +(x,+(y,z)) -> +(+(x,y),z)
              +(#(),x) -> x
              +(0(x),0(y)) -> 0(+(x,y))
              +(0(x),1(y)) -> 1(+(x,y))
              +(1(x),0(y)) -> 1(+(x,y))
              +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
              -(x,#()) -> x
              -(#(),x) -> #()
              -(0(x),0(y)) -> 0(-(x,y))
              -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
              -(1(x),0(y)) -> 1(-(x,y))
              -(1(x),1(y)) -> 0(-(x,y))
              0(#()) -> #()
              max(l(x)) -> x
              max(n(x,y,z)) -> max(z)
              min(l(x)) -> x
              min(n(x,y,z)) -> min(y)
              size(l(x)) -> 1(#())
              size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
            Signature:
              {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2,c_36/0,c_37/0,c_38/0,c_39/5}
            Obligation:
              Innermost
              basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
          Applied Processor:
            PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
          Proof:
            We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
              8: min#(n(x,y,z)) -> c_31(min#(y))
              
            The strictly oriented rules are moved into the weak component.
        *** 1.1.1.1.1.1.1.2.1.1.2.1.1.1.1.1.1 Progress [(?,O(n^2))]  ***
            Considered Problem:
              Strict DP Rules:
                bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z))
                ge#(#(),0(x)) -> c_20(ge#(#(),x))
                ge#(0(x),0(y)) -> c_22(ge#(x,y))
                ge#(0(x),1(y)) -> c_23(ge#(y,x))
                ge#(1(x),0(y)) -> c_24(ge#(x,y))
                ge#(1(x),1(y)) -> c_25(ge#(x,y))
                max#(n(x,y,z)) -> c_29(max#(z))
                min#(n(x,y,z)) -> c_31(min#(y))
              Strict TRS Rules:
                
              Weak DP Rules:
                wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z)),ge#(1(#()),-(size(y),size(z))),ge#(1(#()),-(size(z),size(y))),wb#(y),wb#(z))
              Weak TRS Rules:
                +(x,#()) -> x
                +(x,+(y,z)) -> +(+(x,y),z)
                +(#(),x) -> x
                +(0(x),0(y)) -> 0(+(x,y))
                +(0(x),1(y)) -> 1(+(x,y))
                +(1(x),0(y)) -> 1(+(x,y))
                +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
                -(x,#()) -> x
                -(#(),x) -> #()
                -(0(x),0(y)) -> 0(-(x,y))
                -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
                -(1(x),0(y)) -> 1(-(x,y))
                -(1(x),1(y)) -> 0(-(x,y))
                0(#()) -> #()
                max(l(x)) -> x
                max(n(x,y,z)) -> max(z)
                min(l(x)) -> x
                min(n(x,y,z)) -> min(y)
                size(l(x)) -> 1(#())
                size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
              Signature:
                {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2,c_36/0,c_37/0,c_38/0,c_39/5}
              Obligation:
                Innermost
                basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
            Applied Processor:
              NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
            Proof:
              We apply a polynomial interpretation of kind constructor-based(mixed(2)):
              The following argument positions are considered usable:
                uargs(c_18) = {1,2,3,4,5,6},
                uargs(c_20) = {1},
                uargs(c_22) = {1},
                uargs(c_23) = {1},
                uargs(c_24) = {1},
                uargs(c_25) = {1},
                uargs(c_29) = {1},
                uargs(c_31) = {1},
                uargs(c_39) = {1,2,3,4,5}
              
              Following symbols are considered usable:
                {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}
              TcT has computed the following interpretation:
                    p(#) = 0                          
                    p(+) = x1*x2 + x2^2               
                    p(-) = x1*x2                      
                    p(0) = 1                          
                    p(1) = 1 + x1                     
                  p(and) = 0                          
                   p(bs) = 0                          
                p(false) = 0                          
                   p(ge) = 0                          
                   p(if) = 0                          
                    p(l) = 0                          
                  p(max) = 1                          
                  p(min) = 0                          
                    p(n) = 1 + x2 + x3                
                  p(not) = 0                          
                 p(size) = 0                          
                 p(true) = 0                          
                  p(val) = 0                          
                   p(wb) = 0                          
                   p(+#) = 0                          
                   p(-#) = 0                          
                   p(0#) = 0                          
                 p(and#) = 0                          
                  p(bs#) = 1 + x1^2                   
                  p(ge#) = 0                          
                  p(if#) = 0                          
                 p(max#) = 0                          
                 p(min#) = x1                         
                 p(not#) = 0                          
                p(size#) = 0                          
                 p(val#) = 0                          
                  p(wb#) = 0                          
                  p(c_1) = 0                          
                  p(c_2) = 0                          
                  p(c_3) = 0                          
                  p(c_4) = 0                          
                  p(c_5) = 0                          
                  p(c_6) = 0                          
                  p(c_7) = 0                          
                  p(c_8) = 0                          
                  p(c_9) = 0                          
                 p(c_10) = 0                          
                 p(c_11) = 0                          
                 p(c_12) = 0                          
                 p(c_13) = 0                          
                 p(c_14) = 0                          
                 p(c_15) = 0                          
                 p(c_16) = 0                          
                 p(c_17) = 0                          
                 p(c_18) = x1 + x2 + x3 + x4 + x5 + x6
                 p(c_19) = 0                          
                 p(c_20) = x1                         
                 p(c_21) = 0                          
                 p(c_22) = x1                         
                 p(c_23) = x1                         
                 p(c_24) = x1                         
                 p(c_25) = x1                         
                 p(c_26) = 0                          
                 p(c_27) = 0                          
                 p(c_28) = 0                          
                 p(c_29) = x1                         
                 p(c_30) = 0                          
                 p(c_31) = x1                         
                 p(c_32) = 0                          
                 p(c_33) = 0                          
                 p(c_34) = 0                          
                 p(c_35) = 0                          
                 p(c_36) = 0                          
                 p(c_37) = 0                          
                 p(c_38) = 0                          
                 p(c_39) = x1 + x2 + x3 + x4 + x5     
              
              Following rules are strictly oriented:
              min#(n(x,y,z)) = 1 + y + z    
                             > y            
                             = c_31(min#(y))
              
              
              Following rules are (at-least) weakly oriented:
               bs#(n(x,y,z)) =  2 + 2*y + 2*y*z + y^2 + 2*z + z^2  
                             >= 2 + y^2 + z + z^2                  
                             =  c_18(ge#(x,max(y))                 
                                    ,max#(y)                       
                                    ,ge#(min(z),x)                 
                                    ,min#(z)                       
                                    ,bs#(y)                        
                                    ,bs#(z))                       
              
               ge#(#(),0(x)) =  0                                  
                             >= 0                                  
                             =  c_20(ge#(#(),x))                   
              
              ge#(0(x),0(y)) =  0                                  
                             >= 0                                  
                             =  c_22(ge#(x,y))                     
              
              ge#(0(x),1(y)) =  0                                  
                             >= 0                                  
                             =  c_23(ge#(y,x))                     
              
              ge#(1(x),0(y)) =  0                                  
                             >= 0                                  
                             =  c_24(ge#(x,y))                     
              
              ge#(1(x),1(y)) =  0                                  
                             >= 0                                  
                             =  c_25(ge#(x,y))                     
              
              max#(n(x,y,z)) =  0                                  
                             >= 0                                  
                             =  c_29(max#(z))                      
              
               wb#(n(x,y,z)) =  0                                  
                             >= 0                                  
                             =  c_39(ge#(size(y),size(z))          
                                    ,ge#(1(#()),-(size(y),size(z)))
                                    ,ge#(1(#()),-(size(z),size(y)))
                                    ,wb#(y)                        
                                    ,wb#(z))                       
              
        *** 1.1.1.1.1.1.1.2.1.1.2.1.1.1.1.1.1.1 Progress [(?,O(1))]  ***
            Considered Problem:
              Strict DP Rules:
                bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z))
                ge#(#(),0(x)) -> c_20(ge#(#(),x))
                ge#(0(x),0(y)) -> c_22(ge#(x,y))
                ge#(0(x),1(y)) -> c_23(ge#(y,x))
                ge#(1(x),0(y)) -> c_24(ge#(x,y))
                ge#(1(x),1(y)) -> c_25(ge#(x,y))
                max#(n(x,y,z)) -> c_29(max#(z))
              Strict TRS Rules:
                
              Weak DP Rules:
                min#(n(x,y,z)) -> c_31(min#(y))
                wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z)),ge#(1(#()),-(size(y),size(z))),ge#(1(#()),-(size(z),size(y))),wb#(y),wb#(z))
              Weak TRS Rules:
                +(x,#()) -> x
                +(x,+(y,z)) -> +(+(x,y),z)
                +(#(),x) -> x
                +(0(x),0(y)) -> 0(+(x,y))
                +(0(x),1(y)) -> 1(+(x,y))
                +(1(x),0(y)) -> 1(+(x,y))
                +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
                -(x,#()) -> x
                -(#(),x) -> #()
                -(0(x),0(y)) -> 0(-(x,y))
                -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
                -(1(x),0(y)) -> 1(-(x,y))
                -(1(x),1(y)) -> 0(-(x,y))
                0(#()) -> #()
                max(l(x)) -> x
                max(n(x,y,z)) -> max(z)
                min(l(x)) -> x
                min(n(x,y,z)) -> min(y)
                size(l(x)) -> 1(#())
                size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
              Signature:
                {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2,c_36/0,c_37/0,c_38/0,c_39/5}
              Obligation:
                Innermost
                basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
            Applied Processor:
              Assumption
            Proof:
              ()
        
        *** 1.1.1.1.1.1.1.2.1.1.2.1.1.1.1.1.2 Progress [(?,O(n^2))]  ***
            Considered Problem:
              Strict DP Rules:
                bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z))
                ge#(#(),0(x)) -> c_20(ge#(#(),x))
                ge#(0(x),0(y)) -> c_22(ge#(x,y))
                ge#(0(x),1(y)) -> c_23(ge#(y,x))
                ge#(1(x),0(y)) -> c_24(ge#(x,y))
                ge#(1(x),1(y)) -> c_25(ge#(x,y))
                max#(n(x,y,z)) -> c_29(max#(z))
              Strict TRS Rules:
                
              Weak DP Rules:
                min#(n(x,y,z)) -> c_31(min#(y))
                wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z)),ge#(1(#()),-(size(y),size(z))),ge#(1(#()),-(size(z),size(y))),wb#(y),wb#(z))
              Weak TRS Rules:
                +(x,#()) -> x
                +(x,+(y,z)) -> +(+(x,y),z)
                +(#(),x) -> x
                +(0(x),0(y)) -> 0(+(x,y))
                +(0(x),1(y)) -> 1(+(x,y))
                +(1(x),0(y)) -> 1(+(x,y))
                +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
                -(x,#()) -> x
                -(#(),x) -> #()
                -(0(x),0(y)) -> 0(-(x,y))
                -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
                -(1(x),0(y)) -> 1(-(x,y))
                -(1(x),1(y)) -> 0(-(x,y))
                0(#()) -> #()
                max(l(x)) -> x
                max(n(x,y,z)) -> max(z)
                min(l(x)) -> x
                min(n(x,y,z)) -> min(y)
                size(l(x)) -> 1(#())
                size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
              Signature:
                {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2,c_36/0,c_37/0,c_38/0,c_39/5}
              Obligation:
                Innermost
                basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
            Applied Processor:
              RemoveWeakSuffixes
            Proof:
              Consider the dependency graph
                1:S:bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z))
                   -->_4 min#(n(x,y,z)) -> c_31(min#(y)):8
                   -->_2 max#(n(x,y,z)) -> c_29(max#(z)):7
                   -->_3 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
                   -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
                   -->_3 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
                   -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
                   -->_3 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
                   -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
                   -->_3 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
                   -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
                   -->_3 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
                   -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
                   -->_6 bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z)):1
                   -->_5 bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z)):1
                
                2:S:ge#(#(),0(x)) -> c_20(ge#(#(),x))
                   -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
                
                3:S:ge#(0(x),0(y)) -> c_22(ge#(x,y))
                   -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
                   -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
                   -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
                   -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
                   -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
                
                4:S:ge#(0(x),1(y)) -> c_23(ge#(y,x))
                   -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
                   -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
                   -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
                   -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
                   -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
                
                5:S:ge#(1(x),0(y)) -> c_24(ge#(x,y))
                   -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
                   -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
                   -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
                   -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
                   -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
                
                6:S:ge#(1(x),1(y)) -> c_25(ge#(x,y))
                   -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
                   -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
                   -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
                   -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
                   -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
                
                7:S:max#(n(x,y,z)) -> c_29(max#(z))
                   -->_1 max#(n(x,y,z)) -> c_29(max#(z)):7
                
                8:W:min#(n(x,y,z)) -> c_31(min#(y))
                   -->_1 min#(n(x,y,z)) -> c_31(min#(y)):8
                
                9:W:wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z)),ge#(1(#()),-(size(y),size(z))),ge#(1(#()),-(size(z),size(y))),wb#(y),wb#(z))
                   -->_5 wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z)),ge#(1(#()),-(size(y),size(z))),ge#(1(#()),-(size(z),size(y))),wb#(y),wb#(z)):9
                   -->_4 wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z)),ge#(1(#()),-(size(y),size(z))),ge#(1(#()),-(size(z),size(y))),wb#(y),wb#(z)):9
                   -->_3 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
                   -->_2 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
                   -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
                   -->_3 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
                   -->_2 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
                   -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
                   -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
                   -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
                   -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
                
              The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
                8: min#(n(x,y,z)) -> c_31(min#(y))
        *** 1.1.1.1.1.1.1.2.1.1.2.1.1.1.1.1.2.1 Progress [(?,O(n^2))]  ***
            Considered Problem:
              Strict DP Rules:
                bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z))
                ge#(#(),0(x)) -> c_20(ge#(#(),x))
                ge#(0(x),0(y)) -> c_22(ge#(x,y))
                ge#(0(x),1(y)) -> c_23(ge#(y,x))
                ge#(1(x),0(y)) -> c_24(ge#(x,y))
                ge#(1(x),1(y)) -> c_25(ge#(x,y))
                max#(n(x,y,z)) -> c_29(max#(z))
              Strict TRS Rules:
                
              Weak DP Rules:
                wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z)),ge#(1(#()),-(size(y),size(z))),ge#(1(#()),-(size(z),size(y))),wb#(y),wb#(z))
              Weak TRS Rules:
                +(x,#()) -> x
                +(x,+(y,z)) -> +(+(x,y),z)
                +(#(),x) -> x
                +(0(x),0(y)) -> 0(+(x,y))
                +(0(x),1(y)) -> 1(+(x,y))
                +(1(x),0(y)) -> 1(+(x,y))
                +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
                -(x,#()) -> x
                -(#(),x) -> #()
                -(0(x),0(y)) -> 0(-(x,y))
                -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
                -(1(x),0(y)) -> 1(-(x,y))
                -(1(x),1(y)) -> 0(-(x,y))
                0(#()) -> #()
                max(l(x)) -> x
                max(n(x,y,z)) -> max(z)
                min(l(x)) -> x
                min(n(x,y,z)) -> min(y)
                size(l(x)) -> 1(#())
                size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
              Signature:
                {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2,c_36/0,c_37/0,c_38/0,c_39/5}
              Obligation:
                Innermost
                basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
            Applied Processor:
              SimplifyRHS
            Proof:
              Consider the dependency graph
                1:S:bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z))
                   -->_2 max#(n(x,y,z)) -> c_29(max#(z)):7
                   -->_3 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
                   -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
                   -->_3 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
                   -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
                   -->_3 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
                   -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
                   -->_3 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
                   -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
                   -->_3 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
                   -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
                   -->_6 bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z)):1
                   -->_5 bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z)):1
                
                2:S:ge#(#(),0(x)) -> c_20(ge#(#(),x))
                   -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
                
                3:S:ge#(0(x),0(y)) -> c_22(ge#(x,y))
                   -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
                   -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
                   -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
                   -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
                   -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
                
                4:S:ge#(0(x),1(y)) -> c_23(ge#(y,x))
                   -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
                   -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
                   -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
                   -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
                   -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
                
                5:S:ge#(1(x),0(y)) -> c_24(ge#(x,y))
                   -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
                   -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
                   -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
                   -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
                   -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
                
                6:S:ge#(1(x),1(y)) -> c_25(ge#(x,y))
                   -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
                   -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
                   -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
                   -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
                   -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
                
                7:S:max#(n(x,y,z)) -> c_29(max#(z))
                   -->_1 max#(n(x,y,z)) -> c_29(max#(z)):7
                
                9:W:wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z)),ge#(1(#()),-(size(y),size(z))),ge#(1(#()),-(size(z),size(y))),wb#(y),wb#(z))
                   -->_5 wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z)),ge#(1(#()),-(size(y),size(z))),ge#(1(#()),-(size(z),size(y))),wb#(y),wb#(z)):9
                   -->_4 wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z)),ge#(1(#()),-(size(y),size(z))),ge#(1(#()),-(size(z),size(y))),wb#(y),wb#(z)):9
                   -->_3 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
                   -->_2 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
                   -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
                   -->_3 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
                   -->_2 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
                   -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
                   -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
                   -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
                   -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
                
              Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
                bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),bs#(y),bs#(z))
        *** 1.1.1.1.1.1.1.2.1.1.2.1.1.1.1.1.2.1.1 Progress [(?,O(n^2))]  ***
            Considered Problem:
              Strict DP Rules:
                bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),bs#(y),bs#(z))
                ge#(#(),0(x)) -> c_20(ge#(#(),x))
                ge#(0(x),0(y)) -> c_22(ge#(x,y))
                ge#(0(x),1(y)) -> c_23(ge#(y,x))
                ge#(1(x),0(y)) -> c_24(ge#(x,y))
                ge#(1(x),1(y)) -> c_25(ge#(x,y))
                max#(n(x,y,z)) -> c_29(max#(z))
              Strict TRS Rules:
                
              Weak DP Rules:
                wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z)),ge#(1(#()),-(size(y),size(z))),ge#(1(#()),-(size(z),size(y))),wb#(y),wb#(z))
              Weak TRS Rules:
                +(x,#()) -> x
                +(x,+(y,z)) -> +(+(x,y),z)
                +(#(),x) -> x
                +(0(x),0(y)) -> 0(+(x,y))
                +(0(x),1(y)) -> 1(+(x,y))
                +(1(x),0(y)) -> 1(+(x,y))
                +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
                -(x,#()) -> x
                -(#(),x) -> #()
                -(0(x),0(y)) -> 0(-(x,y))
                -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
                -(1(x),0(y)) -> 1(-(x,y))
                -(1(x),1(y)) -> 0(-(x,y))
                0(#()) -> #()
                max(l(x)) -> x
                max(n(x,y,z)) -> max(z)
                min(l(x)) -> x
                min(n(x,y,z)) -> min(y)
                size(l(x)) -> 1(#())
                size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
              Signature:
                {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/5,c_19/0,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2,c_36/0,c_37/0,c_38/0,c_39/5}
              Obligation:
                Innermost
                basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
            Applied Processor:
              PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
            Proof:
              We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
                1: bs#(n(x,y,z)) -> c_18(ge#(x        
                                            ,max(y))  
                                        ,max#(y)      
                                        ,ge#(min(z),x)
                                        ,bs#(y)       
                                        ,bs#(z))      
                7: max#(n(x,y,z)) -> c_29(max#(z))    
                
              The strictly oriented rules are moved into the weak component.
          *** 1.1.1.1.1.1.1.2.1.1.2.1.1.1.1.1.2.1.1.1 Progress [(?,O(n^2))]  ***
              Considered Problem:
                Strict DP Rules:
                  bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),bs#(y),bs#(z))
                  ge#(#(),0(x)) -> c_20(ge#(#(),x))
                  ge#(0(x),0(y)) -> c_22(ge#(x,y))
                  ge#(0(x),1(y)) -> c_23(ge#(y,x))
                  ge#(1(x),0(y)) -> c_24(ge#(x,y))
                  ge#(1(x),1(y)) -> c_25(ge#(x,y))
                  max#(n(x,y,z)) -> c_29(max#(z))
                Strict TRS Rules:
                  
                Weak DP Rules:
                  wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z)),ge#(1(#()),-(size(y),size(z))),ge#(1(#()),-(size(z),size(y))),wb#(y),wb#(z))
                Weak TRS Rules:
                  +(x,#()) -> x
                  +(x,+(y,z)) -> +(+(x,y),z)
                  +(#(),x) -> x
                  +(0(x),0(y)) -> 0(+(x,y))
                  +(0(x),1(y)) -> 1(+(x,y))
                  +(1(x),0(y)) -> 1(+(x,y))
                  +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
                  -(x,#()) -> x
                  -(#(),x) -> #()
                  -(0(x),0(y)) -> 0(-(x,y))
                  -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
                  -(1(x),0(y)) -> 1(-(x,y))
                  -(1(x),1(y)) -> 0(-(x,y))
                  0(#()) -> #()
                  max(l(x)) -> x
                  max(n(x,y,z)) -> max(z)
                  min(l(x)) -> x
                  min(n(x,y,z)) -> min(y)
                  size(l(x)) -> 1(#())
                  size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
                Signature:
                  {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/5,c_19/0,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2,c_36/0,c_37/0,c_38/0,c_39/5}
                Obligation:
                  Innermost
                  basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
              Applied Processor:
                NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
              Proof:
                We apply a polynomial interpretation of kind constructor-based(mixed(2)):
                The following argument positions are considered usable:
                  uargs(c_18) = {1,2,3,4,5},
                  uargs(c_20) = {1},
                  uargs(c_22) = {1},
                  uargs(c_23) = {1},
                  uargs(c_24) = {1},
                  uargs(c_25) = {1},
                  uargs(c_29) = {1},
                  uargs(c_39) = {1,2,3,4,5}
                
                Following symbols are considered usable:
                  {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}
                TcT has computed the following interpretation:
                      p(#) = 0                         
                      p(+) = 1                         
                      p(-) = x1*x2 + x2 + x2^2         
                      p(0) = 0                         
                      p(1) = 1                         
                    p(and) = 0                         
                     p(bs) = 0                         
                  p(false) = 0                         
                     p(ge) = 0                         
                     p(if) = 0                         
                      p(l) = 0                         
                    p(max) = 0                         
                    p(min) = 0                         
                      p(n) = 1 + x2 + x3               
                    p(not) = 0                         
                   p(size) = 0                         
                   p(true) = 0                         
                    p(val) = 0                         
                     p(wb) = 0                         
                     p(+#) = 0                         
                     p(-#) = 0                         
                     p(0#) = 0                         
                   p(and#) = 0                         
                    p(bs#) = x1^2                      
                    p(ge#) = 0                         
                    p(if#) = 0                         
                   p(max#) = x1                        
                   p(min#) = 0                         
                   p(not#) = 0                         
                  p(size#) = 0                         
                   p(val#) = 0                         
                    p(wb#) = x1                        
                    p(c_1) = 0                         
                    p(c_2) = 0                         
                    p(c_3) = 0                         
                    p(c_4) = 0                         
                    p(c_5) = 0                         
                    p(c_6) = 0                         
                    p(c_7) = 0                         
                    p(c_8) = 0                         
                    p(c_9) = 0                         
                   p(c_10) = 0                         
                   p(c_11) = 0                         
                   p(c_12) = 0                         
                   p(c_13) = 0                         
                   p(c_14) = 0                         
                   p(c_15) = 0                         
                   p(c_16) = 0                         
                   p(c_17) = 0                         
                   p(c_18) = x1 + x2 + x3 + x4 + x5    
                   p(c_19) = 0                         
                   p(c_20) = x1                        
                   p(c_21) = 0                         
                   p(c_22) = x1                        
                   p(c_23) = x1                        
                   p(c_24) = x1                        
                   p(c_25) = x1                        
                   p(c_26) = 0                         
                   p(c_27) = 0                         
                   p(c_28) = 0                         
                   p(c_29) = x1                        
                   p(c_30) = 0                         
                   p(c_31) = 0                         
                   p(c_32) = 0                         
                   p(c_33) = 0                         
                   p(c_34) = 0                         
                   p(c_35) = 0                         
                   p(c_36) = 0                         
                   p(c_37) = 0                         
                   p(c_38) = 0                         
                   p(c_39) = 1 + x1 + x2 + x3 + x4 + x5
                
                Following rules are strictly oriented:
                 bs#(n(x,y,z)) = 1 + 2*y + 2*y*z + y^2 + 2*z + z^2
                               > y + y^2 + z^2                    
                               = c_18(ge#(x,max(y))               
                                     ,max#(y)                     
                                     ,ge#(min(z),x)               
                                     ,bs#(y)                      
                                     ,bs#(z))                     
                
                max#(n(x,y,z)) = 1 + y + z                        
                               > z                                
                               = c_29(max#(z))                    
                
                
                Following rules are (at-least) weakly oriented:
                 ge#(#(),0(x)) =  0                                  
                               >= 0                                  
                               =  c_20(ge#(#(),x))                   
                
                ge#(0(x),0(y)) =  0                                  
                               >= 0                                  
                               =  c_22(ge#(x,y))                     
                
                ge#(0(x),1(y)) =  0                                  
                               >= 0                                  
                               =  c_23(ge#(y,x))                     
                
                ge#(1(x),0(y)) =  0                                  
                               >= 0                                  
                               =  c_24(ge#(x,y))                     
                
                ge#(1(x),1(y)) =  0                                  
                               >= 0                                  
                               =  c_25(ge#(x,y))                     
                
                 wb#(n(x,y,z)) =  1 + y + z                          
                               >= 1 + y + z                          
                               =  c_39(ge#(size(y),size(z))          
                                      ,ge#(1(#()),-(size(y),size(z)))
                                      ,ge#(1(#()),-(size(z),size(y)))
                                      ,wb#(y)                        
                                      ,wb#(z))                       
                
          *** 1.1.1.1.1.1.1.2.1.1.2.1.1.1.1.1.2.1.1.1.1 Progress [(?,O(1))]  ***
              Considered Problem:
                Strict DP Rules:
                  ge#(#(),0(x)) -> c_20(ge#(#(),x))
                  ge#(0(x),0(y)) -> c_22(ge#(x,y))
                  ge#(0(x),1(y)) -> c_23(ge#(y,x))
                  ge#(1(x),0(y)) -> c_24(ge#(x,y))
                  ge#(1(x),1(y)) -> c_25(ge#(x,y))
                Strict TRS Rules:
                  
                Weak DP Rules:
                  bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),bs#(y),bs#(z))
                  max#(n(x,y,z)) -> c_29(max#(z))
                  wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z)),ge#(1(#()),-(size(y),size(z))),ge#(1(#()),-(size(z),size(y))),wb#(y),wb#(z))
                Weak TRS Rules:
                  +(x,#()) -> x
                  +(x,+(y,z)) -> +(+(x,y),z)
                  +(#(),x) -> x
                  +(0(x),0(y)) -> 0(+(x,y))
                  +(0(x),1(y)) -> 1(+(x,y))
                  +(1(x),0(y)) -> 1(+(x,y))
                  +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
                  -(x,#()) -> x
                  -(#(),x) -> #()
                  -(0(x),0(y)) -> 0(-(x,y))
                  -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
                  -(1(x),0(y)) -> 1(-(x,y))
                  -(1(x),1(y)) -> 0(-(x,y))
                  0(#()) -> #()
                  max(l(x)) -> x
                  max(n(x,y,z)) -> max(z)
                  min(l(x)) -> x
                  min(n(x,y,z)) -> min(y)
                  size(l(x)) -> 1(#())
                  size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
                Signature:
                  {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/5,c_19/0,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2,c_36/0,c_37/0,c_38/0,c_39/5}
                Obligation:
                  Innermost
                  basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
              Applied Processor:
                Assumption
              Proof:
                ()
          
          *** 1.1.1.1.1.1.1.2.1.1.2.1.1.1.1.1.2.1.1.2 Progress [(?,O(n^2))]  ***
              Considered Problem:
                Strict DP Rules:
                  ge#(#(),0(x)) -> c_20(ge#(#(),x))
                  ge#(0(x),0(y)) -> c_22(ge#(x,y))
                  ge#(0(x),1(y)) -> c_23(ge#(y,x))
                  ge#(1(x),0(y)) -> c_24(ge#(x,y))
                  ge#(1(x),1(y)) -> c_25(ge#(x,y))
                Strict TRS Rules:
                  
                Weak DP Rules:
                  bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),bs#(y),bs#(z))
                  max#(n(x,y,z)) -> c_29(max#(z))
                  wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z)),ge#(1(#()),-(size(y),size(z))),ge#(1(#()),-(size(z),size(y))),wb#(y),wb#(z))
                Weak TRS Rules:
                  +(x,#()) -> x
                  +(x,+(y,z)) -> +(+(x,y),z)
                  +(#(),x) -> x
                  +(0(x),0(y)) -> 0(+(x,y))
                  +(0(x),1(y)) -> 1(+(x,y))
                  +(1(x),0(y)) -> 1(+(x,y))
                  +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
                  -(x,#()) -> x
                  -(#(),x) -> #()
                  -(0(x),0(y)) -> 0(-(x,y))
                  -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
                  -(1(x),0(y)) -> 1(-(x,y))
                  -(1(x),1(y)) -> 0(-(x,y))
                  0(#()) -> #()
                  max(l(x)) -> x
                  max(n(x,y,z)) -> max(z)
                  min(l(x)) -> x
                  min(n(x,y,z)) -> min(y)
                  size(l(x)) -> 1(#())
                  size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
                Signature:
                  {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/5,c_19/0,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2,c_36/0,c_37/0,c_38/0,c_39/5}
                Obligation:
                  Innermost
                  basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
              Applied Processor:
                RemoveWeakSuffixes
              Proof:
                Consider the dependency graph
                  1:S:ge#(#(),0(x)) -> c_20(ge#(#(),x))
                     -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):1
                  
                  2:S:ge#(0(x),0(y)) -> c_22(ge#(x,y))
                     -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):5
                     -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):4
                     -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):3
                     -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):2
                     -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):1
                  
                  3:S:ge#(0(x),1(y)) -> c_23(ge#(y,x))
                     -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):5
                     -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):4
                     -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):3
                     -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):2
                     -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):1
                  
                  4:S:ge#(1(x),0(y)) -> c_24(ge#(x,y))
                     -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):5
                     -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):4
                     -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):3
                     -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):2
                     -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):1
                  
                  5:S:ge#(1(x),1(y)) -> c_25(ge#(x,y))
                     -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):5
                     -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):4
                     -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):3
                     -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):2
                     -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):1
                  
                  6:W:bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),bs#(y),bs#(z))
                     -->_2 max#(n(x,y,z)) -> c_29(max#(z)):7
                     -->_5 bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),bs#(y),bs#(z)):6
                     -->_4 bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),bs#(y),bs#(z)):6
                     -->_3 ge#(1(x),1(y)) -> c_25(ge#(x,y)):5
                     -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):5
                     -->_3 ge#(1(x),0(y)) -> c_24(ge#(x,y)):4
                     -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):4
                     -->_3 ge#(0(x),1(y)) -> c_23(ge#(y,x)):3
                     -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):3
                     -->_3 ge#(0(x),0(y)) -> c_22(ge#(x,y)):2
                     -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):2
                     -->_3 ge#(#(),0(x)) -> c_20(ge#(#(),x)):1
                     -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):1
                  
                  7:W:max#(n(x,y,z)) -> c_29(max#(z))
                     -->_1 max#(n(x,y,z)) -> c_29(max#(z)):7
                  
                  8:W:wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z)),ge#(1(#()),-(size(y),size(z))),ge#(1(#()),-(size(z),size(y))),wb#(y),wb#(z))
                     -->_5 wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z)),ge#(1(#()),-(size(y),size(z))),ge#(1(#()),-(size(z),size(y))),wb#(y),wb#(z)):8
                     -->_4 wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z)),ge#(1(#()),-(size(y),size(z))),ge#(1(#()),-(size(z),size(y))),wb#(y),wb#(z)):8
                     -->_3 ge#(1(x),1(y)) -> c_25(ge#(x,y)):5
                     -->_2 ge#(1(x),1(y)) -> c_25(ge#(x,y)):5
                     -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):5
                     -->_3 ge#(1(x),0(y)) -> c_24(ge#(x,y)):4
                     -->_2 ge#(1(x),0(y)) -> c_24(ge#(x,y)):4
                     -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):4
                     -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):3
                     -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):2
                     -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):1
                  
                The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
                  7: max#(n(x,y,z)) -> c_29(max#(z))
          *** 1.1.1.1.1.1.1.2.1.1.2.1.1.1.1.1.2.1.1.2.1 Progress [(?,O(n^2))]  ***
              Considered Problem:
                Strict DP Rules:
                  ge#(#(),0(x)) -> c_20(ge#(#(),x))
                  ge#(0(x),0(y)) -> c_22(ge#(x,y))
                  ge#(0(x),1(y)) -> c_23(ge#(y,x))
                  ge#(1(x),0(y)) -> c_24(ge#(x,y))
                  ge#(1(x),1(y)) -> c_25(ge#(x,y))
                Strict TRS Rules:
                  
                Weak DP Rules:
                  bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),bs#(y),bs#(z))
                  wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z)),ge#(1(#()),-(size(y),size(z))),ge#(1(#()),-(size(z),size(y))),wb#(y),wb#(z))
                Weak TRS Rules:
                  +(x,#()) -> x
                  +(x,+(y,z)) -> +(+(x,y),z)
                  +(#(),x) -> x
                  +(0(x),0(y)) -> 0(+(x,y))
                  +(0(x),1(y)) -> 1(+(x,y))
                  +(1(x),0(y)) -> 1(+(x,y))
                  +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
                  -(x,#()) -> x
                  -(#(),x) -> #()
                  -(0(x),0(y)) -> 0(-(x,y))
                  -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
                  -(1(x),0(y)) -> 1(-(x,y))
                  -(1(x),1(y)) -> 0(-(x,y))
                  0(#()) -> #()
                  max(l(x)) -> x
                  max(n(x,y,z)) -> max(z)
                  min(l(x)) -> x
                  min(n(x,y,z)) -> min(y)
                  size(l(x)) -> 1(#())
                  size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
                Signature:
                  {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/5,c_19/0,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2,c_36/0,c_37/0,c_38/0,c_39/5}
                Obligation:
                  Innermost
                  basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
              Applied Processor:
                SimplifyRHS
              Proof:
                Consider the dependency graph
                  1:S:ge#(#(),0(x)) -> c_20(ge#(#(),x))
                     -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):1
                  
                  2:S:ge#(0(x),0(y)) -> c_22(ge#(x,y))
                     -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):5
                     -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):4
                     -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):3
                     -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):2
                     -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):1
                  
                  3:S:ge#(0(x),1(y)) -> c_23(ge#(y,x))
                     -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):5
                     -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):4
                     -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):3
                     -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):2
                     -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):1
                  
                  4:S:ge#(1(x),0(y)) -> c_24(ge#(x,y))
                     -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):5
                     -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):4
                     -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):3
                     -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):2
                     -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):1
                  
                  5:S:ge#(1(x),1(y)) -> c_25(ge#(x,y))
                     -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):5
                     -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):4
                     -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):3
                     -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):2
                     -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):1
                  
                  6:W:bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),bs#(y),bs#(z))
                     -->_5 bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),bs#(y),bs#(z)):6
                     -->_4 bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),bs#(y),bs#(z)):6
                     -->_3 ge#(1(x),1(y)) -> c_25(ge#(x,y)):5
                     -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):5
                     -->_3 ge#(1(x),0(y)) -> c_24(ge#(x,y)):4
                     -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):4
                     -->_3 ge#(0(x),1(y)) -> c_23(ge#(y,x)):3
                     -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):3
                     -->_3 ge#(0(x),0(y)) -> c_22(ge#(x,y)):2
                     -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):2
                     -->_3 ge#(#(),0(x)) -> c_20(ge#(#(),x)):1
                     -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):1
                  
                  8:W:wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z)),ge#(1(#()),-(size(y),size(z))),ge#(1(#()),-(size(z),size(y))),wb#(y),wb#(z))
                     -->_5 wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z)),ge#(1(#()),-(size(y),size(z))),ge#(1(#()),-(size(z),size(y))),wb#(y),wb#(z)):8
                     -->_4 wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z)),ge#(1(#()),-(size(y),size(z))),ge#(1(#()),-(size(z),size(y))),wb#(y),wb#(z)):8
                     -->_3 ge#(1(x),1(y)) -> c_25(ge#(x,y)):5
                     -->_2 ge#(1(x),1(y)) -> c_25(ge#(x,y)):5
                     -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):5
                     -->_3 ge#(1(x),0(y)) -> c_24(ge#(x,y)):4
                     -->_2 ge#(1(x),0(y)) -> c_24(ge#(x,y)):4
                     -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):4
                     -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):3
                     -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):2
                     -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):1
                  
                Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
                  bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),ge#(min(z),x),bs#(y),bs#(z))
          *** 1.1.1.1.1.1.1.2.1.1.2.1.1.1.1.1.2.1.1.2.1.1 Progress [(?,O(n^2))]  ***
              Considered Problem:
                Strict DP Rules:
                  ge#(#(),0(x)) -> c_20(ge#(#(),x))
                  ge#(0(x),0(y)) -> c_22(ge#(x,y))
                  ge#(0(x),1(y)) -> c_23(ge#(y,x))
                  ge#(1(x),0(y)) -> c_24(ge#(x,y))
                  ge#(1(x),1(y)) -> c_25(ge#(x,y))
                Strict TRS Rules:
                  
                Weak DP Rules:
                  bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),ge#(min(z),x),bs#(y),bs#(z))
                  wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z)),ge#(1(#()),-(size(y),size(z))),ge#(1(#()),-(size(z),size(y))),wb#(y),wb#(z))
                Weak TRS Rules:
                  +(x,#()) -> x
                  +(x,+(y,z)) -> +(+(x,y),z)
                  +(#(),x) -> x
                  +(0(x),0(y)) -> 0(+(x,y))
                  +(0(x),1(y)) -> 1(+(x,y))
                  +(1(x),0(y)) -> 1(+(x,y))
                  +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
                  -(x,#()) -> x
                  -(#(),x) -> #()
                  -(0(x),0(y)) -> 0(-(x,y))
                  -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
                  -(1(x),0(y)) -> 1(-(x,y))
                  -(1(x),1(y)) -> 0(-(x,y))
                  0(#()) -> #()
                  max(l(x)) -> x
                  max(n(x,y,z)) -> max(z)
                  min(l(x)) -> x
                  min(n(x,y,z)) -> min(y)
                  size(l(x)) -> 1(#())
                  size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
                Signature:
                  {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/4,c_19/0,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2,c_36/0,c_37/0,c_38/0,c_39/5}
                Obligation:
                  Innermost
                  basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
              Applied Processor:
                PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
              Proof:
                We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
                  1: ge#(#(),0(x)) -> c_20(ge#(#()   
                                              ,x))   
                  2: ge#(0(x),0(y)) -> c_22(ge#(x,y))
                  3: ge#(0(x),1(y)) -> c_23(ge#(y,x))
                  4: ge#(1(x),0(y)) -> c_24(ge#(x,y))
                  5: ge#(1(x),1(y)) -> c_25(ge#(x,y))
                  
                The strictly oriented rules are moved into the weak component.
            *** 1.1.1.1.1.1.1.2.1.1.2.1.1.1.1.1.2.1.1.2.1.1.1 Progress [(?,O(n^2))]  ***
                Considered Problem:
                  Strict DP Rules:
                    ge#(#(),0(x)) -> c_20(ge#(#(),x))
                    ge#(0(x),0(y)) -> c_22(ge#(x,y))
                    ge#(0(x),1(y)) -> c_23(ge#(y,x))
                    ge#(1(x),0(y)) -> c_24(ge#(x,y))
                    ge#(1(x),1(y)) -> c_25(ge#(x,y))
                  Strict TRS Rules:
                    
                  Weak DP Rules:
                    bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),ge#(min(z),x),bs#(y),bs#(z))
                    wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z)),ge#(1(#()),-(size(y),size(z))),ge#(1(#()),-(size(z),size(y))),wb#(y),wb#(z))
                  Weak TRS Rules:
                    +(x,#()) -> x
                    +(x,+(y,z)) -> +(+(x,y),z)
                    +(#(),x) -> x
                    +(0(x),0(y)) -> 0(+(x,y))
                    +(0(x),1(y)) -> 1(+(x,y))
                    +(1(x),0(y)) -> 1(+(x,y))
                    +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
                    -(x,#()) -> x
                    -(#(),x) -> #()
                    -(0(x),0(y)) -> 0(-(x,y))
                    -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
                    -(1(x),0(y)) -> 1(-(x,y))
                    -(1(x),1(y)) -> 0(-(x,y))
                    0(#()) -> #()
                    max(l(x)) -> x
                    max(n(x,y,z)) -> max(z)
                    min(l(x)) -> x
                    min(n(x,y,z)) -> min(y)
                    size(l(x)) -> 1(#())
                    size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
                  Signature:
                    {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/4,c_19/0,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2,c_36/0,c_37/0,c_38/0,c_39/5}
                  Obligation:
                    Innermost
                    basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
                Applied Processor:
                  NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
                Proof:
                  We apply a polynomial interpretation of kind constructor-based(mixed(2)):
                  The following argument positions are considered usable:
                    uargs(c_18) = {1,2,3,4},
                    uargs(c_20) = {1},
                    uargs(c_22) = {1},
                    uargs(c_23) = {1},
                    uargs(c_24) = {1},
                    uargs(c_25) = {1},
                    uargs(c_39) = {1,2,3,4,5}
                  
                  Following symbols are considered usable:
                    {+,-,0,max,min,size,+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}
                  TcT has computed the following interpretation:
                        p(#) = 0                     
                        p(+) = x1 + x2               
                        p(-) = x1                    
                        p(0) = 1 + x1                
                        p(1) = 1 + x1                
                      p(and) = 0                     
                       p(bs) = 0                     
                    p(false) = 0                     
                       p(ge) = 0                     
                       p(if) = 0                     
                        p(l) = 1 + x1                
                      p(max) = x1                    
                      p(min) = x1                    
                        p(n) = 1 + x1 + x2 + x3      
                      p(not) = 0                     
                     p(size) = x1                    
                     p(true) = 0                     
                      p(val) = 0                     
                       p(wb) = 0                     
                       p(+#) = 0                     
                       p(-#) = 0                     
                       p(0#) = 0                     
                     p(and#) = 0                     
                      p(bs#) = x1 + x1^2             
                      p(ge#) = x1 + x2               
                      p(if#) = 0                     
                     p(max#) = 0                     
                     p(min#) = 0                     
                     p(not#) = 0                     
                    p(size#) = 0                     
                     p(val#) = 0                     
                      p(wb#) = x1 + x1^2             
                      p(c_1) = 0                     
                      p(c_2) = 0                     
                      p(c_3) = 0                     
                      p(c_4) = 0                     
                      p(c_5) = 0                     
                      p(c_6) = 0                     
                      p(c_7) = 0                     
                      p(c_8) = 0                     
                      p(c_9) = 0                     
                     p(c_10) = 0                     
                     p(c_11) = 0                     
                     p(c_12) = 0                     
                     p(c_13) = 0                     
                     p(c_14) = 0                     
                     p(c_15) = 0                     
                     p(c_16) = 0                     
                     p(c_17) = 0                     
                     p(c_18) = x1 + x2 + x3 + x4     
                     p(c_19) = 0                     
                     p(c_20) = x1                    
                     p(c_21) = 0                     
                     p(c_22) = x1                    
                     p(c_23) = x1                    
                     p(c_24) = x1                    
                     p(c_25) = x1                    
                     p(c_26) = 0                     
                     p(c_27) = 0                     
                     p(c_28) = 0                     
                     p(c_29) = 0                     
                     p(c_30) = 0                     
                     p(c_31) = 0                     
                     p(c_32) = 0                     
                     p(c_33) = 0                     
                     p(c_34) = 0                     
                     p(c_35) = 0                     
                     p(c_36) = 0                     
                     p(c_37) = 0                     
                     p(c_38) = 0                     
                     p(c_39) = x1 + x2 + x3 + x4 + x5
                  
                  Following rules are strictly oriented:
                   ge#(#(),0(x)) = 1 + x           
                                 > x               
                                 = c_20(ge#(#(),x))
                  
                  ge#(0(x),0(y)) = 2 + x + y       
                                 > x + y           
                                 = c_22(ge#(x,y))  
                  
                  ge#(0(x),1(y)) = 2 + x + y       
                                 > x + y           
                                 = c_23(ge#(y,x))  
                  
                  ge#(1(x),0(y)) = 2 + x + y       
                                 > x + y           
                                 = c_24(ge#(x,y))  
                  
                  ge#(1(x),1(y)) = 2 + x + y       
                                 > x + y           
                                 = c_25(ge#(x,y))  
                  
                  
                  Following rules are (at-least) weakly oriented:
                   bs#(n(x,y,z)) =  2 + 3*x + 2*x*y + 2*x*z + x^2 + 3*y + 2*y*z + y^2 + 3*z + z^2
                                 >= 2*x + 2*y + y^2 + 2*z + z^2                                  
                                 =  c_18(ge#(x,max(y))                                           
                                        ,ge#(min(z),x)                                           
                                        ,bs#(y)                                                  
                                        ,bs#(z))                                                 
                  
                   wb#(n(x,y,z)) =  2 + 3*x + 2*x*y + 2*x*z + x^2 + 3*y + 2*y*z + y^2 + 3*z + z^2
                                 >= 2 + 3*y + y^2 + 3*z + z^2                                    
                                 =  c_39(ge#(size(y),size(z))                                    
                                        ,ge#(1(#()),-(size(y),size(z)))                          
                                        ,ge#(1(#()),-(size(z),size(y)))                          
                                        ,wb#(y)                                                  
                                        ,wb#(z))                                                 
                  
                        +(x,#()) =  x                                                            
                                 >= x                                                            
                                 =  x                                                            
                  
                     +(x,+(y,z)) =  x + y + z                                                    
                                 >= x + y + z                                                    
                                 =  +(+(x,y),z)                                                  
                  
                        +(#(),x) =  x                                                            
                                 >= x                                                            
                                 =  x                                                            
                  
                    +(0(x),0(y)) =  2 + x + y                                                    
                                 >= 1 + x + y                                                    
                                 =  0(+(x,y))                                                    
                  
                    +(0(x),1(y)) =  2 + x + y                                                    
                                 >= 1 + x + y                                                    
                                 =  1(+(x,y))                                                    
                  
                    +(1(x),0(y)) =  2 + x + y                                                    
                                 >= 1 + x + y                                                    
                                 =  1(+(x,y))                                                    
                  
                    +(1(x),1(y)) =  2 + x + y                                                    
                                 >= 2 + x + y                                                    
                                 =  0(+(+(x,y),1(#())))                                          
                  
                        -(x,#()) =  x                                                            
                                 >= x                                                            
                                 =  x                                                            
                  
                        -(#(),x) =  0                                                            
                                 >= 0                                                            
                                 =  #()                                                          
                  
                    -(0(x),0(y)) =  1 + x                                                        
                                 >= 1 + x                                                        
                                 =  0(-(x,y))                                                    
                  
                    -(0(x),1(y)) =  1 + x                                                        
                                 >= 1 + x                                                        
                                 =  1(-(-(x,y),1(#())))                                          
                  
                    -(1(x),0(y)) =  1 + x                                                        
                                 >= 1 + x                                                        
                                 =  1(-(x,y))                                                    
                  
                    -(1(x),1(y)) =  1 + x                                                        
                                 >= 1 + x                                                        
                                 =  0(-(x,y))                                                    
                  
                          0(#()) =  1                                                            
                                 >= 0                                                            
                                 =  #()                                                          
                  
                       max(l(x)) =  1 + x                                                        
                                 >= x                                                            
                                 =  x                                                            
                  
                   max(n(x,y,z)) =  1 + x + y + z                                                
                                 >= z                                                            
                                 =  max(z)                                                       
                  
                       min(l(x)) =  1 + x                                                        
                                 >= x                                                            
                                 =  x                                                            
                  
                   min(n(x,y,z)) =  1 + x + y + z                                                
                                 >= y                                                            
                                 =  min(y)                                                       
                  
                      size(l(x)) =  1 + x                                                        
                                 >= 1                                                            
                                 =  1(#())                                                       
                  
                  size(n(x,y,z)) =  1 + x + y + z                                                
                                 >= 1 + x + y                                                    
                                 =  +(+(size(x),size(y)),1(#()))                                 
                  
            *** 1.1.1.1.1.1.1.2.1.1.2.1.1.1.1.1.2.1.1.2.1.1.1.1 Progress [(?,O(1))]  ***
                Considered Problem:
                  Strict DP Rules:
                    
                  Strict TRS Rules:
                    
                  Weak DP Rules:
                    bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),ge#(min(z),x),bs#(y),bs#(z))
                    ge#(#(),0(x)) -> c_20(ge#(#(),x))
                    ge#(0(x),0(y)) -> c_22(ge#(x,y))
                    ge#(0(x),1(y)) -> c_23(ge#(y,x))
                    ge#(1(x),0(y)) -> c_24(ge#(x,y))
                    ge#(1(x),1(y)) -> c_25(ge#(x,y))
                    wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z)),ge#(1(#()),-(size(y),size(z))),ge#(1(#()),-(size(z),size(y))),wb#(y),wb#(z))
                  Weak TRS Rules:
                    +(x,#()) -> x
                    +(x,+(y,z)) -> +(+(x,y),z)
                    +(#(),x) -> x
                    +(0(x),0(y)) -> 0(+(x,y))
                    +(0(x),1(y)) -> 1(+(x,y))
                    +(1(x),0(y)) -> 1(+(x,y))
                    +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
                    -(x,#()) -> x
                    -(#(),x) -> #()
                    -(0(x),0(y)) -> 0(-(x,y))
                    -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
                    -(1(x),0(y)) -> 1(-(x,y))
                    -(1(x),1(y)) -> 0(-(x,y))
                    0(#()) -> #()
                    max(l(x)) -> x
                    max(n(x,y,z)) -> max(z)
                    min(l(x)) -> x
                    min(n(x,y,z)) -> min(y)
                    size(l(x)) -> 1(#())
                    size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
                  Signature:
                    {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/4,c_19/0,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2,c_36/0,c_37/0,c_38/0,c_39/5}
                  Obligation:
                    Innermost
                    basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
                Applied Processor:
                  Assumption
                Proof:
                  ()
            
            *** 1.1.1.1.1.1.1.2.1.1.2.1.1.1.1.1.2.1.1.2.1.1.2 Progress [(O(1),O(1))]  ***
                Considered Problem:
                  Strict DP Rules:
                    
                  Strict TRS Rules:
                    
                  Weak DP Rules:
                    bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),ge#(min(z),x),bs#(y),bs#(z))
                    ge#(#(),0(x)) -> c_20(ge#(#(),x))
                    ge#(0(x),0(y)) -> c_22(ge#(x,y))
                    ge#(0(x),1(y)) -> c_23(ge#(y,x))
                    ge#(1(x),0(y)) -> c_24(ge#(x,y))
                    ge#(1(x),1(y)) -> c_25(ge#(x,y))
                    wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z)),ge#(1(#()),-(size(y),size(z))),ge#(1(#()),-(size(z),size(y))),wb#(y),wb#(z))
                  Weak TRS Rules:
                    +(x,#()) -> x
                    +(x,+(y,z)) -> +(+(x,y),z)
                    +(#(),x) -> x
                    +(0(x),0(y)) -> 0(+(x,y))
                    +(0(x),1(y)) -> 1(+(x,y))
                    +(1(x),0(y)) -> 1(+(x,y))
                    +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
                    -(x,#()) -> x
                    -(#(),x) -> #()
                    -(0(x),0(y)) -> 0(-(x,y))
                    -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
                    -(1(x),0(y)) -> 1(-(x,y))
                    -(1(x),1(y)) -> 0(-(x,y))
                    0(#()) -> #()
                    max(l(x)) -> x
                    max(n(x,y,z)) -> max(z)
                    min(l(x)) -> x
                    min(n(x,y,z)) -> min(y)
                    size(l(x)) -> 1(#())
                    size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
                  Signature:
                    {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/4,c_19/0,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2,c_36/0,c_37/0,c_38/0,c_39/5}
                  Obligation:
                    Innermost
                    basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
                Applied Processor:
                  RemoveWeakSuffixes
                Proof:
                  Consider the dependency graph
                    1:W:bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),ge#(min(z),x),bs#(y),bs#(z))
                       -->_2 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
                       -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
                       -->_2 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
                       -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
                       -->_2 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
                       -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
                       -->_2 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
                       -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
                       -->_2 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
                       -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
                       -->_4 bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),ge#(min(z),x),bs#(y),bs#(z)):1
                       -->_3 bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),ge#(min(z),x),bs#(y),bs#(z)):1
                    
                    2:W:ge#(#(),0(x)) -> c_20(ge#(#(),x))
                       -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
                    
                    3:W:ge#(0(x),0(y)) -> c_22(ge#(x,y))
                       -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
                       -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
                       -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
                       -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
                       -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
                    
                    4:W:ge#(0(x),1(y)) -> c_23(ge#(y,x))
                       -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
                       -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
                       -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
                       -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
                       -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
                    
                    5:W:ge#(1(x),0(y)) -> c_24(ge#(x,y))
                       -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
                       -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
                       -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
                       -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
                       -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
                    
                    6:W:ge#(1(x),1(y)) -> c_25(ge#(x,y))
                       -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
                       -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
                       -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
                       -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
                       -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
                    
                    7:W:wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z)),ge#(1(#()),-(size(y),size(z))),ge#(1(#()),-(size(z),size(y))),wb#(y),wb#(z))
                       -->_5 wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z)),ge#(1(#()),-(size(y),size(z))),ge#(1(#()),-(size(z),size(y))),wb#(y),wb#(z)):7
                       -->_4 wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z)),ge#(1(#()),-(size(y),size(z))),ge#(1(#()),-(size(z),size(y))),wb#(y),wb#(z)):7
                       -->_3 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
                       -->_2 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
                       -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
                       -->_3 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
                       -->_2 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
                       -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
                       -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
                       -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
                       -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
                    
                  The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
                    7: wb#(n(x,y,z)) ->                     
                         c_39(ge#(size(y),size(z))          
                             ,ge#(1(#()),-(size(y),size(z)))
                             ,ge#(1(#()),-(size(z),size(y)))
                             ,wb#(y)                        
                             ,wb#(z))                       
                    1: bs#(n(x,y,z)) -> c_18(ge#(x          
                                                ,max(y))    
                                            ,ge#(min(z),x)  
                                            ,bs#(y)         
                                            ,bs#(z))        
                    6: ge#(1(x),1(y)) -> c_25(ge#(x,y))     
                    5: ge#(1(x),0(y)) -> c_24(ge#(x,y))     
                    4: ge#(0(x),1(y)) -> c_23(ge#(y,x))     
                    3: ge#(0(x),0(y)) -> c_22(ge#(x,y))     
                    2: ge#(#(),0(x)) -> c_20(ge#(#()        
                                                ,x))        
            *** 1.1.1.1.1.1.1.2.1.1.2.1.1.1.1.1.2.1.1.2.1.1.2.1 Progress [(O(1),O(1))]  ***
                Considered Problem:
                  Strict DP Rules:
                    
                  Strict TRS Rules:
                    
                  Weak DP Rules:
                    
                  Weak TRS Rules:
                    +(x,#()) -> x
                    +(x,+(y,z)) -> +(+(x,y),z)
                    +(#(),x) -> x
                    +(0(x),0(y)) -> 0(+(x,y))
                    +(0(x),1(y)) -> 1(+(x,y))
                    +(1(x),0(y)) -> 1(+(x,y))
                    +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
                    -(x,#()) -> x
                    -(#(),x) -> #()
                    -(0(x),0(y)) -> 0(-(x,y))
                    -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
                    -(1(x),0(y)) -> 1(-(x,y))
                    -(1(x),1(y)) -> 0(-(x,y))
                    0(#()) -> #()
                    max(l(x)) -> x
                    max(n(x,y,z)) -> max(z)
                    min(l(x)) -> x
                    min(n(x,y,z)) -> min(y)
                    size(l(x)) -> 1(#())
                    size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
                  Signature:
                    {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/4,c_19/0,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2,c_36/0,c_37/0,c_38/0,c_39/5}
                  Obligation:
                    Innermost
                    basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
                Applied Processor:
                  EmptyProcessor
                Proof:
                  The problem is already closed. The intended complexity is O(1).
            
      *** 1.1.1.1.1.1.1.2.1.1.2.1.1.2 Progress [(?,O(n^2))]  ***
          Considered Problem:
            Strict DP Rules:
              size#(n(x,y,z)) -> c_35(size#(x),size#(y))
              wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(y),size(z))),size#(y),size#(z),ge#(1(#()),-(size(z),size(y))),size#(z),size#(y),wb#(y),wb#(z))
            Strict TRS Rules:
              
            Weak DP Rules:
              bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z))
              ge#(#(),0(x)) -> c_20(ge#(#(),x))
              ge#(0(x),0(y)) -> c_22(ge#(x,y))
              ge#(0(x),1(y)) -> c_23(ge#(y,x))
              ge#(1(x),0(y)) -> c_24(ge#(x,y))
              ge#(1(x),1(y)) -> c_25(ge#(x,y))
              max#(n(x,y,z)) -> c_29(max#(z))
              min#(n(x,y,z)) -> c_31(min#(y))
            Weak TRS Rules:
              +(x,#()) -> x
              +(x,+(y,z)) -> +(+(x,y),z)
              +(#(),x) -> x
              +(0(x),0(y)) -> 0(+(x,y))
              +(0(x),1(y)) -> 1(+(x,y))
              +(1(x),0(y)) -> 1(+(x,y))
              +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
              -(x,#()) -> x
              -(#(),x) -> #()
              -(0(x),0(y)) -> 0(-(x,y))
              -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
              -(1(x),0(y)) -> 1(-(x,y))
              -(1(x),1(y)) -> 0(-(x,y))
              0(#()) -> #()
              max(l(x)) -> x
              max(n(x,y,z)) -> max(z)
              min(l(x)) -> x
              min(n(x,y,z)) -> min(y)
              size(l(x)) -> 1(#())
              size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
            Signature:
              {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2,c_36/0,c_37/0,c_38/0,c_39/11}
            Obligation:
              Innermost
              basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
          Applied Processor:
            RemoveWeakSuffixes
          Proof:
            Consider the dependency graph
              1:S:size#(n(x,y,z)) -> c_35(size#(x),size#(y))
                 -->_2 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):1
                 -->_1 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):1
              
              2:S:wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(y),size(z))),size#(y),size#(z),ge#(1(#()),-(size(z),size(y))),size#(z),size#(y),wb#(y),wb#(z))
                 -->_7 ge#(1(x),1(y)) -> c_25(ge#(x,y)):8
                 -->_4 ge#(1(x),1(y)) -> c_25(ge#(x,y)):8
                 -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):8
                 -->_7 ge#(1(x),0(y)) -> c_24(ge#(x,y)):7
                 -->_4 ge#(1(x),0(y)) -> c_24(ge#(x,y)):7
                 -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):7
                 -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):6
                 -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):5
                 -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):4
                 -->_11 wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(y),size(z))),size#(y),size#(z),ge#(1(#()),-(size(z),size(y))),size#(z),size#(y),wb#(y),wb#(z)):2
                 -->_10 wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(y),size(z))),size#(y),size#(z),ge#(1(#()),-(size(z),size(y))),size#(z),size#(y),wb#(y),wb#(z)):2
                 -->_9 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):1
                 -->_8 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):1
                 -->_6 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):1
                 -->_5 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):1
                 -->_3 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):1
                 -->_2 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):1
              
              3:W:bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z))
                 -->_4 min#(n(x,y,z)) -> c_31(min#(y)):10
                 -->_2 max#(n(x,y,z)) -> c_29(max#(z)):9
                 -->_3 ge#(1(x),1(y)) -> c_25(ge#(x,y)):8
                 -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):8
                 -->_3 ge#(1(x),0(y)) -> c_24(ge#(x,y)):7
                 -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):7
                 -->_3 ge#(0(x),1(y)) -> c_23(ge#(y,x)):6
                 -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):6
                 -->_3 ge#(0(x),0(y)) -> c_22(ge#(x,y)):5
                 -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):5
                 -->_3 ge#(#(),0(x)) -> c_20(ge#(#(),x)):4
                 -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):4
                 -->_6 bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z)):3
                 -->_5 bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z)):3
              
              4:W:ge#(#(),0(x)) -> c_20(ge#(#(),x))
                 -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):4
              
              5:W:ge#(0(x),0(y)) -> c_22(ge#(x,y))
                 -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):8
                 -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):7
                 -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):6
                 -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):5
                 -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):4
              
              6:W:ge#(0(x),1(y)) -> c_23(ge#(y,x))
                 -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):8
                 -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):7
                 -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):6
                 -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):5
                 -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):4
              
              7:W:ge#(1(x),0(y)) -> c_24(ge#(x,y))
                 -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):8
                 -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):7
                 -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):6
                 -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):5
                 -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):4
              
              8:W:ge#(1(x),1(y)) -> c_25(ge#(x,y))
                 -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):8
                 -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):7
                 -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):6
                 -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):5
                 -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):4
              
              9:W:max#(n(x,y,z)) -> c_29(max#(z))
                 -->_1 max#(n(x,y,z)) -> c_29(max#(z)):9
              
              10:W:min#(n(x,y,z)) -> c_31(min#(y))
                 -->_1 min#(n(x,y,z)) -> c_31(min#(y)):10
              
            The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
              3:  bs#(n(x,y,z)) -> c_18(ge#(x        
                                           ,max(y))  
                                       ,max#(y)      
                                       ,ge#(min(z),x)
                                       ,min#(z)      
                                       ,bs#(y)       
                                       ,bs#(z))      
              9:  max#(n(x,y,z)) -> c_29(max#(z))    
              10: min#(n(x,y,z)) -> c_31(min#(y))    
              8:  ge#(1(x),1(y)) -> c_25(ge#(x,y))   
              7:  ge#(1(x),0(y)) -> c_24(ge#(x,y))   
              6:  ge#(0(x),1(y)) -> c_23(ge#(y,x))   
              5:  ge#(0(x),0(y)) -> c_22(ge#(x,y))   
              4:  ge#(#(),0(x)) -> c_20(ge#(#()      
                                           ,x))      
      *** 1.1.1.1.1.1.1.2.1.1.2.1.1.2.1 Progress [(?,O(n^2))]  ***
          Considered Problem:
            Strict DP Rules:
              size#(n(x,y,z)) -> c_35(size#(x),size#(y))
              wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(y),size(z))),size#(y),size#(z),ge#(1(#()),-(size(z),size(y))),size#(z),size#(y),wb#(y),wb#(z))
            Strict TRS Rules:
              
            Weak DP Rules:
              
            Weak TRS Rules:
              +(x,#()) -> x
              +(x,+(y,z)) -> +(+(x,y),z)
              +(#(),x) -> x
              +(0(x),0(y)) -> 0(+(x,y))
              +(0(x),1(y)) -> 1(+(x,y))
              +(1(x),0(y)) -> 1(+(x,y))
              +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
              -(x,#()) -> x
              -(#(),x) -> #()
              -(0(x),0(y)) -> 0(-(x,y))
              -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
              -(1(x),0(y)) -> 1(-(x,y))
              -(1(x),1(y)) -> 0(-(x,y))
              0(#()) -> #()
              max(l(x)) -> x
              max(n(x,y,z)) -> max(z)
              min(l(x)) -> x
              min(n(x,y,z)) -> min(y)
              size(l(x)) -> 1(#())
              size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
            Signature:
              {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2,c_36/0,c_37/0,c_38/0,c_39/11}
            Obligation:
              Innermost
              basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
          Applied Processor:
            SimplifyRHS
          Proof:
            Consider the dependency graph
              1:S:size#(n(x,y,z)) -> c_35(size#(x),size#(y))
                 -->_2 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):1
                 -->_1 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):1
              
              2:S:wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(y),size(z))),size#(y),size#(z),ge#(1(#()),-(size(z),size(y))),size#(z),size#(y),wb#(y),wb#(z))
                 -->_11 wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(y),size(z))),size#(y),size#(z),ge#(1(#()),-(size(z),size(y))),size#(z),size#(y),wb#(y),wb#(z)):2
                 -->_10 wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z)),size#(y),size#(z),ge#(1(#()),-(size(y),size(z))),size#(y),size#(z),ge#(1(#()),-(size(z),size(y))),size#(z),size#(y),wb#(y),wb#(z)):2
                 -->_9 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):1
                 -->_8 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):1
                 -->_6 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):1
                 -->_5 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):1
                 -->_3 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):1
                 -->_2 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):1
              
            Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
              wb#(n(x,y,z)) -> c_39(size#(y),size#(z),size#(y),size#(z),size#(z),size#(y),wb#(y),wb#(z))
      *** 1.1.1.1.1.1.1.2.1.1.2.1.1.2.1.1 Progress [(?,O(n^2))]  ***
          Considered Problem:
            Strict DP Rules:
              size#(n(x,y,z)) -> c_35(size#(x),size#(y))
              wb#(n(x,y,z)) -> c_39(size#(y),size#(z),size#(y),size#(z),size#(z),size#(y),wb#(y),wb#(z))
            Strict TRS Rules:
              
            Weak DP Rules:
              
            Weak TRS Rules:
              +(x,#()) -> x
              +(x,+(y,z)) -> +(+(x,y),z)
              +(#(),x) -> x
              +(0(x),0(y)) -> 0(+(x,y))
              +(0(x),1(y)) -> 1(+(x,y))
              +(1(x),0(y)) -> 1(+(x,y))
              +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
              -(x,#()) -> x
              -(#(),x) -> #()
              -(0(x),0(y)) -> 0(-(x,y))
              -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
              -(1(x),0(y)) -> 1(-(x,y))
              -(1(x),1(y)) -> 0(-(x,y))
              0(#()) -> #()
              max(l(x)) -> x
              max(n(x,y,z)) -> max(z)
              min(l(x)) -> x
              min(n(x,y,z)) -> min(y)
              size(l(x)) -> 1(#())
              size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
            Signature:
              {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2,c_36/0,c_37/0,c_38/0,c_39/8}
            Obligation:
              Innermost
              basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
          Applied Processor:
            UsableRules
          Proof:
            We replace rewrite rules by usable rules:
              size#(n(x,y,z)) -> c_35(size#(x),size#(y))
              wb#(n(x,y,z)) -> c_39(size#(y),size#(z),size#(y),size#(z),size#(z),size#(y),wb#(y),wb#(z))
      *** 1.1.1.1.1.1.1.2.1.1.2.1.1.2.1.1.1 Progress [(?,O(n^2))]  ***
          Considered Problem:
            Strict DP Rules:
              size#(n(x,y,z)) -> c_35(size#(x),size#(y))
              wb#(n(x,y,z)) -> c_39(size#(y),size#(z),size#(y),size#(z),size#(z),size#(y),wb#(y),wb#(z))
            Strict TRS Rules:
              
            Weak DP Rules:
              
            Weak TRS Rules:
              
            Signature:
              {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2,c_36/0,c_37/0,c_38/0,c_39/8}
            Obligation:
              Innermost
              basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
          Applied Processor:
            Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd}
          Proof:
            We analyse the complexity of following sub-problems (R) and (S).
            Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component.
            
            Problem (R)
              Strict DP Rules:
                size#(n(x,y,z)) -> c_35(size#(x),size#(y))
              Strict TRS Rules:
                
              Weak DP Rules:
                wb#(n(x,y,z)) -> c_39(size#(y),size#(z),size#(y),size#(z),size#(z),size#(y),wb#(y),wb#(z))
              Weak TRS Rules:
                
              Signature:
                {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2,c_36/0,c_37/0,c_38/0,c_39/8}
              Obligation:
                Innermost
                basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
            
            Problem (S)
              Strict DP Rules:
                wb#(n(x,y,z)) -> c_39(size#(y),size#(z),size#(y),size#(z),size#(z),size#(y),wb#(y),wb#(z))
              Strict TRS Rules:
                
              Weak DP Rules:
                size#(n(x,y,z)) -> c_35(size#(x),size#(y))
              Weak TRS Rules:
                
              Signature:
                {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2,c_36/0,c_37/0,c_38/0,c_39/8}
              Obligation:
                Innermost
                basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
        *** 1.1.1.1.1.1.1.2.1.1.2.1.1.2.1.1.1.1 Progress [(?,O(n^2))]  ***
            Considered Problem:
              Strict DP Rules:
                size#(n(x,y,z)) -> c_35(size#(x),size#(y))
              Strict TRS Rules:
                
              Weak DP Rules:
                wb#(n(x,y,z)) -> c_39(size#(y),size#(z),size#(y),size#(z),size#(z),size#(y),wb#(y),wb#(z))
              Weak TRS Rules:
                
              Signature:
                {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2,c_36/0,c_37/0,c_38/0,c_39/8}
              Obligation:
                Innermost
                basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
            Applied Processor:
              PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
            Proof:
              We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
                1: size#(n(x,y,z)) -> c_35(size#(x) 
                                          ,size#(y))
                
              The strictly oriented rules are moved into the weak component.
          *** 1.1.1.1.1.1.1.2.1.1.2.1.1.2.1.1.1.1.1 Progress [(?,O(n^2))]  ***
              Considered Problem:
                Strict DP Rules:
                  size#(n(x,y,z)) -> c_35(size#(x),size#(y))
                Strict TRS Rules:
                  
                Weak DP Rules:
                  wb#(n(x,y,z)) -> c_39(size#(y),size#(z),size#(y),size#(z),size#(z),size#(y),wb#(y),wb#(z))
                Weak TRS Rules:
                  
                Signature:
                  {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2,c_36/0,c_37/0,c_38/0,c_39/8}
                Obligation:
                  Innermost
                  basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
              Applied Processor:
                NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
              Proof:
                We apply a polynomial interpretation of kind constructor-based(mixed(2)):
                The following argument positions are considered usable:
                  uargs(c_35) = {1,2},
                  uargs(c_39) = {1,2,3,4,5,6,7,8}
                
                Following symbols are considered usable:
                  {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}
                TcT has computed the following interpretation:
                      p(#) = 0                                               
                      p(+) = 2 + 4*x2                                        
                      p(-) = 1 + 2*x1^2 + 4*x2                               
                      p(0) = 4 + x1^2                                        
                      p(1) = 0                                               
                    p(and) = x1                                              
                     p(bs) = 1 + 2*x1 + x1^2                                 
                  p(false) = 1                                               
                     p(ge) = x1 + 2*x1^2 + 2*x2^2                            
                     p(if) = 1 + 4*x1*x2 + x1*x3 + 4*x2 + 4*x2*x3 + x3 + x3^2
                      p(l) = 0                                               
                    p(max) = x1                                              
                    p(min) = 1                                               
                      p(n) = 1 + x1 + x2 + x3                                
                    p(not) = x1^2                                            
                   p(size) = 4 + 2*x1 + 4*x1^2                               
                   p(true) = 1                                               
                    p(val) = 0                                               
                     p(wb) = 1 + x1^2                                        
                     p(+#) = 2                                               
                     p(-#) = 2*x1*x2 + x1^2 + x2                             
                     p(0#) = 1                                               
                   p(and#) = x2^2                                            
                    p(bs#) = 2*x1 + 4*x1^2                                   
                    p(ge#) = 1 + 2*x1 + x1*x2 + x2^2                         
                    p(if#) = x1*x2 + x1*x3 + x2^2 + 2*x3                     
                   p(max#) = 1 + 2*x1 + 2*x1^2                               
                   p(min#) = 4 + x1 + x1^2                                   
                   p(not#) = 1 + 4*x1                                        
                  p(size#) = x1                                              
                   p(val#) = 1 + x1 + x1^2                                   
                    p(wb#) = 2 + 2*x1 + 3*x1^2                               
                    p(c_1) = 0                                               
                    p(c_2) = x1 + x2                                         
                    p(c_3) = 1                                               
                    p(c_4) = 1                                               
                    p(c_5) = 0                                               
                    p(c_6) = 1 + x1                                          
                    p(c_7) = 0                                               
                    p(c_8) = 0                                               
                    p(c_9) = 0                                               
                   p(c_10) = x1                                              
                   p(c_11) = 0                                               
                   p(c_12) = 1                                               
                   p(c_13) = 0                                               
                   p(c_14) = 1                                               
                   p(c_15) = 0                                               
                   p(c_16) = 1                                               
                   p(c_17) = 1                                               
                   p(c_18) = 1 + x1 + x2 + x3 + x4                           
                   p(c_19) = 0                                               
                   p(c_20) = 1 + x1                                          
                   p(c_21) = 0                                               
                   p(c_22) = 0                                               
                   p(c_23) = 1 + x1                                          
                   p(c_24) = 1 + x1                                          
                   p(c_25) = 1 + x1                                          
                   p(c_26) = 1                                               
                   p(c_27) = 0                                               
                   p(c_28) = 0                                               
                   p(c_29) = 1                                               
                   p(c_30) = 0                                               
                   p(c_31) = 0                                               
                   p(c_32) = 0                                               
                   p(c_33) = 1                                               
                   p(c_34) = 0                                               
                   p(c_35) = x1 + x2                                         
                   p(c_36) = 0                                               
                   p(c_37) = 1                                               
                   p(c_38) = 1                                               
                   p(c_39) = x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8           
                
                Following rules are strictly oriented:
                size#(n(x,y,z)) = 1 + x + y + z          
                                > x + y                  
                                = c_35(size#(x),size#(y))
                
                
                Following rules are (at-least) weakly oriented:
                wb#(n(x,y,z)) =  7 + 8*x + 6*x*y + 6*x*z + 3*x^2 + 8*y + 6*y*z + 3*y^2 + 8*z + 3*z^2
                              >= 4 + 5*y + 3*y^2 + 5*z + 3*z^2                                      
                              =  c_39(size#(y)                                                      
                                     ,size#(z)                                                      
                                     ,size#(y)                                                      
                                     ,size#(z)                                                      
                                     ,size#(z)                                                      
                                     ,size#(y)                                                      
                                     ,wb#(y)                                                        
                                     ,wb#(z))                                                       
                
          *** 1.1.1.1.1.1.1.2.1.1.2.1.1.2.1.1.1.1.1.1 Progress [(?,O(1))]  ***
              Considered Problem:
                Strict DP Rules:
                  
                Strict TRS Rules:
                  
                Weak DP Rules:
                  size#(n(x,y,z)) -> c_35(size#(x),size#(y))
                  wb#(n(x,y,z)) -> c_39(size#(y),size#(z),size#(y),size#(z),size#(z),size#(y),wb#(y),wb#(z))
                Weak TRS Rules:
                  
                Signature:
                  {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2,c_36/0,c_37/0,c_38/0,c_39/8}
                Obligation:
                  Innermost
                  basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
              Applied Processor:
                Assumption
              Proof:
                ()
          
          *** 1.1.1.1.1.1.1.2.1.1.2.1.1.2.1.1.1.1.2 Progress [(O(1),O(1))]  ***
              Considered Problem:
                Strict DP Rules:
                  
                Strict TRS Rules:
                  
                Weak DP Rules:
                  size#(n(x,y,z)) -> c_35(size#(x),size#(y))
                  wb#(n(x,y,z)) -> c_39(size#(y),size#(z),size#(y),size#(z),size#(z),size#(y),wb#(y),wb#(z))
                Weak TRS Rules:
                  
                Signature:
                  {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2,c_36/0,c_37/0,c_38/0,c_39/8}
                Obligation:
                  Innermost
                  basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
              Applied Processor:
                RemoveWeakSuffixes
              Proof:
                Consider the dependency graph
                  1:W:size#(n(x,y,z)) -> c_35(size#(x),size#(y))
                     -->_2 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):1
                     -->_1 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):1
                  
                  2:W:wb#(n(x,y,z)) -> c_39(size#(y),size#(z),size#(y),size#(z),size#(z),size#(y),wb#(y),wb#(z))
                     -->_8 wb#(n(x,y,z)) -> c_39(size#(y),size#(z),size#(y),size#(z),size#(z),size#(y),wb#(y),wb#(z)):2
                     -->_7 wb#(n(x,y,z)) -> c_39(size#(y),size#(z),size#(y),size#(z),size#(z),size#(y),wb#(y),wb#(z)):2
                     -->_6 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):1
                     -->_5 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):1
                     -->_4 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):1
                     -->_3 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):1
                     -->_2 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):1
                     -->_1 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):1
                  
                The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
                  2: wb#(n(x,y,z)) -> c_39(size#(y)   
                                          ,size#(z)   
                                          ,size#(y)   
                                          ,size#(z)   
                                          ,size#(z)   
                                          ,size#(y)   
                                          ,wb#(y)     
                                          ,wb#(z))    
                  1: size#(n(x,y,z)) -> c_35(size#(x) 
                                            ,size#(y))
          *** 1.1.1.1.1.1.1.2.1.1.2.1.1.2.1.1.1.1.2.1 Progress [(O(1),O(1))]  ***
              Considered Problem:
                Strict DP Rules:
                  
                Strict TRS Rules:
                  
                Weak DP Rules:
                  
                Weak TRS Rules:
                  
                Signature:
                  {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2,c_36/0,c_37/0,c_38/0,c_39/8}
                Obligation:
                  Innermost
                  basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
              Applied Processor:
                EmptyProcessor
              Proof:
                The problem is already closed. The intended complexity is O(1).
          
        *** 1.1.1.1.1.1.1.2.1.1.2.1.1.2.1.1.1.2 Progress [(?,O(n^1))]  ***
            Considered Problem:
              Strict DP Rules:
                wb#(n(x,y,z)) -> c_39(size#(y),size#(z),size#(y),size#(z),size#(z),size#(y),wb#(y),wb#(z))
              Strict TRS Rules:
                
              Weak DP Rules:
                size#(n(x,y,z)) -> c_35(size#(x),size#(y))
              Weak TRS Rules:
                
              Signature:
                {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2,c_36/0,c_37/0,c_38/0,c_39/8}
              Obligation:
                Innermost
                basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
            Applied Processor:
              RemoveWeakSuffixes
            Proof:
              Consider the dependency graph
                1:S:wb#(n(x,y,z)) -> c_39(size#(y),size#(z),size#(y),size#(z),size#(z),size#(y),wb#(y),wb#(z))
                   -->_6 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):2
                   -->_5 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):2
                   -->_4 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):2
                   -->_3 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):2
                   -->_2 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):2
                   -->_1 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):2
                   -->_8 wb#(n(x,y,z)) -> c_39(size#(y),size#(z),size#(y),size#(z),size#(z),size#(y),wb#(y),wb#(z)):1
                   -->_7 wb#(n(x,y,z)) -> c_39(size#(y),size#(z),size#(y),size#(z),size#(z),size#(y),wb#(y),wb#(z)):1
                
                2:W:size#(n(x,y,z)) -> c_35(size#(x),size#(y))
                   -->_2 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):2
                   -->_1 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):2
                
              The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
                2: size#(n(x,y,z)) -> c_35(size#(x) 
                                          ,size#(y))
        *** 1.1.1.1.1.1.1.2.1.1.2.1.1.2.1.1.1.2.1 Progress [(?,O(n^1))]  ***
            Considered Problem:
              Strict DP Rules:
                wb#(n(x,y,z)) -> c_39(size#(y),size#(z),size#(y),size#(z),size#(z),size#(y),wb#(y),wb#(z))
              Strict TRS Rules:
                
              Weak DP Rules:
                
              Weak TRS Rules:
                
              Signature:
                {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2,c_36/0,c_37/0,c_38/0,c_39/8}
              Obligation:
                Innermost
                basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
            Applied Processor:
              SimplifyRHS
            Proof:
              Consider the dependency graph
                1:S:wb#(n(x,y,z)) -> c_39(size#(y),size#(z),size#(y),size#(z),size#(z),size#(y),wb#(y),wb#(z))
                   -->_8 wb#(n(x,y,z)) -> c_39(size#(y),size#(z),size#(y),size#(z),size#(z),size#(y),wb#(y),wb#(z)):1
                   -->_7 wb#(n(x,y,z)) -> c_39(size#(y),size#(z),size#(y),size#(z),size#(z),size#(y),wb#(y),wb#(z)):1
                
              Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
                wb#(n(x,y,z)) -> c_39(wb#(y),wb#(z))
        *** 1.1.1.1.1.1.1.2.1.1.2.1.1.2.1.1.1.2.1.1 Progress [(?,O(n^1))]  ***
            Considered Problem:
              Strict DP Rules:
                wb#(n(x,y,z)) -> c_39(wb#(y),wb#(z))
              Strict TRS Rules:
                
              Weak DP Rules:
                
              Weak TRS Rules:
                
              Signature:
                {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2,c_36/0,c_37/0,c_38/0,c_39/2}
              Obligation:
                Innermost
                basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
            Applied Processor:
              PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
            Proof:
              We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
                1: wb#(n(x,y,z)) -> c_39(wb#(y) 
                                        ,wb#(z))
                
              The strictly oriented rules are moved into the weak component.
          *** 1.1.1.1.1.1.1.2.1.1.2.1.1.2.1.1.1.2.1.1.1 Progress [(?,O(n^1))]  ***
              Considered Problem:
                Strict DP Rules:
                  wb#(n(x,y,z)) -> c_39(wb#(y),wb#(z))
                Strict TRS Rules:
                  
                Weak DP Rules:
                  
                Weak TRS Rules:
                  
                Signature:
                  {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2,c_36/0,c_37/0,c_38/0,c_39/2}
                Obligation:
                  Innermost
                  basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
              Applied Processor:
                NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
              Proof:
                We apply a matrix interpretation of kind constructor based matrix interpretation:
                The following argument positions are considered usable:
                  uargs(c_39) = {1,2}
                
                Following symbols are considered usable:
                  {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}
                TcT has computed the following interpretation:
                      p(#) = [0]                           
                      p(+) = [0]                           
                      p(-) = [0]                           
                      p(0) = [0]                           
                      p(1) = [1] x1 + [0]                  
                    p(and) = [8] x2 + [8]                  
                     p(bs) = [1]                           
                  p(false) = [1]                           
                     p(ge) = [8] x2 + [0]                  
                     p(if) = [1] x1 + [2] x2 + [0]         
                      p(l) = [1]                           
                    p(max) = [1]                           
                    p(min) = [0]                           
                      p(n) = [1] x1 + [1] x2 + [1] x3 + [8]
                    p(not) = [0]                           
                   p(size) = [0]                           
                   p(true) = [0]                           
                    p(val) = [0]                           
                     p(wb) = [0]                           
                     p(+#) = [0]                           
                     p(-#) = [0]                           
                     p(0#) = [0]                           
                   p(and#) = [0]                           
                    p(bs#) = [0]                           
                    p(ge#) = [0]                           
                    p(if#) = [0]                           
                   p(max#) = [0]                           
                   p(min#) = [0]                           
                   p(not#) = [0]                           
                  p(size#) = [0]                           
                   p(val#) = [0]                           
                    p(wb#) = [1] x1 + [0]                  
                    p(c_1) = [0]                           
                    p(c_2) = [0]                           
                    p(c_3) = [0]                           
                    p(c_4) = [0]                           
                    p(c_5) = [0]                           
                    p(c_6) = [0]                           
                    p(c_7) = [0]                           
                    p(c_8) = [0]                           
                    p(c_9) = [0]                           
                   p(c_10) = [0]                           
                   p(c_11) = [0]                           
                   p(c_12) = [0]                           
                   p(c_13) = [0]                           
                   p(c_14) = [0]                           
                   p(c_15) = [0]                           
                   p(c_16) = [0]                           
                   p(c_17) = [0]                           
                   p(c_18) = [0]                           
                   p(c_19) = [0]                           
                   p(c_20) = [0]                           
                   p(c_21) = [2]                           
                   p(c_22) = [1] x1 + [8]                  
                   p(c_23) = [1] x1 + [1]                  
                   p(c_24) = [2]                           
                   p(c_25) = [0]                           
                   p(c_26) = [1]                           
                   p(c_27) = [0]                           
                   p(c_28) = [1]                           
                   p(c_29) = [2] x1 + [8]                  
                   p(c_30) = [2]                           
                   p(c_31) = [1]                           
                   p(c_32) = [4]                           
                   p(c_33) = [0]                           
                   p(c_34) = [0]                           
                   p(c_35) = [1] x2 + [1]                  
                   p(c_36) = [0]                           
                   p(c_37) = [0]                           
                   p(c_38) = [0]                           
                   p(c_39) = [1] x1 + [1] x2 + [0]         
                
                Following rules are strictly oriented:
                wb#(n(x,y,z)) = [1] x + [1] y + [1] z + [8]
                              > [1] y + [1] z + [0]        
                              = c_39(wb#(y),wb#(z))        
                
                
                Following rules are (at-least) weakly oriented:
                
          *** 1.1.1.1.1.1.1.2.1.1.2.1.1.2.1.1.1.2.1.1.1.1 Progress [(?,O(1))]  ***
              Considered Problem:
                Strict DP Rules:
                  
                Strict TRS Rules:
                  
                Weak DP Rules:
                  wb#(n(x,y,z)) -> c_39(wb#(y),wb#(z))
                Weak TRS Rules:
                  
                Signature:
                  {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2,c_36/0,c_37/0,c_38/0,c_39/2}
                Obligation:
                  Innermost
                  basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
              Applied Processor:
                Assumption
              Proof:
                ()
          
          *** 1.1.1.1.1.1.1.2.1.1.2.1.1.2.1.1.1.2.1.1.2 Progress [(O(1),O(1))]  ***
              Considered Problem:
                Strict DP Rules:
                  
                Strict TRS Rules:
                  
                Weak DP Rules:
                  wb#(n(x,y,z)) -> c_39(wb#(y),wb#(z))
                Weak TRS Rules:
                  
                Signature:
                  {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2,c_36/0,c_37/0,c_38/0,c_39/2}
                Obligation:
                  Innermost
                  basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
              Applied Processor:
                RemoveWeakSuffixes
              Proof:
                Consider the dependency graph
                  1:W:wb#(n(x,y,z)) -> c_39(wb#(y),wb#(z))
                     -->_2 wb#(n(x,y,z)) -> c_39(wb#(y),wb#(z)):1
                     -->_1 wb#(n(x,y,z)) -> c_39(wb#(y),wb#(z)):1
                  
                The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
                  1: wb#(n(x,y,z)) -> c_39(wb#(y) 
                                          ,wb#(z))
          *** 1.1.1.1.1.1.1.2.1.1.2.1.1.2.1.1.1.2.1.1.2.1 Progress [(O(1),O(1))]  ***
              Considered Problem:
                Strict DP Rules:
                  
                Strict TRS Rules:
                  
                Weak DP Rules:
                  
                Weak TRS Rules:
                  
                Signature:
                  {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2,c_36/0,c_37/0,c_38/0,c_39/2}
                Obligation:
                  Innermost
                  basic terms: {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}/{#,1,false,l,n,true}
              Applied Processor:
                EmptyProcessor
              Proof:
                The problem is already closed. The intended complexity is O(1).