*** 1 Progress [(O(1),O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        Concat(Concat(s,t),u) -> Concat(s,Concat(t,u))
        Concat(Cons_sum(xi,k,s),t) -> Cons_sum(xi,k,Concat(s,t))
        Concat(Cons_usual(x,m,s),t) -> Cons_usual(x,Term_sub(m,t),Concat(s,t))
        Concat(Id(),s) -> s
        Frozen(m,Sum_constant(Left()),n,s) -> Term_sub(m,s)
        Frozen(m,Sum_constant(Right()),n,s) -> Term_sub(n,s)
        Frozen(m,Sum_term_var(xi),n,s) -> Case(Term_sub(m,s),xi,Term_sub(n,s))
        Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_constant(k)
        Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_sub(xi,s)
        Sum_sub(xi,Cons_usual(y,m,s)) -> Sum_sub(xi,s)
        Sum_sub(xi,Id()) -> Sum_term_var(xi)
        Term_sub(Case(m,xi,n),s) -> Frozen(m,Sum_sub(xi,s),n,s)
        Term_sub(Term_app(m,n),s) -> Term_app(Term_sub(m,s),Term_sub(n,s))
        Term_sub(Term_inl(m),s) -> Term_inl(Term_sub(m,s))
        Term_sub(Term_inr(m),s) -> Term_inr(Term_sub(m,s))
        Term_sub(Term_pair(m,n),s) -> Term_pair(Term_sub(m,s),Term_sub(n,s))
        Term_sub(Term_sub(m,s),t) -> Term_sub(m,Concat(s,t))
        Term_sub(Term_var(x),Cons_sum(xi,k,s)) -> Term_sub(Term_var(x),s)
        Term_sub(Term_var(x),Cons_usual(y,m,s)) -> m
        Term_sub(Term_var(x),Cons_usual(y,m,s)) -> Term_sub(Term_var(x),s)
        Term_sub(Term_var(x),Id()) -> Term_var(x)
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {Concat/2,Frozen/4,Sum_sub/2,Term_sub/2} / {Case/3,Cons_sum/3,Cons_usual/3,Id/0,Left/0,Right/0,Sum_constant/1,Sum_term_var/1,Term_app/2,Term_inl/1,Term_inr/1,Term_pair/2,Term_var/1}
      Obligation:
        Innermost
        basic terms: {Concat,Frozen,Sum_sub,Term_sub}/{Case,Cons_sum,Cons_usual,Id,Left,Right,Sum_constant,Sum_term_var,Term_app,Term_inl,Term_inr,Term_pair,Term_var}
    Applied Processor:
      NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just any strict-rules, greedy = NoGreedy}
    Proof:
      We apply a polynomial interpretation of kind constructor-based(mixed(2)):
      The following argument positions are considered usable:
        uargs(Case) = {1,3},
        uargs(Concat) = {2},
        uargs(Cons_sum) = {3},
        uargs(Cons_usual) = {2,3},
        uargs(Frozen) = {2},
        uargs(Term_app) = {1,2},
        uargs(Term_inl) = {1},
        uargs(Term_inr) = {1},
        uargs(Term_pair) = {1,2},
        uargs(Term_sub) = {2}
      
      Following symbols are considered usable:
        {Concat,Frozen,Sum_sub,Term_sub}
      TcT has computed the following interpretation:
                p(Case) = 1 + x1 + x3                                                
              p(Concat) = x1 + x1*x2 + x2                                            
            p(Cons_sum) = x3                                                         
          p(Cons_usual) = 1 + x2 + x3                                                
              p(Frozen) = 1 + x1 + x1*x2 + x1*x4 + 2*x2 + 2*x2*x3 + x3 + x3*x4 + 2*x4
                  p(Id) = 1                                                          
                p(Left) = 0                                                          
               p(Right) = 1                                                          
        p(Sum_constant) = 0                                                          
             p(Sum_sub) = 0                                                          
        p(Sum_term_var) = 0                                                          
            p(Term_app) = 1 + x1 + x2                                                
            p(Term_inl) = x1                                                         
            p(Term_inr) = x1                                                         
           p(Term_pair) = 1 + x1 + x2                                                
            p(Term_sub) = x1 + x1*x2 + x2                                            
            p(Term_var) = 1                                                          
      
      Following rules are strictly oriented:
                    Concat(Id(),s) = 1 + 2*s                    
                                   > s                          
                                   = s                          
      
                          Frozen(m = 1 + m + m*s + n + n*s + 2*s
             ,Sum_constant(Left())                              
                                ,n                              
                               ,s)                              
                                   > m + m*s + s                
                                   = Term_sub(m,s)              
      
                          Frozen(m = 1 + m + m*s + n + n*s + 2*s
            ,Sum_constant(Right())                              
                                ,n                              
                               ,s)                              
                                   > n + n*s + s                
                                   = Term_sub(n,s)              
      
              Term_sub(Term_var(x) = 3 + 2*m + 2*s              
               ,Cons_usual(y,m,s))                              
                                   > m                          
                                   = m                          
      
              Term_sub(Term_var(x) = 3 + 2*m + 2*s              
               ,Cons_usual(y,m,s))                              
                                   > 1 + 2*s                    
                                   = Term_sub(Term_var(x),s)    
      
        Term_sub(Term_var(x),Id()) = 3                          
                                   > 1                          
                                   = Term_var(x)                
      
      
      Following rules are (at-least) weakly oriented:
               Concat(Concat(s,t),u) =  s + s*t + s*t*u + s*u + t + t*u + u
                                     >= s + s*t + s*t*u + s*u + t + t*u + u
                                     =  Concat(s,Concat(t,u))              
      
          Concat(Cons_sum(xi,k,s),t) =  s + s*t + t                        
                                     >= s + s*t + t                        
                                     =  Cons_sum(xi,k,Concat(s,t))         
      
         Concat(Cons_usual(x,m,s),t) =  1 + m + m*t + s + s*t + 2*t        
                                     >= 1 + m + m*t + s + s*t + 2*t        
                                     =  Cons_usual(x                       
                                                  ,Term_sub(m,t)           
                                                  ,Concat(s,t))            
      
      Frozen(m,Sum_term_var(xi),n,s) =  1 + m + m*s + n + n*s + 2*s        
                                     >= 1 + m + m*s + n + n*s + 2*s        
                                     =  Case(Term_sub(m,s)                 
                                            ,xi                            
                                            ,Term_sub(n,s))                
      
       Sum_sub(xi,Cons_sum(psi,k,s)) =  0                                  
                                     >= 0                                  
                                     =  Sum_constant(k)                    
      
       Sum_sub(xi,Cons_sum(psi,k,s)) =  0                                  
                                     >= 0                                  
                                     =  Sum_sub(xi,s)                      
      
       Sum_sub(xi,Cons_usual(y,m,s)) =  0                                  
                                     >= 0                                  
                                     =  Sum_sub(xi,s)                      
      
                    Sum_sub(xi,Id()) =  0                                  
                                     >= 0                                  
                                     =  Sum_term_var(xi)                   
      
            Term_sub(Case(m,xi,n),s) =  1 + m + m*s + n + n*s + 2*s        
                                     >= 1 + m + m*s + n + n*s + 2*s        
                                     =  Frozen(m,Sum_sub(xi,s),n,s)        
      
           Term_sub(Term_app(m,n),s) =  1 + m + m*s + n + n*s + 2*s        
                                     >= 1 + m + m*s + n + n*s + 2*s        
                                     =  Term_app(Term_sub(m,s)             
                                                ,Term_sub(n,s))            
      
             Term_sub(Term_inl(m),s) =  m + m*s + s                        
                                     >= m + m*s + s                        
                                     =  Term_inl(Term_sub(m,s))            
      
             Term_sub(Term_inr(m),s) =  m + m*s + s                        
                                     >= m + m*s + s                        
                                     =  Term_inr(Term_sub(m,s))            
      
          Term_sub(Term_pair(m,n),s) =  1 + m + m*s + n + n*s + 2*s        
                                     >= 1 + m + m*s + n + n*s + 2*s        
                                     =  Term_pair(Term_sub(m,s)            
                                                 ,Term_sub(n,s))           
      
           Term_sub(Term_sub(m,s),t) =  m + m*s + m*s*t + m*t + s + s*t + t
                                     >= m + m*s + m*s*t + m*t + s + s*t + t
                                     =  Term_sub(m,Concat(s,t))            
      
                Term_sub(Term_var(x) =  1 + 2*s                            
                  ,Cons_sum(xi,k,s))                                       
                                     >= 1 + 2*s                            
                                     =  Term_sub(Term_var(x),s)            
      
*** 1.1 Progress [(O(1),O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        Concat(Concat(s,t),u) -> Concat(s,Concat(t,u))
        Concat(Cons_sum(xi,k,s),t) -> Cons_sum(xi,k,Concat(s,t))
        Concat(Cons_usual(x,m,s),t) -> Cons_usual(x,Term_sub(m,t),Concat(s,t))
        Frozen(m,Sum_term_var(xi),n,s) -> Case(Term_sub(m,s),xi,Term_sub(n,s))
        Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_constant(k)
        Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_sub(xi,s)
        Sum_sub(xi,Cons_usual(y,m,s)) -> Sum_sub(xi,s)
        Sum_sub(xi,Id()) -> Sum_term_var(xi)
        Term_sub(Case(m,xi,n),s) -> Frozen(m,Sum_sub(xi,s),n,s)
        Term_sub(Term_app(m,n),s) -> Term_app(Term_sub(m,s),Term_sub(n,s))
        Term_sub(Term_inl(m),s) -> Term_inl(Term_sub(m,s))
        Term_sub(Term_inr(m),s) -> Term_inr(Term_sub(m,s))
        Term_sub(Term_pair(m,n),s) -> Term_pair(Term_sub(m,s),Term_sub(n,s))
        Term_sub(Term_sub(m,s),t) -> Term_sub(m,Concat(s,t))
        Term_sub(Term_var(x),Cons_sum(xi,k,s)) -> Term_sub(Term_var(x),s)
      Weak DP Rules:
        
      Weak TRS Rules:
        Concat(Id(),s) -> s
        Frozen(m,Sum_constant(Left()),n,s) -> Term_sub(m,s)
        Frozen(m,Sum_constant(Right()),n,s) -> Term_sub(n,s)
        Term_sub(Term_var(x),Cons_usual(y,m,s)) -> m
        Term_sub(Term_var(x),Cons_usual(y,m,s)) -> Term_sub(Term_var(x),s)
        Term_sub(Term_var(x),Id()) -> Term_var(x)
      Signature:
        {Concat/2,Frozen/4,Sum_sub/2,Term_sub/2} / {Case/3,Cons_sum/3,Cons_usual/3,Id/0,Left/0,Right/0,Sum_constant/1,Sum_term_var/1,Term_app/2,Term_inl/1,Term_inr/1,Term_pair/2,Term_var/1}
      Obligation:
        Innermost
        basic terms: {Concat,Frozen,Sum_sub,Term_sub}/{Case,Cons_sum,Cons_usual,Id,Left,Right,Sum_constant,Sum_term_var,Term_app,Term_inl,Term_inr,Term_pair,Term_var}
    Applied Processor:
      NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just any strict-rules, greedy = NoGreedy}
    Proof:
      We apply a polynomial interpretation of kind constructor-based(mixed(2)):
      The following argument positions are considered usable:
        uargs(Case) = {1,3},
        uargs(Concat) = {2},
        uargs(Cons_sum) = {3},
        uargs(Cons_usual) = {2,3},
        uargs(Frozen) = {2},
        uargs(Term_app) = {1,2},
        uargs(Term_inl) = {1},
        uargs(Term_inr) = {1},
        uargs(Term_pair) = {1,2},
        uargs(Term_sub) = {2}
      
      Following symbols are considered usable:
        {Concat,Frozen,Sum_sub,Term_sub}
      TcT has computed the following interpretation:
                p(Case) = 1 + x1 + x3                                  
              p(Concat) = x1 + 2*x1*x2 + x2                            
            p(Cons_sum) = 1 + x3                                       
          p(Cons_usual) = 1 + x2 + x3                                  
              p(Frozen) = 1 + x1 + 2*x1*x4 + 2*x2 + x3 + 2*x3*x4 + 2*x4
                  p(Id) = 0                                            
                p(Left) = 0                                            
               p(Right) = 0                                            
        p(Sum_constant) = 0                                            
             p(Sum_sub) = 0                                            
        p(Sum_term_var) = 0                                            
            p(Term_app) = 1 + x1 + x2                                  
            p(Term_inl) = x1                                           
            p(Term_inr) = x1                                           
           p(Term_pair) = 1 + x1 + x2                                  
            p(Term_sub) = x1 + 2*x1*x2 + x2                            
            p(Term_var) = 1 + x1                                       
      
      Following rules are strictly oriented:
            Term_sub(Term_var(x) = 4 + 3*s + 2*s*x + 3*x  
              ,Cons_sum(xi,k,s))                          
                                 > 1 + 3*s + 2*s*x + x    
                                 = Term_sub(Term_var(x),s)
      
      
      Following rules are (at-least) weakly oriented:
               Concat(Concat(s,t),u) =  s + 2*s*t + 4*s*t*u + 2*s*u + t + 2*t*u + u
                                     >= s + 2*s*t + 4*s*t*u + 2*s*u + t + 2*t*u + u
                                     =  Concat(s,Concat(t,u))                      
      
          Concat(Cons_sum(xi,k,s),t) =  1 + s + 2*s*t + 3*t                        
                                     >= 1 + s + 2*s*t + t                          
                                     =  Cons_sum(xi,k,Concat(s,t))                 
      
         Concat(Cons_usual(x,m,s),t) =  1 + m + 2*m*t + s + 2*s*t + 3*t            
                                     >= 1 + m + 2*m*t + s + 2*s*t + 2*t            
                                     =  Cons_usual(x                               
                                                  ,Term_sub(m,t)                   
                                                  ,Concat(s,t))                    
      
                      Concat(Id(),s) =  s                                          
                                     >= s                                          
                                     =  s                                          
      
                            Frozen(m =  1 + m + 2*m*s + n + 2*n*s + 2*s            
               ,Sum_constant(Left())                                               
                                  ,n                                               
                                 ,s)                                               
                                     >= m + 2*m*s + s                              
                                     =  Term_sub(m,s)                              
      
                            Frozen(m =  1 + m + 2*m*s + n + 2*n*s + 2*s            
              ,Sum_constant(Right())                                               
                                  ,n                                               
                                 ,s)                                               
                                     >= n + 2*n*s + s                              
                                     =  Term_sub(n,s)                              
      
      Frozen(m,Sum_term_var(xi),n,s) =  1 + m + 2*m*s + n + 2*n*s + 2*s            
                                     >= 1 + m + 2*m*s + n + 2*n*s + 2*s            
                                     =  Case(Term_sub(m,s)                         
                                            ,xi                                    
                                            ,Term_sub(n,s))                        
      
       Sum_sub(xi,Cons_sum(psi,k,s)) =  0                                          
                                     >= 0                                          
                                     =  Sum_constant(k)                            
      
       Sum_sub(xi,Cons_sum(psi,k,s)) =  0                                          
                                     >= 0                                          
                                     =  Sum_sub(xi,s)                              
      
       Sum_sub(xi,Cons_usual(y,m,s)) =  0                                          
                                     >= 0                                          
                                     =  Sum_sub(xi,s)                              
      
                    Sum_sub(xi,Id()) =  0                                          
                                     >= 0                                          
                                     =  Sum_term_var(xi)                           
      
            Term_sub(Case(m,xi,n),s) =  1 + m + 2*m*s + n + 2*n*s + 3*s            
                                     >= 1 + m + 2*m*s + n + 2*n*s + 2*s            
                                     =  Frozen(m,Sum_sub(xi,s),n,s)                
      
           Term_sub(Term_app(m,n),s) =  1 + m + 2*m*s + n + 2*n*s + 3*s            
                                     >= 1 + m + 2*m*s + n + 2*n*s + 2*s            
                                     =  Term_app(Term_sub(m,s)                     
                                                ,Term_sub(n,s))                    
      
             Term_sub(Term_inl(m),s) =  m + 2*m*s + s                              
                                     >= m + 2*m*s + s                              
                                     =  Term_inl(Term_sub(m,s))                    
      
             Term_sub(Term_inr(m),s) =  m + 2*m*s + s                              
                                     >= m + 2*m*s + s                              
                                     =  Term_inr(Term_sub(m,s))                    
      
          Term_sub(Term_pair(m,n),s) =  1 + m + 2*m*s + n + 2*n*s + 3*s            
                                     >= 1 + m + 2*m*s + n + 2*n*s + 2*s            
                                     =  Term_pair(Term_sub(m,s)                    
                                                 ,Term_sub(n,s))                   
      
           Term_sub(Term_sub(m,s),t) =  m + 2*m*s + 4*m*s*t + 2*m*t + s + 2*s*t + t
                                     >= m + 2*m*s + 4*m*s*t + 2*m*t + s + 2*s*t + t
                                     =  Term_sub(m,Concat(s,t))                    
      
                Term_sub(Term_var(x) =  4 + 3*m + 2*m*x + 3*s + 2*s*x + 3*x        
                 ,Cons_usual(y,m,s))                                               
                                     >= m                                          
                                     =  m                                          
      
                Term_sub(Term_var(x) =  4 + 3*m + 2*m*x + 3*s + 2*s*x + 3*x        
                 ,Cons_usual(y,m,s))                                               
                                     >= 1 + 3*s + 2*s*x + x                        
                                     =  Term_sub(Term_var(x),s)                    
      
          Term_sub(Term_var(x),Id()) =  1 + x                                      
                                     >= 1 + x                                      
                                     =  Term_var(x)                                
      
*** 1.1.1 Progress [(O(1),O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        Concat(Concat(s,t),u) -> Concat(s,Concat(t,u))
        Concat(Cons_sum(xi,k,s),t) -> Cons_sum(xi,k,Concat(s,t))
        Concat(Cons_usual(x,m,s),t) -> Cons_usual(x,Term_sub(m,t),Concat(s,t))
        Frozen(m,Sum_term_var(xi),n,s) -> Case(Term_sub(m,s),xi,Term_sub(n,s))
        Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_constant(k)
        Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_sub(xi,s)
        Sum_sub(xi,Cons_usual(y,m,s)) -> Sum_sub(xi,s)
        Sum_sub(xi,Id()) -> Sum_term_var(xi)
        Term_sub(Case(m,xi,n),s) -> Frozen(m,Sum_sub(xi,s),n,s)
        Term_sub(Term_app(m,n),s) -> Term_app(Term_sub(m,s),Term_sub(n,s))
        Term_sub(Term_inl(m),s) -> Term_inl(Term_sub(m,s))
        Term_sub(Term_inr(m),s) -> Term_inr(Term_sub(m,s))
        Term_sub(Term_pair(m,n),s) -> Term_pair(Term_sub(m,s),Term_sub(n,s))
        Term_sub(Term_sub(m,s),t) -> Term_sub(m,Concat(s,t))
      Weak DP Rules:
        
      Weak TRS Rules:
        Concat(Id(),s) -> s
        Frozen(m,Sum_constant(Left()),n,s) -> Term_sub(m,s)
        Frozen(m,Sum_constant(Right()),n,s) -> Term_sub(n,s)
        Term_sub(Term_var(x),Cons_sum(xi,k,s)) -> Term_sub(Term_var(x),s)
        Term_sub(Term_var(x),Cons_usual(y,m,s)) -> m
        Term_sub(Term_var(x),Cons_usual(y,m,s)) -> Term_sub(Term_var(x),s)
        Term_sub(Term_var(x),Id()) -> Term_var(x)
      Signature:
        {Concat/2,Frozen/4,Sum_sub/2,Term_sub/2} / {Case/3,Cons_sum/3,Cons_usual/3,Id/0,Left/0,Right/0,Sum_constant/1,Sum_term_var/1,Term_app/2,Term_inl/1,Term_inr/1,Term_pair/2,Term_var/1}
      Obligation:
        Innermost
        basic terms: {Concat,Frozen,Sum_sub,Term_sub}/{Case,Cons_sum,Cons_usual,Id,Left,Right,Sum_constant,Sum_term_var,Term_app,Term_inl,Term_inr,Term_pair,Term_var}
    Applied Processor:
      NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just any strict-rules, greedy = NoGreedy}
    Proof:
      We apply a polynomial interpretation of kind constructor-based(mixed(2)):
      The following argument positions are considered usable:
        uargs(Case) = {1,3},
        uargs(Concat) = {2},
        uargs(Cons_sum) = {3},
        uargs(Cons_usual) = {2,3},
        uargs(Frozen) = {2},
        uargs(Term_app) = {1,2},
        uargs(Term_inl) = {1},
        uargs(Term_inr) = {1},
        uargs(Term_pair) = {1,2},
        uargs(Term_sub) = {2}
      
      Following symbols are considered usable:
        {Concat,Frozen,Sum_sub,Term_sub}
      TcT has computed the following interpretation:
                p(Case) = 1 + x1 + x3                                
              p(Concat) = x1 + 2*x1*x2 + x2                          
            p(Cons_sum) = 1 + x1 + x3                                
          p(Cons_usual) = 1 + x2 + x3                                
              p(Frozen) = 1 + x1 + 2*x1*x4 + x2 + x3 + 2*x3*x4 + 2*x4
                  p(Id) = 0                                          
                p(Left) = 0                                          
               p(Right) = 1                                          
        p(Sum_constant) = 1                                          
             p(Sum_sub) = x2                                         
        p(Sum_term_var) = 0                                          
            p(Term_app) = 1 + x1 + x2                                
            p(Term_inl) = x1                                         
            p(Term_inr) = x1                                         
           p(Term_pair) = 1 + x1 + x2                                
            p(Term_sub) = x1 + 2*x1*x2 + x2                          
            p(Term_var) = x1                                         
      
      Following rules are strictly oriented:
      Sum_sub(xi,Cons_sum(psi,k,s)) = 1 + psi + s  
                                    > s            
                                    = Sum_sub(xi,s)
      
      Sum_sub(xi,Cons_usual(y,m,s)) = 1 + m + s    
                                    > s            
                                    = Sum_sub(xi,s)
      
      
      Following rules are (at-least) weakly oriented:
               Concat(Concat(s,t),u) =  s + 2*s*t + 4*s*t*u + 2*s*u + t + 2*t*u + u
                                     >= s + 2*s*t + 4*s*t*u + 2*s*u + t + 2*t*u + u
                                     =  Concat(s,Concat(t,u))                      
      
          Concat(Cons_sum(xi,k,s),t) =  1 + s + 2*s*t + 3*t + 2*t*xi + xi          
                                     >= 1 + s + 2*s*t + t + xi                     
                                     =  Cons_sum(xi,k,Concat(s,t))                 
      
         Concat(Cons_usual(x,m,s),t) =  1 + m + 2*m*t + s + 2*s*t + 3*t            
                                     >= 1 + m + 2*m*t + s + 2*s*t + 2*t            
                                     =  Cons_usual(x                               
                                                  ,Term_sub(m,t)                   
                                                  ,Concat(s,t))                    
      
                      Concat(Id(),s) =  s                                          
                                     >= s                                          
                                     =  s                                          
      
                            Frozen(m =  2 + m + 2*m*s + n + 2*n*s + 2*s            
               ,Sum_constant(Left())                                               
                                  ,n                                               
                                 ,s)                                               
                                     >= m + 2*m*s + s                              
                                     =  Term_sub(m,s)                              
      
                            Frozen(m =  2 + m + 2*m*s + n + 2*n*s + 2*s            
              ,Sum_constant(Right())                                               
                                  ,n                                               
                                 ,s)                                               
                                     >= n + 2*n*s + s                              
                                     =  Term_sub(n,s)                              
      
      Frozen(m,Sum_term_var(xi),n,s) =  1 + m + 2*m*s + n + 2*n*s + 2*s            
                                     >= 1 + m + 2*m*s + n + 2*n*s + 2*s            
                                     =  Case(Term_sub(m,s)                         
                                            ,xi                                    
                                            ,Term_sub(n,s))                        
      
       Sum_sub(xi,Cons_sum(psi,k,s)) =  1 + psi + s                                
                                     >= 1                                          
                                     =  Sum_constant(k)                            
      
                    Sum_sub(xi,Id()) =  0                                          
                                     >= 0                                          
                                     =  Sum_term_var(xi)                           
      
            Term_sub(Case(m,xi,n),s) =  1 + m + 2*m*s + n + 2*n*s + 3*s            
                                     >= 1 + m + 2*m*s + n + 2*n*s + 3*s            
                                     =  Frozen(m,Sum_sub(xi,s),n,s)                
      
           Term_sub(Term_app(m,n),s) =  1 + m + 2*m*s + n + 2*n*s + 3*s            
                                     >= 1 + m + 2*m*s + n + 2*n*s + 2*s            
                                     =  Term_app(Term_sub(m,s)                     
                                                ,Term_sub(n,s))                    
      
             Term_sub(Term_inl(m),s) =  m + 2*m*s + s                              
                                     >= m + 2*m*s + s                              
                                     =  Term_inl(Term_sub(m,s))                    
      
             Term_sub(Term_inr(m),s) =  m + 2*m*s + s                              
                                     >= m + 2*m*s + s                              
                                     =  Term_inr(Term_sub(m,s))                    
      
          Term_sub(Term_pair(m,n),s) =  1 + m + 2*m*s + n + 2*n*s + 3*s            
                                     >= 1 + m + 2*m*s + n + 2*n*s + 2*s            
                                     =  Term_pair(Term_sub(m,s)                    
                                                 ,Term_sub(n,s))                   
      
           Term_sub(Term_sub(m,s),t) =  m + 2*m*s + 4*m*s*t + 2*m*t + s + 2*s*t + t
                                     >= m + 2*m*s + 4*m*s*t + 2*m*t + s + 2*s*t + t
                                     =  Term_sub(m,Concat(s,t))                    
      
                Term_sub(Term_var(x) =  1 + s + 2*s*x + 3*x + 2*x*xi + xi          
                  ,Cons_sum(xi,k,s))                                               
                                     >= s + 2*s*x + x                              
                                     =  Term_sub(Term_var(x),s)                    
      
                Term_sub(Term_var(x) =  1 + m + 2*m*x + s + 2*s*x + 3*x            
                 ,Cons_usual(y,m,s))                                               
                                     >= m                                          
                                     =  m                                          
      
                Term_sub(Term_var(x) =  1 + m + 2*m*x + s + 2*s*x + 3*x            
                 ,Cons_usual(y,m,s))                                               
                                     >= s + 2*s*x + x                              
                                     =  Term_sub(Term_var(x),s)                    
      
          Term_sub(Term_var(x),Id()) =  x                                          
                                     >= x                                          
                                     =  Term_var(x)                                
      
*** 1.1.1.1 Progress [(O(1),O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        Concat(Concat(s,t),u) -> Concat(s,Concat(t,u))
        Concat(Cons_sum(xi,k,s),t) -> Cons_sum(xi,k,Concat(s,t))
        Concat(Cons_usual(x,m,s),t) -> Cons_usual(x,Term_sub(m,t),Concat(s,t))
        Frozen(m,Sum_term_var(xi),n,s) -> Case(Term_sub(m,s),xi,Term_sub(n,s))
        Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_constant(k)
        Sum_sub(xi,Id()) -> Sum_term_var(xi)
        Term_sub(Case(m,xi,n),s) -> Frozen(m,Sum_sub(xi,s),n,s)
        Term_sub(Term_app(m,n),s) -> Term_app(Term_sub(m,s),Term_sub(n,s))
        Term_sub(Term_inl(m),s) -> Term_inl(Term_sub(m,s))
        Term_sub(Term_inr(m),s) -> Term_inr(Term_sub(m,s))
        Term_sub(Term_pair(m,n),s) -> Term_pair(Term_sub(m,s),Term_sub(n,s))
        Term_sub(Term_sub(m,s),t) -> Term_sub(m,Concat(s,t))
      Weak DP Rules:
        
      Weak TRS Rules:
        Concat(Id(),s) -> s
        Frozen(m,Sum_constant(Left()),n,s) -> Term_sub(m,s)
        Frozen(m,Sum_constant(Right()),n,s) -> Term_sub(n,s)
        Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_sub(xi,s)
        Sum_sub(xi,Cons_usual(y,m,s)) -> Sum_sub(xi,s)
        Term_sub(Term_var(x),Cons_sum(xi,k,s)) -> Term_sub(Term_var(x),s)
        Term_sub(Term_var(x),Cons_usual(y,m,s)) -> m
        Term_sub(Term_var(x),Cons_usual(y,m,s)) -> Term_sub(Term_var(x),s)
        Term_sub(Term_var(x),Id()) -> Term_var(x)
      Signature:
        {Concat/2,Frozen/4,Sum_sub/2,Term_sub/2} / {Case/3,Cons_sum/3,Cons_usual/3,Id/0,Left/0,Right/0,Sum_constant/1,Sum_term_var/1,Term_app/2,Term_inl/1,Term_inr/1,Term_pair/2,Term_var/1}
      Obligation:
        Innermost
        basic terms: {Concat,Frozen,Sum_sub,Term_sub}/{Case,Cons_sum,Cons_usual,Id,Left,Right,Sum_constant,Sum_term_var,Term_app,Term_inl,Term_inr,Term_pair,Term_var}
    Applied Processor:
      NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just any strict-rules, greedy = NoGreedy}
    Proof:
      We apply a polynomial interpretation of kind constructor-based(mixed(2)):
      The following argument positions are considered usable:
        uargs(Case) = {1,3},
        uargs(Concat) = {2},
        uargs(Cons_sum) = {3},
        uargs(Cons_usual) = {2,3},
        uargs(Frozen) = {2},
        uargs(Term_app) = {1,2},
        uargs(Term_inl) = {1},
        uargs(Term_inr) = {1},
        uargs(Term_pair) = {1,2},
        uargs(Term_sub) = {2}
      
      Following symbols are considered usable:
        {Concat,Frozen,Sum_sub,Term_sub}
      TcT has computed the following interpretation:
                p(Case) = 1 + x1 + x3                                                        
              p(Concat) = x1 + x1*x2 + x1^2 + x2                                             
            p(Cons_sum) = 1 + x3                                                             
          p(Cons_usual) = 1 + x1 + x2 + x3                                                   
              p(Frozen) = 1 + 2*x1 + x1*x2 + x1*x4 + x1^2 + 2*x2 + 2*x3 + x3*x4 + x3^2 + 2*x4
                  p(Id) = 0                                                                  
                p(Left) = 0                                                                  
               p(Right) = 0                                                                  
        p(Sum_constant) = 0                                                                  
             p(Sum_sub) = 0                                                                  
        p(Sum_term_var) = 0                                                                  
            p(Term_app) = 1 + x1 + x2                                                        
            p(Term_inl) = x1                                                                 
            p(Term_inr) = x1                                                                 
           p(Term_pair) = 1 + x1 + x2                                                        
            p(Term_sub) = 2*x1 + x1*x2 + x1^2 + x2                                           
            p(Term_var) = 0                                                                  
      
      Following rules are strictly oriented:
       Concat(Cons_sum(xi,k,s),t) = 2 + 3*s + s*t + s^2 + 2*t                                                            
                                  > 1 + s + s*t + s^2 + t                                                                
                                  = Cons_sum(xi,k,Concat(s,t))                                                           
      
      Concat(Cons_usual(x,m,s),t) = 2 + 3*m + 2*m*s + m*t + 2*m*x + m^2 + 3*s + s*t + 2*s*x + s^2 + 2*t + t*x + 3*x + x^2
                                  > 1 + 2*m + m*t + m^2 + s + s*t + s^2 + 2*t + x                                        
                                  = Cons_usual(x                                                                         
                                              ,Term_sub(m,t)                                                             
                                              ,Concat(s,t))                                                              
      
         Term_sub(Case(m,xi,n),s) = 3 + 4*m + 2*m*n + m*s + m^2 + 4*n + n*s + n^2 + 2*s                                  
                                  > 1 + 2*m + m*s + m^2 + 2*n + n*s + n^2 + 2*s                                          
                                  = Frozen(m,Sum_sub(xi,s),n,s)                                                          
      
        Term_sub(Term_app(m,n),s) = 3 + 4*m + 2*m*n + m*s + m^2 + 4*n + n*s + n^2 + 2*s                                  
                                  > 1 + 2*m + m*s + m^2 + 2*n + n*s + n^2 + 2*s                                          
                                  = Term_app(Term_sub(m,s)                                                               
                                            ,Term_sub(n,s))                                                              
      
       Term_sub(Term_pair(m,n),s) = 3 + 4*m + 2*m*n + m*s + m^2 + 4*n + n*s + n^2 + 2*s                                  
                                  > 1 + 2*m + m*s + m^2 + 2*n + n*s + n^2 + 2*s                                          
                                  = Term_pair(Term_sub(m,s)                                                              
                                             ,Term_sub(n,s))                                                             
      
      
      Following rules are (at-least) weakly oriented:
               Concat(Concat(s,t),u) =  s + 3*s*t + s*t*u + 2*s*t^2 + s*u + 2*s^2 + 4*s^2*t + s^2*t^2 + s^2*u + 2*s^3 + 2*s^3*t + s^4 + t + t*u + t^2 + u      
                                     >= s + s*t + s*t*u + s*t^2 + s*u + s^2 + t + t*u + t^2 + u                                                                
                                     =  Concat(s,Concat(t,u))                                                                                                  
      
                      Concat(Id(),s) =  s                                                                                                                      
                                     >= s                                                                                                                      
                                     =  s                                                                                                                      
      
                            Frozen(m =  1 + 2*m + m*s + m^2 + 2*n + n*s + n^2 + 2*s                                                                            
               ,Sum_constant(Left())                                                                                                                           
                                  ,n                                                                                                                           
                                 ,s)                                                                                                                           
                                     >= 2*m + m*s + m^2 + s                                                                                                    
                                     =  Term_sub(m,s)                                                                                                          
      
                            Frozen(m =  1 + 2*m + m*s + m^2 + 2*n + n*s + n^2 + 2*s                                                                            
              ,Sum_constant(Right())                                                                                                                           
                                  ,n                                                                                                                           
                                 ,s)                                                                                                                           
                                     >= 2*n + n*s + n^2 + s                                                                                                    
                                     =  Term_sub(n,s)                                                                                                          
      
      Frozen(m,Sum_term_var(xi),n,s) =  1 + 2*m + m*s + m^2 + 2*n + n*s + n^2 + 2*s                                                                            
                                     >= 1 + 2*m + m*s + m^2 + 2*n + n*s + n^2 + 2*s                                                                            
                                     =  Case(Term_sub(m,s)                                                                                                     
                                            ,xi                                                                                                                
                                            ,Term_sub(n,s))                                                                                                    
      
       Sum_sub(xi,Cons_sum(psi,k,s)) =  0                                                                                                                      
                                     >= 0                                                                                                                      
                                     =  Sum_constant(k)                                                                                                        
      
       Sum_sub(xi,Cons_sum(psi,k,s)) =  0                                                                                                                      
                                     >= 0                                                                                                                      
                                     =  Sum_sub(xi,s)                                                                                                          
      
       Sum_sub(xi,Cons_usual(y,m,s)) =  0                                                                                                                      
                                     >= 0                                                                                                                      
                                     =  Sum_sub(xi,s)                                                                                                          
      
                    Sum_sub(xi,Id()) =  0                                                                                                                      
                                     >= 0                                                                                                                      
                                     =  Sum_term_var(xi)                                                                                                       
      
             Term_sub(Term_inl(m),s) =  2*m + m*s + m^2 + s                                                                                                    
                                     >= 2*m + m*s + m^2 + s                                                                                                    
                                     =  Term_inl(Term_sub(m,s))                                                                                                
      
             Term_sub(Term_inr(m),s) =  2*m + m*s + m^2 + s                                                                                                    
                                     >= 2*m + m*s + m^2 + s                                                                                                    
                                     =  Term_inr(Term_sub(m,s))                                                                                                
      
           Term_sub(Term_sub(m,s),t) =  4*m + 6*m*s + m*s*t + 2*m*s^2 + 2*m*t + 6*m^2 + 6*m^2*s + m^2*s^2 + m^2*t + 4*m^3 + 2*m^3*s + m^4 + 2*s + s*t + s^2 + t
                                     >= 2*m + m*s + m*s*t + m*s^2 + m*t + m^2 + s + s*t + s^2 + t                                                              
                                     =  Term_sub(m,Concat(s,t))                                                                                                
      
                Term_sub(Term_var(x) =  1 + s                                                                                                                  
                  ,Cons_sum(xi,k,s))                                                                                                                           
                                     >= s                                                                                                                      
                                     =  Term_sub(Term_var(x),s)                                                                                                
      
                Term_sub(Term_var(x) =  1 + m + s + y                                                                                                          
                 ,Cons_usual(y,m,s))                                                                                                                           
                                     >= m                                                                                                                      
                                     =  m                                                                                                                      
      
                Term_sub(Term_var(x) =  1 + m + s + y                                                                                                          
                 ,Cons_usual(y,m,s))                                                                                                                           
                                     >= s                                                                                                                      
                                     =  Term_sub(Term_var(x),s)                                                                                                
      
          Term_sub(Term_var(x),Id()) =  0                                                                                                                      
                                     >= 0                                                                                                                      
                                     =  Term_var(x)                                                                                                            
      
*** 1.1.1.1.1 Progress [(O(1),O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        Concat(Concat(s,t),u) -> Concat(s,Concat(t,u))
        Frozen(m,Sum_term_var(xi),n,s) -> Case(Term_sub(m,s),xi,Term_sub(n,s))
        Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_constant(k)
        Sum_sub(xi,Id()) -> Sum_term_var(xi)
        Term_sub(Term_inl(m),s) -> Term_inl(Term_sub(m,s))
        Term_sub(Term_inr(m),s) -> Term_inr(Term_sub(m,s))
        Term_sub(Term_sub(m,s),t) -> Term_sub(m,Concat(s,t))
      Weak DP Rules:
        
      Weak TRS Rules:
        Concat(Cons_sum(xi,k,s),t) -> Cons_sum(xi,k,Concat(s,t))
        Concat(Cons_usual(x,m,s),t) -> Cons_usual(x,Term_sub(m,t),Concat(s,t))
        Concat(Id(),s) -> s
        Frozen(m,Sum_constant(Left()),n,s) -> Term_sub(m,s)
        Frozen(m,Sum_constant(Right()),n,s) -> Term_sub(n,s)
        Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_sub(xi,s)
        Sum_sub(xi,Cons_usual(y,m,s)) -> Sum_sub(xi,s)
        Term_sub(Case(m,xi,n),s) -> Frozen(m,Sum_sub(xi,s),n,s)
        Term_sub(Term_app(m,n),s) -> Term_app(Term_sub(m,s),Term_sub(n,s))
        Term_sub(Term_pair(m,n),s) -> Term_pair(Term_sub(m,s),Term_sub(n,s))
        Term_sub(Term_var(x),Cons_sum(xi,k,s)) -> Term_sub(Term_var(x),s)
        Term_sub(Term_var(x),Cons_usual(y,m,s)) -> m
        Term_sub(Term_var(x),Cons_usual(y,m,s)) -> Term_sub(Term_var(x),s)
        Term_sub(Term_var(x),Id()) -> Term_var(x)
      Signature:
        {Concat/2,Frozen/4,Sum_sub/2,Term_sub/2} / {Case/3,Cons_sum/3,Cons_usual/3,Id/0,Left/0,Right/0,Sum_constant/1,Sum_term_var/1,Term_app/2,Term_inl/1,Term_inr/1,Term_pair/2,Term_var/1}
      Obligation:
        Innermost
        basic terms: {Concat,Frozen,Sum_sub,Term_sub}/{Case,Cons_sum,Cons_usual,Id,Left,Right,Sum_constant,Sum_term_var,Term_app,Term_inl,Term_inr,Term_pair,Term_var}
    Applied Processor:
      NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just any strict-rules, greedy = NoGreedy}
    Proof:
      We apply a polynomial interpretation of kind constructor-based(mixed(2)):
      The following argument positions are considered usable:
        uargs(Case) = {1,3},
        uargs(Concat) = {2},
        uargs(Cons_sum) = {3},
        uargs(Cons_usual) = {2,3},
        uargs(Frozen) = {2},
        uargs(Term_app) = {1,2},
        uargs(Term_inl) = {1},
        uargs(Term_inr) = {1},
        uargs(Term_pair) = {1,2},
        uargs(Term_sub) = {2}
      
      Following symbols are considered usable:
        {Concat,Frozen,Sum_sub,Term_sub}
      TcT has computed the following interpretation:
                p(Case) = 1 + x1 + x3                                              
              p(Concat) = x1 + x1*x2 + x1^2 + x2                                   
            p(Cons_sum) = x3                                                       
          p(Cons_usual) = 1 + x1 + x2 + x3                                         
              p(Frozen) = 3 + 2*x1 + x1*x4 + x1^2 + x2 + 2*x3 + x3*x4 + x3^2 + 2*x4
                  p(Id) = 1                                                        
                p(Left) = 0                                                        
               p(Right) = 1                                                        
        p(Sum_constant) = 0                                                        
             p(Sum_sub) = 0                                                        
        p(Sum_term_var) = 0                                                        
            p(Term_app) = 1 + x1 + x2                                              
            p(Term_inl) = x1                                                       
            p(Term_inr) = 1 + x1                                                   
           p(Term_pair) = 1 + x1 + x2                                              
            p(Term_sub) = 2*x1 + x1*x2 + x1^2 + x2                                 
            p(Term_var) = x1                                                       
      
      Following rules are strictly oriented:
      Frozen(m,Sum_term_var(xi),n,s) = 3 + 2*m + m*s + m^2 + 2*n + n*s + n^2 + 2*s
                                     > 1 + 2*m + m*s + m^2 + 2*n + n*s + n^2 + 2*s
                                     = Case(Term_sub(m,s)                         
                                           ,xi                                    
                                           ,Term_sub(n,s))                        
      
             Term_sub(Term_inr(m),s) = 3 + 4*m + m*s + m^2 + 2*s                  
                                     > 1 + 2*m + m*s + m^2 + s                    
                                     = Term_inr(Term_sub(m,s))                    
      
      
      Following rules are (at-least) weakly oriented:
              Concat(Concat(s,t),u) =  s + 3*s*t + s*t*u + 2*s*t^2 + s*u + 2*s^2 + 4*s^2*t + s^2*t^2 + s^2*u + 2*s^3 + 2*s^3*t + s^4 + t + t*u + t^2 + u      
                                    >= s + s*t + s*t*u + s*t^2 + s*u + s^2 + t + t*u + t^2 + u                                                                
                                    =  Concat(s,Concat(t,u))                                                                                                  
      
         Concat(Cons_sum(xi,k,s),t) =  s + s*t + s^2 + t                                                                                                      
                                    >= s + s*t + s^2 + t                                                                                                      
                                    =  Cons_sum(xi,k,Concat(s,t))                                                                                             
      
        Concat(Cons_usual(x,m,s),t) =  2 + 3*m + 2*m*s + m*t + 2*m*x + m^2 + 3*s + s*t + 2*s*x + s^2 + 2*t + t*x + 3*x + x^2                                  
                                    >= 1 + 2*m + m*t + m^2 + s + s*t + s^2 + 2*t + x                                                                          
                                    =  Cons_usual(x                                                                                                           
                                                 ,Term_sub(m,t)                                                                                               
                                                 ,Concat(s,t))                                                                                                
      
                     Concat(Id(),s) =  2 + 2*s                                                                                                                
                                    >= s                                                                                                                      
                                    =  s                                                                                                                      
      
                           Frozen(m =  3 + 2*m + m*s + m^2 + 2*n + n*s + n^2 + 2*s                                                                            
              ,Sum_constant(Left())                                                                                                                           
                                 ,n                                                                                                                           
                                ,s)                                                                                                                           
                                    >= 2*m + m*s + m^2 + s                                                                                                    
                                    =  Term_sub(m,s)                                                                                                          
      
                           Frozen(m =  3 + 2*m + m*s + m^2 + 2*n + n*s + n^2 + 2*s                                                                            
             ,Sum_constant(Right())                                                                                                                           
                                 ,n                                                                                                                           
                                ,s)                                                                                                                           
                                    >= 2*n + n*s + n^2 + s                                                                                                    
                                    =  Term_sub(n,s)                                                                                                          
      
      Sum_sub(xi,Cons_sum(psi,k,s)) =  0                                                                                                                      
                                    >= 0                                                                                                                      
                                    =  Sum_constant(k)                                                                                                        
      
      Sum_sub(xi,Cons_sum(psi,k,s)) =  0                                                                                                                      
                                    >= 0                                                                                                                      
                                    =  Sum_sub(xi,s)                                                                                                          
      
      Sum_sub(xi,Cons_usual(y,m,s)) =  0                                                                                                                      
                                    >= 0                                                                                                                      
                                    =  Sum_sub(xi,s)                                                                                                          
      
                   Sum_sub(xi,Id()) =  0                                                                                                                      
                                    >= 0                                                                                                                      
                                    =  Sum_term_var(xi)                                                                                                       
      
           Term_sub(Case(m,xi,n),s) =  3 + 4*m + 2*m*n + m*s + m^2 + 4*n + n*s + n^2 + 2*s                                                                    
                                    >= 3 + 2*m + m*s + m^2 + 2*n + n*s + n^2 + 2*s                                                                            
                                    =  Frozen(m,Sum_sub(xi,s),n,s)                                                                                            
      
          Term_sub(Term_app(m,n),s) =  3 + 4*m + 2*m*n + m*s + m^2 + 4*n + n*s + n^2 + 2*s                                                                    
                                    >= 1 + 2*m + m*s + m^2 + 2*n + n*s + n^2 + 2*s                                                                            
                                    =  Term_app(Term_sub(m,s)                                                                                                 
                                               ,Term_sub(n,s))                                                                                                
      
            Term_sub(Term_inl(m),s) =  2*m + m*s + m^2 + s                                                                                                    
                                    >= 2*m + m*s + m^2 + s                                                                                                    
                                    =  Term_inl(Term_sub(m,s))                                                                                                
      
         Term_sub(Term_pair(m,n),s) =  3 + 4*m + 2*m*n + m*s + m^2 + 4*n + n*s + n^2 + 2*s                                                                    
                                    >= 1 + 2*m + m*s + m^2 + 2*n + n*s + n^2 + 2*s                                                                            
                                    =  Term_pair(Term_sub(m,s)                                                                                                
                                                ,Term_sub(n,s))                                                                                               
      
          Term_sub(Term_sub(m,s),t) =  4*m + 6*m*s + m*s*t + 2*m*s^2 + 2*m*t + 6*m^2 + 6*m^2*s + m^2*s^2 + m^2*t + 4*m^3 + 2*m^3*s + m^4 + 2*s + s*t + s^2 + t
                                    >= 2*m + m*s + m*s*t + m*s^2 + m*t + m^2 + s + s*t + s^2 + t                                                              
                                    =  Term_sub(m,Concat(s,t))                                                                                                
      
               Term_sub(Term_var(x) =  s + s*x + 2*x + x^2                                                                                                    
                 ,Cons_sum(xi,k,s))                                                                                                                           
                                    >= s + s*x + 2*x + x^2                                                                                                    
                                    =  Term_sub(Term_var(x),s)                                                                                                
      
               Term_sub(Term_var(x) =  1 + m + m*x + s + s*x + 3*x + x*y + x^2 + y                                                                            
                ,Cons_usual(y,m,s))                                                                                                                           
                                    >= m                                                                                                                      
                                    =  m                                                                                                                      
      
               Term_sub(Term_var(x) =  1 + m + m*x + s + s*x + 3*x + x*y + x^2 + y                                                                            
                ,Cons_usual(y,m,s))                                                                                                                           
                                    >= s + s*x + 2*x + x^2                                                                                                    
                                    =  Term_sub(Term_var(x),s)                                                                                                
      
         Term_sub(Term_var(x),Id()) =  1 + 3*x + x^2                                                                                                          
                                    >= x                                                                                                                      
                                    =  Term_var(x)                                                                                                            
      
*** 1.1.1.1.1.1 Progress [(O(1),O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        Concat(Concat(s,t),u) -> Concat(s,Concat(t,u))
        Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_constant(k)
        Sum_sub(xi,Id()) -> Sum_term_var(xi)
        Term_sub(Term_inl(m),s) -> Term_inl(Term_sub(m,s))
        Term_sub(Term_sub(m,s),t) -> Term_sub(m,Concat(s,t))
      Weak DP Rules:
        
      Weak TRS Rules:
        Concat(Cons_sum(xi,k,s),t) -> Cons_sum(xi,k,Concat(s,t))
        Concat(Cons_usual(x,m,s),t) -> Cons_usual(x,Term_sub(m,t),Concat(s,t))
        Concat(Id(),s) -> s
        Frozen(m,Sum_constant(Left()),n,s) -> Term_sub(m,s)
        Frozen(m,Sum_constant(Right()),n,s) -> Term_sub(n,s)
        Frozen(m,Sum_term_var(xi),n,s) -> Case(Term_sub(m,s),xi,Term_sub(n,s))
        Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_sub(xi,s)
        Sum_sub(xi,Cons_usual(y,m,s)) -> Sum_sub(xi,s)
        Term_sub(Case(m,xi,n),s) -> Frozen(m,Sum_sub(xi,s),n,s)
        Term_sub(Term_app(m,n),s) -> Term_app(Term_sub(m,s),Term_sub(n,s))
        Term_sub(Term_inr(m),s) -> Term_inr(Term_sub(m,s))
        Term_sub(Term_pair(m,n),s) -> Term_pair(Term_sub(m,s),Term_sub(n,s))
        Term_sub(Term_var(x),Cons_sum(xi,k,s)) -> Term_sub(Term_var(x),s)
        Term_sub(Term_var(x),Cons_usual(y,m,s)) -> m
        Term_sub(Term_var(x),Cons_usual(y,m,s)) -> Term_sub(Term_var(x),s)
        Term_sub(Term_var(x),Id()) -> Term_var(x)
      Signature:
        {Concat/2,Frozen/4,Sum_sub/2,Term_sub/2} / {Case/3,Cons_sum/3,Cons_usual/3,Id/0,Left/0,Right/0,Sum_constant/1,Sum_term_var/1,Term_app/2,Term_inl/1,Term_inr/1,Term_pair/2,Term_var/1}
      Obligation:
        Innermost
        basic terms: {Concat,Frozen,Sum_sub,Term_sub}/{Case,Cons_sum,Cons_usual,Id,Left,Right,Sum_constant,Sum_term_var,Term_app,Term_inl,Term_inr,Term_pair,Term_var}
    Applied Processor:
      NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just any strict-rules, greedy = NoGreedy}
    Proof:
      We apply a polynomial interpretation of kind constructor-based(mixed(2)):
      The following argument positions are considered usable:
        uargs(Case) = {1,3},
        uargs(Concat) = {2},
        uargs(Cons_sum) = {3},
        uargs(Cons_usual) = {2,3},
        uargs(Frozen) = {2},
        uargs(Term_app) = {1,2},
        uargs(Term_inl) = {1},
        uargs(Term_inr) = {1},
        uargs(Term_pair) = {1,2},
        uargs(Term_sub) = {2}
      
      Following symbols are considered usable:
        {Concat,Frozen,Sum_sub,Term_sub}
      TcT has computed the following interpretation:
                p(Case) = 1 + x1 + x3                                              
              p(Concat) = x1 + x1*x2 + x1^2 + x2                                   
            p(Cons_sum) = x3                                                       
          p(Cons_usual) = 1 + x2 + x3                                              
              p(Frozen) = 3 + 3*x1 + x1*x4 + x1^2 + x2 + 3*x3 + x3*x4 + x3^2 + 2*x4
                  p(Id) = 1                                                        
                p(Left) = 1                                                        
               p(Right) = 0                                                        
        p(Sum_constant) = 0                                                        
             p(Sum_sub) = 0                                                        
        p(Sum_term_var) = 0                                                        
            p(Term_app) = 1 + x1 + x2                                              
            p(Term_inl) = x1                                                       
            p(Term_inr) = 1 + x1                                                   
           p(Term_pair) = 1 + x1 + x2                                              
            p(Term_sub) = 1 + x1 + x1*x2 + x1^2 + x2                               
            p(Term_var) = x1                                                       
      
      Following rules are strictly oriented:
      Term_sub(Term_sub(m,s),t) = 3 + 3*m + 5*m*s + m*s*t + 2*m*s^2 + m*t + 4*m^2 + 4*m^2*s + m^2*s^2 + m^2*t + 2*m^3 + 2*m^3*s + m^4 + 3*s + s*t + s^2 + 2*t
                                > 1 + m + m*s + m*s*t + m*s^2 + m*t + m^2 + s + s*t + s^2 + t                                                                
                                = Term_sub(m,Concat(s,t))                                                                                                    
      
      
      Following rules are (at-least) weakly oriented:
               Concat(Concat(s,t),u) =  s + 3*s*t + s*t*u + 2*s*t^2 + s*u + 2*s^2 + 4*s^2*t + s^2*t^2 + s^2*u + 2*s^3 + 2*s^3*t + s^4 + t + t*u + t^2 + u
                                     >= s + s*t + s*t*u + s*t^2 + s*u + s^2 + t + t*u + t^2 + u                                                          
                                     =  Concat(s,Concat(t,u))                                                                                            
      
          Concat(Cons_sum(xi,k,s),t) =  s + s*t + s^2 + t                                                                                                
                                     >= s + s*t + s^2 + t                                                                                                
                                     =  Cons_sum(xi,k,Concat(s,t))                                                                                       
      
         Concat(Cons_usual(x,m,s),t) =  2 + 3*m + 2*m*s + m*t + m^2 + 3*s + s*t + s^2 + 2*t                                                              
                                     >= 2 + m + m*t + m^2 + s + s*t + s^2 + 2*t                                                                          
                                     =  Cons_usual(x                                                                                                     
                                                  ,Term_sub(m,t)                                                                                         
                                                  ,Concat(s,t))                                                                                          
      
                      Concat(Id(),s) =  2 + 2*s                                                                                                          
                                     >= s                                                                                                                
                                     =  s                                                                                                                
      
                            Frozen(m =  3 + 3*m + m*s + m^2 + 3*n + n*s + n^2 + 2*s                                                                      
               ,Sum_constant(Left())                                                                                                                     
                                  ,n                                                                                                                     
                                 ,s)                                                                                                                     
                                     >= 1 + m + m*s + m^2 + s                                                                                            
                                     =  Term_sub(m,s)                                                                                                    
      
                            Frozen(m =  3 + 3*m + m*s + m^2 + 3*n + n*s + n^2 + 2*s                                                                      
              ,Sum_constant(Right())                                                                                                                     
                                  ,n                                                                                                                     
                                 ,s)                                                                                                                     
                                     >= 1 + n + n*s + n^2 + s                                                                                            
                                     =  Term_sub(n,s)                                                                                                    
      
      Frozen(m,Sum_term_var(xi),n,s) =  3 + 3*m + m*s + m^2 + 3*n + n*s + n^2 + 2*s                                                                      
                                     >= 3 + m + m*s + m^2 + n + n*s + n^2 + 2*s                                                                          
                                     =  Case(Term_sub(m,s)                                                                                               
                                            ,xi                                                                                                          
                                            ,Term_sub(n,s))                                                                                              
      
       Sum_sub(xi,Cons_sum(psi,k,s)) =  0                                                                                                                
                                     >= 0                                                                                                                
                                     =  Sum_constant(k)                                                                                                  
      
       Sum_sub(xi,Cons_sum(psi,k,s)) =  0                                                                                                                
                                     >= 0                                                                                                                
                                     =  Sum_sub(xi,s)                                                                                                    
      
       Sum_sub(xi,Cons_usual(y,m,s)) =  0                                                                                                                
                                     >= 0                                                                                                                
                                     =  Sum_sub(xi,s)                                                                                                    
      
                    Sum_sub(xi,Id()) =  0                                                                                                                
                                     >= 0                                                                                                                
                                     =  Sum_term_var(xi)                                                                                                 
      
            Term_sub(Case(m,xi,n),s) =  3 + 3*m + 2*m*n + m*s + m^2 + 3*n + n*s + n^2 + 2*s                                                              
                                     >= 3 + 3*m + m*s + m^2 + 3*n + n*s + n^2 + 2*s                                                                      
                                     =  Frozen(m,Sum_sub(xi,s),n,s)                                                                                      
      
           Term_sub(Term_app(m,n),s) =  3 + 3*m + 2*m*n + m*s + m^2 + 3*n + n*s + n^2 + 2*s                                                              
                                     >= 3 + m + m*s + m^2 + n + n*s + n^2 + 2*s                                                                          
                                     =  Term_app(Term_sub(m,s)                                                                                           
                                                ,Term_sub(n,s))                                                                                          
      
             Term_sub(Term_inl(m),s) =  1 + m + m*s + m^2 + s                                                                                            
                                     >= 1 + m + m*s + m^2 + s                                                                                            
                                     =  Term_inl(Term_sub(m,s))                                                                                          
      
             Term_sub(Term_inr(m),s) =  3 + 3*m + m*s + m^2 + 2*s                                                                                        
                                     >= 2 + m + m*s + m^2 + s                                                                                            
                                     =  Term_inr(Term_sub(m,s))                                                                                          
      
          Term_sub(Term_pair(m,n),s) =  3 + 3*m + 2*m*n + m*s + m^2 + 3*n + n*s + n^2 + 2*s                                                              
                                     >= 3 + m + m*s + m^2 + n + n*s + n^2 + 2*s                                                                          
                                     =  Term_pair(Term_sub(m,s)                                                                                          
                                                 ,Term_sub(n,s))                                                                                         
      
                Term_sub(Term_var(x) =  1 + s + s*x + x + x^2                                                                                            
                  ,Cons_sum(xi,k,s))                                                                                                                     
                                     >= 1 + s + s*x + x + x^2                                                                                            
                                     =  Term_sub(Term_var(x),s)                                                                                          
      
                Term_sub(Term_var(x) =  2 + m + m*x + s + s*x + 2*x + x^2                                                                                
                 ,Cons_usual(y,m,s))                                                                                                                     
                                     >= m                                                                                                                
                                     =  m                                                                                                                
      
                Term_sub(Term_var(x) =  2 + m + m*x + s + s*x + 2*x + x^2                                                                                
                 ,Cons_usual(y,m,s))                                                                                                                     
                                     >= 1 + s + s*x + x + x^2                                                                                            
                                     =  Term_sub(Term_var(x),s)                                                                                          
      
          Term_sub(Term_var(x),Id()) =  2 + 2*x + x^2                                                                                                    
                                     >= x                                                                                                                
                                     =  Term_var(x)                                                                                                      
      
*** 1.1.1.1.1.1.1 Progress [(O(1),O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        Concat(Concat(s,t),u) -> Concat(s,Concat(t,u))
        Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_constant(k)
        Sum_sub(xi,Id()) -> Sum_term_var(xi)
        Term_sub(Term_inl(m),s) -> Term_inl(Term_sub(m,s))
      Weak DP Rules:
        
      Weak TRS Rules:
        Concat(Cons_sum(xi,k,s),t) -> Cons_sum(xi,k,Concat(s,t))
        Concat(Cons_usual(x,m,s),t) -> Cons_usual(x,Term_sub(m,t),Concat(s,t))
        Concat(Id(),s) -> s
        Frozen(m,Sum_constant(Left()),n,s) -> Term_sub(m,s)
        Frozen(m,Sum_constant(Right()),n,s) -> Term_sub(n,s)
        Frozen(m,Sum_term_var(xi),n,s) -> Case(Term_sub(m,s),xi,Term_sub(n,s))
        Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_sub(xi,s)
        Sum_sub(xi,Cons_usual(y,m,s)) -> Sum_sub(xi,s)
        Term_sub(Case(m,xi,n),s) -> Frozen(m,Sum_sub(xi,s),n,s)
        Term_sub(Term_app(m,n),s) -> Term_app(Term_sub(m,s),Term_sub(n,s))
        Term_sub(Term_inr(m),s) -> Term_inr(Term_sub(m,s))
        Term_sub(Term_pair(m,n),s) -> Term_pair(Term_sub(m,s),Term_sub(n,s))
        Term_sub(Term_sub(m,s),t) -> Term_sub(m,Concat(s,t))
        Term_sub(Term_var(x),Cons_sum(xi,k,s)) -> Term_sub(Term_var(x),s)
        Term_sub(Term_var(x),Cons_usual(y,m,s)) -> m
        Term_sub(Term_var(x),Cons_usual(y,m,s)) -> Term_sub(Term_var(x),s)
        Term_sub(Term_var(x),Id()) -> Term_var(x)
      Signature:
        {Concat/2,Frozen/4,Sum_sub/2,Term_sub/2} / {Case/3,Cons_sum/3,Cons_usual/3,Id/0,Left/0,Right/0,Sum_constant/1,Sum_term_var/1,Term_app/2,Term_inl/1,Term_inr/1,Term_pair/2,Term_var/1}
      Obligation:
        Innermost
        basic terms: {Concat,Frozen,Sum_sub,Term_sub}/{Case,Cons_sum,Cons_usual,Id,Left,Right,Sum_constant,Sum_term_var,Term_app,Term_inl,Term_inr,Term_pair,Term_var}
    Applied Processor:
      NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just any strict-rules, greedy = NoGreedy}
    Proof:
      We apply a polynomial interpretation of kind constructor-based(mixed(2)):
      The following argument positions are considered usable:
        uargs(Case) = {1,3},
        uargs(Concat) = {2},
        uargs(Cons_sum) = {3},
        uargs(Cons_usual) = {2,3},
        uargs(Frozen) = {2},
        uargs(Term_app) = {1,2},
        uargs(Term_inl) = {1},
        uargs(Term_inr) = {1},
        uargs(Term_pair) = {1,2},
        uargs(Term_sub) = {2}
      
      Following symbols are considered usable:
        {Concat,Frozen,Sum_sub,Term_sub}
      TcT has computed the following interpretation:
                p(Case) = 1 + x1 + x3                                                            
              p(Concat) = x1 + 2*x1*x2 + x1^2 + x2                                               
            p(Cons_sum) = 1 + x3                                                                 
          p(Cons_usual) = 1 + x2 + x3                                                            
              p(Frozen) = 1 + 2*x1 + 2*x1*x3 + 2*x1*x4 + x1^2 + x2 + 2*x3 + 2*x3*x4 + x3^2 + 2*x4
                  p(Id) = 0                                                                      
                p(Left) = 0                                                                      
               p(Right) = 0                                                                      
        p(Sum_constant) = 0                                                                      
             p(Sum_sub) = 1 + x2                                                                 
        p(Sum_term_var) = 0                                                                      
            p(Term_app) = 1 + x1 + x2                                                            
            p(Term_inl) = 1 + x1                                                                 
            p(Term_inr) = x1                                                                     
           p(Term_pair) = 1 + x1 + x2                                                            
            p(Term_sub) = x1 + 2*x1*x2 + x1^2 + x2                                               
            p(Term_var) = 1                                                                      
      
      Following rules are strictly oriented:
      Sum_sub(xi,Cons_sum(psi,k,s)) = 2 + s                      
                                    > 0                          
                                    = Sum_constant(k)            
      
                   Sum_sub(xi,Id()) = 1                          
                                    > 0                          
                                    = Sum_term_var(xi)           
      
            Term_sub(Term_inl(m),s) = 2 + 3*m + 2*m*s + m^2 + 3*s
                                    > 1 + m + 2*m*s + m^2 + s    
                                    = Term_inl(Term_sub(m,s))    
      
      
      Following rules are (at-least) weakly oriented:
               Concat(Concat(s,t),u) =  s + 4*s*t + 4*s*t*u + 4*s*t^2 + 2*s*u + 2*s^2 + 6*s^2*t + 4*s^2*t^2 + 2*s^2*u + 2*s^3 + 4*s^3*t + s^4 + t + 2*t*u + t^2 + u
                                     >= s + 2*s*t + 4*s*t*u + 2*s*t^2 + 2*s*u + s^2 + t + 2*t*u + t^2 + u                                                          
                                     =  Concat(s,Concat(t,u))                                                                                                      
      
          Concat(Cons_sum(xi,k,s),t) =  2 + 3*s + 2*s*t + s^2 + 3*t                                                                                                
                                     >= 1 + s + 2*s*t + s^2 + t                                                                                                    
                                     =  Cons_sum(xi,k,Concat(s,t))                                                                                                 
      
         Concat(Cons_usual(x,m,s),t) =  2 + 3*m + 2*m*s + 2*m*t + m^2 + 3*s + 2*s*t + s^2 + 3*t                                                                    
                                     >= 1 + m + 2*m*t + m^2 + s + 2*s*t + s^2 + 2*t                                                                                
                                     =  Cons_usual(x                                                                                                               
                                                  ,Term_sub(m,t)                                                                                                   
                                                  ,Concat(s,t))                                                                                                    
      
                      Concat(Id(),s) =  s                                                                                                                          
                                     >= s                                                                                                                          
                                     =  s                                                                                                                          
      
                            Frozen(m =  1 + 2*m + 2*m*n + 2*m*s + m^2 + 2*n + 2*n*s + n^2 + 2*s                                                                    
               ,Sum_constant(Left())                                                                                                                               
                                  ,n                                                                                                                               
                                 ,s)                                                                                                                               
                                     >= m + 2*m*s + m^2 + s                                                                                                        
                                     =  Term_sub(m,s)                                                                                                              
      
                            Frozen(m =  1 + 2*m + 2*m*n + 2*m*s + m^2 + 2*n + 2*n*s + n^2 + 2*s                                                                    
              ,Sum_constant(Right())                                                                                                                               
                                  ,n                                                                                                                               
                                 ,s)                                                                                                                               
                                     >= n + 2*n*s + n^2 + s                                                                                                        
                                     =  Term_sub(n,s)                                                                                                              
      
      Frozen(m,Sum_term_var(xi),n,s) =  1 + 2*m + 2*m*n + 2*m*s + m^2 + 2*n + 2*n*s + n^2 + 2*s                                                                    
                                     >= 1 + m + 2*m*s + m^2 + n + 2*n*s + n^2 + 2*s                                                                                
                                     =  Case(Term_sub(m,s)                                                                                                         
                                            ,xi                                                                                                                    
                                            ,Term_sub(n,s))                                                                                                        
      
       Sum_sub(xi,Cons_sum(psi,k,s)) =  2 + s                                                                                                                      
                                     >= 1 + s                                                                                                                      
                                     =  Sum_sub(xi,s)                                                                                                              
      
       Sum_sub(xi,Cons_usual(y,m,s)) =  2 + m + s                                                                                                                  
                                     >= 1 + s                                                                                                                      
                                     =  Sum_sub(xi,s)                                                                                                              
      
            Term_sub(Case(m,xi,n),s) =  2 + 3*m + 2*m*n + 2*m*s + m^2 + 3*n + 2*n*s + n^2 + 3*s                                                                    
                                     >= 2 + 2*m + 2*m*n + 2*m*s + m^2 + 2*n + 2*n*s + n^2 + 3*s                                                                    
                                     =  Frozen(m,Sum_sub(xi,s),n,s)                                                                                                
      
           Term_sub(Term_app(m,n),s) =  2 + 3*m + 2*m*n + 2*m*s + m^2 + 3*n + 2*n*s + n^2 + 3*s                                                                    
                                     >= 1 + m + 2*m*s + m^2 + n + 2*n*s + n^2 + 2*s                                                                                
                                     =  Term_app(Term_sub(m,s)                                                                                                     
                                                ,Term_sub(n,s))                                                                                                    
      
             Term_sub(Term_inr(m),s) =  m + 2*m*s + m^2 + s                                                                                                        
                                     >= m + 2*m*s + m^2 + s                                                                                                        
                                     =  Term_inr(Term_sub(m,s))                                                                                                    
      
          Term_sub(Term_pair(m,n),s) =  2 + 3*m + 2*m*n + 2*m*s + m^2 + 3*n + 2*n*s + n^2 + 3*s                                                                    
                                     >= 1 + m + 2*m*s + m^2 + n + 2*n*s + n^2 + 2*s                                                                                
                                     =  Term_pair(Term_sub(m,s)                                                                                                    
                                                 ,Term_sub(n,s))                                                                                                   
      
           Term_sub(Term_sub(m,s),t) =  m + 4*m*s + 4*m*s*t + 4*m*s^2 + 2*m*t + 2*m^2 + 6*m^2*s + 4*m^2*s^2 + 2*m^2*t + 2*m^3 + 4*m^3*s + m^4 + s + 2*s*t + s^2 + t
                                     >= m + 2*m*s + 4*m*s*t + 2*m*s^2 + 2*m*t + m^2 + s + 2*s*t + s^2 + t                                                          
                                     =  Term_sub(m,Concat(s,t))                                                                                                    
      
                Term_sub(Term_var(x) =  5 + 3*s                                                                                                                    
                  ,Cons_sum(xi,k,s))                                                                                                                               
                                     >= 2 + 3*s                                                                                                                    
                                     =  Term_sub(Term_var(x),s)                                                                                                    
      
                Term_sub(Term_var(x) =  5 + 3*m + 3*s                                                                                                              
                 ,Cons_usual(y,m,s))                                                                                                                               
                                     >= m                                                                                                                          
                                     =  m                                                                                                                          
      
                Term_sub(Term_var(x) =  5 + 3*m + 3*s                                                                                                              
                 ,Cons_usual(y,m,s))                                                                                                                               
                                     >= 2 + 3*s                                                                                                                    
                                     =  Term_sub(Term_var(x),s)                                                                                                    
      
          Term_sub(Term_var(x),Id()) =  2                                                                                                                          
                                     >= 1                                                                                                                          
                                     =  Term_var(x)                                                                                                                
      
*** 1.1.1.1.1.1.1.1 Progress [(O(1),O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        Concat(Concat(s,t),u) -> Concat(s,Concat(t,u))
      Weak DP Rules:
        
      Weak TRS Rules:
        Concat(Cons_sum(xi,k,s),t) -> Cons_sum(xi,k,Concat(s,t))
        Concat(Cons_usual(x,m,s),t) -> Cons_usual(x,Term_sub(m,t),Concat(s,t))
        Concat(Id(),s) -> s
        Frozen(m,Sum_constant(Left()),n,s) -> Term_sub(m,s)
        Frozen(m,Sum_constant(Right()),n,s) -> Term_sub(n,s)
        Frozen(m,Sum_term_var(xi),n,s) -> Case(Term_sub(m,s),xi,Term_sub(n,s))
        Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_constant(k)
        Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_sub(xi,s)
        Sum_sub(xi,Cons_usual(y,m,s)) -> Sum_sub(xi,s)
        Sum_sub(xi,Id()) -> Sum_term_var(xi)
        Term_sub(Case(m,xi,n),s) -> Frozen(m,Sum_sub(xi,s),n,s)
        Term_sub(Term_app(m,n),s) -> Term_app(Term_sub(m,s),Term_sub(n,s))
        Term_sub(Term_inl(m),s) -> Term_inl(Term_sub(m,s))
        Term_sub(Term_inr(m),s) -> Term_inr(Term_sub(m,s))
        Term_sub(Term_pair(m,n),s) -> Term_pair(Term_sub(m,s),Term_sub(n,s))
        Term_sub(Term_sub(m,s),t) -> Term_sub(m,Concat(s,t))
        Term_sub(Term_var(x),Cons_sum(xi,k,s)) -> Term_sub(Term_var(x),s)
        Term_sub(Term_var(x),Cons_usual(y,m,s)) -> m
        Term_sub(Term_var(x),Cons_usual(y,m,s)) -> Term_sub(Term_var(x),s)
        Term_sub(Term_var(x),Id()) -> Term_var(x)
      Signature:
        {Concat/2,Frozen/4,Sum_sub/2,Term_sub/2} / {Case/3,Cons_sum/3,Cons_usual/3,Id/0,Left/0,Right/0,Sum_constant/1,Sum_term_var/1,Term_app/2,Term_inl/1,Term_inr/1,Term_pair/2,Term_var/1}
      Obligation:
        Innermost
        basic terms: {Concat,Frozen,Sum_sub,Term_sub}/{Case,Cons_sum,Cons_usual,Id,Left,Right,Sum_constant,Sum_term_var,Term_app,Term_inl,Term_inr,Term_pair,Term_var}
    Applied Processor:
      NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just any strict-rules, greedy = NoGreedy}
    Proof:
      We apply a polynomial interpretation of kind constructor-based(mixed(2)):
      The following argument positions are considered usable:
        uargs(Case) = {1,3},
        uargs(Concat) = {2},
        uargs(Cons_sum) = {3},
        uargs(Cons_usual) = {2,3},
        uargs(Frozen) = {2},
        uargs(Term_app) = {1,2},
        uargs(Term_inl) = {1},
        uargs(Term_inr) = {1},
        uargs(Term_pair) = {1,2},
        uargs(Term_sub) = {2}
      
      Following symbols are considered usable:
        {Concat,Frozen,Sum_sub,Term_sub}
      TcT has computed the following interpretation:
                p(Case) = 1 + x1 + x3                                  
              p(Concat) = 1 + 2*x1 + x1*x2 + x2                        
            p(Cons_sum) = x1 + x3                                      
          p(Cons_usual) = 1 + x2 + x3                                  
              p(Frozen) = 3 + 2*x1 + x1*x4 + 2*x2 + 2*x3 + x3*x4 + 2*x4
                  p(Id) = 1                                            
                p(Left) = 1                                            
               p(Right) = 1                                            
        p(Sum_constant) = 0                                            
             p(Sum_sub) = 0                                            
        p(Sum_term_var) = 0                                            
            p(Term_app) = 1 + x1 + x2                                  
            p(Term_inl) = x1                                           
            p(Term_inr) = x1                                           
           p(Term_pair) = 1 + x1 + x2                                  
            p(Term_sub) = 1 + 2*x1 + x1*x2 + x2                        
            p(Term_var) = 0                                            
      
      Following rules are strictly oriented:
      Concat(Concat(s,t),u) = 3 + 4*s + 2*s*t + s*t*u + 2*s*u + 2*t + t*u + 2*u
                            > 2 + 3*s + 2*s*t + s*t*u + s*u + 2*t + t*u + u    
                            = Concat(s,Concat(t,u))                            
      
      
      Following rules are (at-least) weakly oriented:
          Concat(Cons_sum(xi,k,s),t) =  1 + 2*s + s*t + t + t*xi + 2*xi                  
                                     >= 1 + 2*s + s*t + t + xi                           
                                     =  Cons_sum(xi,k,Concat(s,t))                       
      
         Concat(Cons_usual(x,m,s),t) =  3 + 2*m + m*t + 2*s + s*t + 2*t                  
                                     >= 3 + 2*m + m*t + 2*s + s*t + 2*t                  
                                     =  Cons_usual(x                                     
                                                  ,Term_sub(m,t)                         
                                                  ,Concat(s,t))                          
      
                      Concat(Id(),s) =  3 + 2*s                                          
                                     >= s                                                
                                     =  s                                                
      
                            Frozen(m =  3 + 2*m + m*s + 2*n + n*s + 2*s                  
               ,Sum_constant(Left())                                                     
                                  ,n                                                     
                                 ,s)                                                     
                                     >= 1 + 2*m + m*s + s                                
                                     =  Term_sub(m,s)                                    
      
                            Frozen(m =  3 + 2*m + m*s + 2*n + n*s + 2*s                  
              ,Sum_constant(Right())                                                     
                                  ,n                                                     
                                 ,s)                                                     
                                     >= 1 + 2*n + n*s + s                                
                                     =  Term_sub(n,s)                                    
      
      Frozen(m,Sum_term_var(xi),n,s) =  3 + 2*m + m*s + 2*n + n*s + 2*s                  
                                     >= 3 + 2*m + m*s + 2*n + n*s + 2*s                  
                                     =  Case(Term_sub(m,s)                               
                                            ,xi                                          
                                            ,Term_sub(n,s))                              
      
       Sum_sub(xi,Cons_sum(psi,k,s)) =  0                                                
                                     >= 0                                                
                                     =  Sum_constant(k)                                  
      
       Sum_sub(xi,Cons_sum(psi,k,s)) =  0                                                
                                     >= 0                                                
                                     =  Sum_sub(xi,s)                                    
      
       Sum_sub(xi,Cons_usual(y,m,s)) =  0                                                
                                     >= 0                                                
                                     =  Sum_sub(xi,s)                                    
      
                    Sum_sub(xi,Id()) =  0                                                
                                     >= 0                                                
                                     =  Sum_term_var(xi)                                 
      
            Term_sub(Case(m,xi,n),s) =  3 + 2*m + m*s + 2*n + n*s + 2*s                  
                                     >= 3 + 2*m + m*s + 2*n + n*s + 2*s                  
                                     =  Frozen(m,Sum_sub(xi,s),n,s)                      
      
           Term_sub(Term_app(m,n),s) =  3 + 2*m + m*s + 2*n + n*s + 2*s                  
                                     >= 3 + 2*m + m*s + 2*n + n*s + 2*s                  
                                     =  Term_app(Term_sub(m,s)                           
                                                ,Term_sub(n,s))                          
      
             Term_sub(Term_inl(m),s) =  1 + 2*m + m*s + s                                
                                     >= 1 + 2*m + m*s + s                                
                                     =  Term_inl(Term_sub(m,s))                          
      
             Term_sub(Term_inr(m),s) =  1 + 2*m + m*s + s                                
                                     >= 1 + 2*m + m*s + s                                
                                     =  Term_inr(Term_sub(m,s))                          
      
          Term_sub(Term_pair(m,n),s) =  3 + 2*m + m*s + 2*n + n*s + 2*s                  
                                     >= 3 + 2*m + m*s + 2*n + n*s + 2*s                  
                                     =  Term_pair(Term_sub(m,s)                          
                                                 ,Term_sub(n,s))                         
      
           Term_sub(Term_sub(m,s),t) =  3 + 4*m + 2*m*s + m*s*t + 2*m*t + 2*s + s*t + 2*t
                                     >= 2 + 3*m + 2*m*s + m*s*t + m*t + 2*s + s*t + t    
                                     =  Term_sub(m,Concat(s,t))                          
      
                Term_sub(Term_var(x) =  1 + s + xi                                       
                  ,Cons_sum(xi,k,s))                                                     
                                     >= 1 + s                                            
                                     =  Term_sub(Term_var(x),s)                          
      
                Term_sub(Term_var(x) =  2 + m + s                                        
                 ,Cons_usual(y,m,s))                                                     
                                     >= m                                                
                                     =  m                                                
      
                Term_sub(Term_var(x) =  2 + m + s                                        
                 ,Cons_usual(y,m,s))                                                     
                                     >= 1 + s                                            
                                     =  Term_sub(Term_var(x),s)                          
      
          Term_sub(Term_var(x),Id()) =  2                                                
                                     >= 0                                                
                                     =  Term_var(x)                                      
      
*** 1.1.1.1.1.1.1.1.1 Progress [(O(1),O(1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        Concat(Concat(s,t),u) -> Concat(s,Concat(t,u))
        Concat(Cons_sum(xi,k,s),t) -> Cons_sum(xi,k,Concat(s,t))
        Concat(Cons_usual(x,m,s),t) -> Cons_usual(x,Term_sub(m,t),Concat(s,t))
        Concat(Id(),s) -> s
        Frozen(m,Sum_constant(Left()),n,s) -> Term_sub(m,s)
        Frozen(m,Sum_constant(Right()),n,s) -> Term_sub(n,s)
        Frozen(m,Sum_term_var(xi),n,s) -> Case(Term_sub(m,s),xi,Term_sub(n,s))
        Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_constant(k)
        Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_sub(xi,s)
        Sum_sub(xi,Cons_usual(y,m,s)) -> Sum_sub(xi,s)
        Sum_sub(xi,Id()) -> Sum_term_var(xi)
        Term_sub(Case(m,xi,n),s) -> Frozen(m,Sum_sub(xi,s),n,s)
        Term_sub(Term_app(m,n),s) -> Term_app(Term_sub(m,s),Term_sub(n,s))
        Term_sub(Term_inl(m),s) -> Term_inl(Term_sub(m,s))
        Term_sub(Term_inr(m),s) -> Term_inr(Term_sub(m,s))
        Term_sub(Term_pair(m,n),s) -> Term_pair(Term_sub(m,s),Term_sub(n,s))
        Term_sub(Term_sub(m,s),t) -> Term_sub(m,Concat(s,t))
        Term_sub(Term_var(x),Cons_sum(xi,k,s)) -> Term_sub(Term_var(x),s)
        Term_sub(Term_var(x),Cons_usual(y,m,s)) -> m
        Term_sub(Term_var(x),Cons_usual(y,m,s)) -> Term_sub(Term_var(x),s)
        Term_sub(Term_var(x),Id()) -> Term_var(x)
      Signature:
        {Concat/2,Frozen/4,Sum_sub/2,Term_sub/2} / {Case/3,Cons_sum/3,Cons_usual/3,Id/0,Left/0,Right/0,Sum_constant/1,Sum_term_var/1,Term_app/2,Term_inl/1,Term_inr/1,Term_pair/2,Term_var/1}
      Obligation:
        Innermost
        basic terms: {Concat,Frozen,Sum_sub,Term_sub}/{Case,Cons_sum,Cons_usual,Id,Left,Right,Sum_constant,Sum_term_var,Term_app,Term_inl,Term_inr,Term_pair,Term_var}
    Applied Processor:
      EmptyProcessor
    Proof:
      The problem is already closed. The intended complexity is O(1).