(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
+(x, 0) → x
+(x, s(y)) → s(+(x, y))
*(x, 0) → 0
*(x, s(y)) → +(*(x, y), x)
ge(x, 0) → true
ge(0, s(y)) → false
ge(s(x), s(y)) → ge(x, y)
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
fact(x) → iffact(x, ge(x, s(s(0))))
iffact(x, true) → *(x, fact(-(x, s(0))))
iffact(x, false) → s(0)
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
+'(x, 0') → x
+'(x, s(y)) → s(+'(x, y))
*'(x, 0') → 0'
*'(x, s(y)) → +'(*'(x, y), x)
ge(x, 0') → true
ge(0', s(y)) → false
ge(s(x), s(y)) → ge(x, y)
-(x, 0') → x
-(s(x), s(y)) → -(x, y)
fact(x) → iffact(x, ge(x, s(s(0'))))
iffact(x, true) → *'(x, fact(-(x, s(0'))))
iffact(x, false) → s(0')
S is empty.
Rewrite Strategy: INNERMOST
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
Innermost TRS:
Rules:
+'(x, 0') → x
+'(x, s(y)) → s(+'(x, y))
*'(x, 0') → 0'
*'(x, s(y)) → +'(*'(x, y), x)
ge(x, 0') → true
ge(0', s(y)) → false
ge(s(x), s(y)) → ge(x, y)
-(x, 0') → x
-(s(x), s(y)) → -(x, y)
fact(x) → iffact(x, ge(x, s(s(0'))))
iffact(x, true) → *'(x, fact(-(x, s(0'))))
iffact(x, false) → s(0')
Types:
+' :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
*' :: 0':s → 0':s → 0':s
ge :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
- :: 0':s → 0':s → 0':s
fact :: 0':s → 0':s
iffact :: 0':s → true:false → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
+',
*',
ge,
-,
factThey will be analysed ascendingly in the following order:
+' < *'
*' < fact
ge < fact
- < fact
(6) Obligation:
Innermost TRS:
Rules:
+'(
x,
0') →
x+'(
x,
s(
y)) →
s(
+'(
x,
y))
*'(
x,
0') →
0'*'(
x,
s(
y)) →
+'(
*'(
x,
y),
x)
ge(
x,
0') →
truege(
0',
s(
y)) →
falsege(
s(
x),
s(
y)) →
ge(
x,
y)
-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
fact(
x) →
iffact(
x,
ge(
x,
s(
s(
0'))))
iffact(
x,
true) →
*'(
x,
fact(
-(
x,
s(
0'))))
iffact(
x,
false) →
s(
0')
Types:
+' :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
*' :: 0':s → 0':s → 0':s
ge :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
- :: 0':s → 0':s → 0':s
fact :: 0':s → 0':s
iffact :: 0':s → true:false → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
+', *', ge, -, fact
They will be analysed ascendingly in the following order:
+' < *'
*' < fact
ge < fact
- < fact
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
+'(
gen_0':s3_0(
a),
gen_0':s3_0(
n5_0)) →
gen_0':s3_0(
+(
n5_0,
a)), rt ∈ Ω(1 + n5
0)
Induction Base:
+'(gen_0':s3_0(a), gen_0':s3_0(0)) →RΩ(1)
gen_0':s3_0(a)
Induction Step:
+'(gen_0':s3_0(a), gen_0':s3_0(+(n5_0, 1))) →RΩ(1)
s(+'(gen_0':s3_0(a), gen_0':s3_0(n5_0))) →IH
s(gen_0':s3_0(+(a, c6_0)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
Innermost TRS:
Rules:
+'(
x,
0') →
x+'(
x,
s(
y)) →
s(
+'(
x,
y))
*'(
x,
0') →
0'*'(
x,
s(
y)) →
+'(
*'(
x,
y),
x)
ge(
x,
0') →
truege(
0',
s(
y)) →
falsege(
s(
x),
s(
y)) →
ge(
x,
y)
-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
fact(
x) →
iffact(
x,
ge(
x,
s(
s(
0'))))
iffact(
x,
true) →
*'(
x,
fact(
-(
x,
s(
0'))))
iffact(
x,
false) →
s(
0')
Types:
+' :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
*' :: 0':s → 0':s → 0':s
ge :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
- :: 0':s → 0':s → 0':s
fact :: 0':s → 0':s
iffact :: 0':s → true:false → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Lemmas:
+'(gen_0':s3_0(a), gen_0':s3_0(n5_0)) → gen_0':s3_0(+(n5_0, a)), rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
*', ge, -, fact
They will be analysed ascendingly in the following order:
*' < fact
ge < fact
- < fact
(10) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
*'(
gen_0':s3_0(
a),
gen_0':s3_0(
n638_0)) →
gen_0':s3_0(
*(
n638_0,
a)), rt ∈ Ω(1 + a·n638
0 + n638
0)
Induction Base:
*'(gen_0':s3_0(a), gen_0':s3_0(0)) →RΩ(1)
0'
Induction Step:
*'(gen_0':s3_0(a), gen_0':s3_0(+(n638_0, 1))) →RΩ(1)
+'(*'(gen_0':s3_0(a), gen_0':s3_0(n638_0)), gen_0':s3_0(a)) →IH
+'(gen_0':s3_0(*(c639_0, a)), gen_0':s3_0(a)) →LΩ(1 + a)
gen_0':s3_0(+(a, *(n638_0, a)))
We have rt ∈ Ω(n2) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n2).
(11) Complex Obligation (BEST)
(12) Obligation:
Innermost TRS:
Rules:
+'(
x,
0') →
x+'(
x,
s(
y)) →
s(
+'(
x,
y))
*'(
x,
0') →
0'*'(
x,
s(
y)) →
+'(
*'(
x,
y),
x)
ge(
x,
0') →
truege(
0',
s(
y)) →
falsege(
s(
x),
s(
y)) →
ge(
x,
y)
-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
fact(
x) →
iffact(
x,
ge(
x,
s(
s(
0'))))
iffact(
x,
true) →
*'(
x,
fact(
-(
x,
s(
0'))))
iffact(
x,
false) →
s(
0')
Types:
+' :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
*' :: 0':s → 0':s → 0':s
ge :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
- :: 0':s → 0':s → 0':s
fact :: 0':s → 0':s
iffact :: 0':s → true:false → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Lemmas:
+'(gen_0':s3_0(a), gen_0':s3_0(n5_0)) → gen_0':s3_0(+(n5_0, a)), rt ∈ Ω(1 + n50)
*'(gen_0':s3_0(a), gen_0':s3_0(n638_0)) → gen_0':s3_0(*(n638_0, a)), rt ∈ Ω(1 + a·n6380 + n6380)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
ge, -, fact
They will be analysed ascendingly in the following order:
ge < fact
- < fact
(13) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
ge(
gen_0':s3_0(
n1415_0),
gen_0':s3_0(
n1415_0)) →
true, rt ∈ Ω(1 + n1415
0)
Induction Base:
ge(gen_0':s3_0(0), gen_0':s3_0(0)) →RΩ(1)
true
Induction Step:
ge(gen_0':s3_0(+(n1415_0, 1)), gen_0':s3_0(+(n1415_0, 1))) →RΩ(1)
ge(gen_0':s3_0(n1415_0), gen_0':s3_0(n1415_0)) →IH
true
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(14) Complex Obligation (BEST)
(15) Obligation:
Innermost TRS:
Rules:
+'(
x,
0') →
x+'(
x,
s(
y)) →
s(
+'(
x,
y))
*'(
x,
0') →
0'*'(
x,
s(
y)) →
+'(
*'(
x,
y),
x)
ge(
x,
0') →
truege(
0',
s(
y)) →
falsege(
s(
x),
s(
y)) →
ge(
x,
y)
-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
fact(
x) →
iffact(
x,
ge(
x,
s(
s(
0'))))
iffact(
x,
true) →
*'(
x,
fact(
-(
x,
s(
0'))))
iffact(
x,
false) →
s(
0')
Types:
+' :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
*' :: 0':s → 0':s → 0':s
ge :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
- :: 0':s → 0':s → 0':s
fact :: 0':s → 0':s
iffact :: 0':s → true:false → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Lemmas:
+'(gen_0':s3_0(a), gen_0':s3_0(n5_0)) → gen_0':s3_0(+(n5_0, a)), rt ∈ Ω(1 + n50)
*'(gen_0':s3_0(a), gen_0':s3_0(n638_0)) → gen_0':s3_0(*(n638_0, a)), rt ∈ Ω(1 + a·n6380 + n6380)
ge(gen_0':s3_0(n1415_0), gen_0':s3_0(n1415_0)) → true, rt ∈ Ω(1 + n14150)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
-, fact
They will be analysed ascendingly in the following order:
- < fact
(16) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
-(
gen_0':s3_0(
n1764_0),
gen_0':s3_0(
n1764_0)) →
gen_0':s3_0(
0), rt ∈ Ω(1 + n1764
0)
Induction Base:
-(gen_0':s3_0(0), gen_0':s3_0(0)) →RΩ(1)
gen_0':s3_0(0)
Induction Step:
-(gen_0':s3_0(+(n1764_0, 1)), gen_0':s3_0(+(n1764_0, 1))) →RΩ(1)
-(gen_0':s3_0(n1764_0), gen_0':s3_0(n1764_0)) →IH
gen_0':s3_0(0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(17) Complex Obligation (BEST)
(18) Obligation:
Innermost TRS:
Rules:
+'(
x,
0') →
x+'(
x,
s(
y)) →
s(
+'(
x,
y))
*'(
x,
0') →
0'*'(
x,
s(
y)) →
+'(
*'(
x,
y),
x)
ge(
x,
0') →
truege(
0',
s(
y)) →
falsege(
s(
x),
s(
y)) →
ge(
x,
y)
-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
fact(
x) →
iffact(
x,
ge(
x,
s(
s(
0'))))
iffact(
x,
true) →
*'(
x,
fact(
-(
x,
s(
0'))))
iffact(
x,
false) →
s(
0')
Types:
+' :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
*' :: 0':s → 0':s → 0':s
ge :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
- :: 0':s → 0':s → 0':s
fact :: 0':s → 0':s
iffact :: 0':s → true:false → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Lemmas:
+'(gen_0':s3_0(a), gen_0':s3_0(n5_0)) → gen_0':s3_0(+(n5_0, a)), rt ∈ Ω(1 + n50)
*'(gen_0':s3_0(a), gen_0':s3_0(n638_0)) → gen_0':s3_0(*(n638_0, a)), rt ∈ Ω(1 + a·n6380 + n6380)
ge(gen_0':s3_0(n1415_0), gen_0':s3_0(n1415_0)) → true, rt ∈ Ω(1 + n14150)
-(gen_0':s3_0(n1764_0), gen_0':s3_0(n1764_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n17640)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
fact
(19) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol fact.
(20) Obligation:
Innermost TRS:
Rules:
+'(
x,
0') →
x+'(
x,
s(
y)) →
s(
+'(
x,
y))
*'(
x,
0') →
0'*'(
x,
s(
y)) →
+'(
*'(
x,
y),
x)
ge(
x,
0') →
truege(
0',
s(
y)) →
falsege(
s(
x),
s(
y)) →
ge(
x,
y)
-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
fact(
x) →
iffact(
x,
ge(
x,
s(
s(
0'))))
iffact(
x,
true) →
*'(
x,
fact(
-(
x,
s(
0'))))
iffact(
x,
false) →
s(
0')
Types:
+' :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
*' :: 0':s → 0':s → 0':s
ge :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
- :: 0':s → 0':s → 0':s
fact :: 0':s → 0':s
iffact :: 0':s → true:false → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Lemmas:
+'(gen_0':s3_0(a), gen_0':s3_0(n5_0)) → gen_0':s3_0(+(n5_0, a)), rt ∈ Ω(1 + n50)
*'(gen_0':s3_0(a), gen_0':s3_0(n638_0)) → gen_0':s3_0(*(n638_0, a)), rt ∈ Ω(1 + a·n6380 + n6380)
ge(gen_0':s3_0(n1415_0), gen_0':s3_0(n1415_0)) → true, rt ∈ Ω(1 + n14150)
-(gen_0':s3_0(n1764_0), gen_0':s3_0(n1764_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n17640)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(21) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n2) was proven with the following lemma:
*'(gen_0':s3_0(a), gen_0':s3_0(n638_0)) → gen_0':s3_0(*(n638_0, a)), rt ∈ Ω(1 + a·n6380 + n6380)
(22) BOUNDS(n^2, INF)
(23) Obligation:
Innermost TRS:
Rules:
+'(
x,
0') →
x+'(
x,
s(
y)) →
s(
+'(
x,
y))
*'(
x,
0') →
0'*'(
x,
s(
y)) →
+'(
*'(
x,
y),
x)
ge(
x,
0') →
truege(
0',
s(
y)) →
falsege(
s(
x),
s(
y)) →
ge(
x,
y)
-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
fact(
x) →
iffact(
x,
ge(
x,
s(
s(
0'))))
iffact(
x,
true) →
*'(
x,
fact(
-(
x,
s(
0'))))
iffact(
x,
false) →
s(
0')
Types:
+' :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
*' :: 0':s → 0':s → 0':s
ge :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
- :: 0':s → 0':s → 0':s
fact :: 0':s → 0':s
iffact :: 0':s → true:false → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Lemmas:
+'(gen_0':s3_0(a), gen_0':s3_0(n5_0)) → gen_0':s3_0(+(n5_0, a)), rt ∈ Ω(1 + n50)
*'(gen_0':s3_0(a), gen_0':s3_0(n638_0)) → gen_0':s3_0(*(n638_0, a)), rt ∈ Ω(1 + a·n6380 + n6380)
ge(gen_0':s3_0(n1415_0), gen_0':s3_0(n1415_0)) → true, rt ∈ Ω(1 + n14150)
-(gen_0':s3_0(n1764_0), gen_0':s3_0(n1764_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n17640)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(24) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n2) was proven with the following lemma:
*'(gen_0':s3_0(a), gen_0':s3_0(n638_0)) → gen_0':s3_0(*(n638_0, a)), rt ∈ Ω(1 + a·n6380 + n6380)
(25) BOUNDS(n^2, INF)
(26) Obligation:
Innermost TRS:
Rules:
+'(
x,
0') →
x+'(
x,
s(
y)) →
s(
+'(
x,
y))
*'(
x,
0') →
0'*'(
x,
s(
y)) →
+'(
*'(
x,
y),
x)
ge(
x,
0') →
truege(
0',
s(
y)) →
falsege(
s(
x),
s(
y)) →
ge(
x,
y)
-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
fact(
x) →
iffact(
x,
ge(
x,
s(
s(
0'))))
iffact(
x,
true) →
*'(
x,
fact(
-(
x,
s(
0'))))
iffact(
x,
false) →
s(
0')
Types:
+' :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
*' :: 0':s → 0':s → 0':s
ge :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
- :: 0':s → 0':s → 0':s
fact :: 0':s → 0':s
iffact :: 0':s → true:false → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Lemmas:
+'(gen_0':s3_0(a), gen_0':s3_0(n5_0)) → gen_0':s3_0(+(n5_0, a)), rt ∈ Ω(1 + n50)
*'(gen_0':s3_0(a), gen_0':s3_0(n638_0)) → gen_0':s3_0(*(n638_0, a)), rt ∈ Ω(1 + a·n6380 + n6380)
ge(gen_0':s3_0(n1415_0), gen_0':s3_0(n1415_0)) → true, rt ∈ Ω(1 + n14150)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(27) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n2) was proven with the following lemma:
*'(gen_0':s3_0(a), gen_0':s3_0(n638_0)) → gen_0':s3_0(*(n638_0, a)), rt ∈ Ω(1 + a·n6380 + n6380)
(28) BOUNDS(n^2, INF)
(29) Obligation:
Innermost TRS:
Rules:
+'(
x,
0') →
x+'(
x,
s(
y)) →
s(
+'(
x,
y))
*'(
x,
0') →
0'*'(
x,
s(
y)) →
+'(
*'(
x,
y),
x)
ge(
x,
0') →
truege(
0',
s(
y)) →
falsege(
s(
x),
s(
y)) →
ge(
x,
y)
-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
fact(
x) →
iffact(
x,
ge(
x,
s(
s(
0'))))
iffact(
x,
true) →
*'(
x,
fact(
-(
x,
s(
0'))))
iffact(
x,
false) →
s(
0')
Types:
+' :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
*' :: 0':s → 0':s → 0':s
ge :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
- :: 0':s → 0':s → 0':s
fact :: 0':s → 0':s
iffact :: 0':s → true:false → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Lemmas:
+'(gen_0':s3_0(a), gen_0':s3_0(n5_0)) → gen_0':s3_0(+(n5_0, a)), rt ∈ Ω(1 + n50)
*'(gen_0':s3_0(a), gen_0':s3_0(n638_0)) → gen_0':s3_0(*(n638_0, a)), rt ∈ Ω(1 + a·n6380 + n6380)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(30) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n2) was proven with the following lemma:
*'(gen_0':s3_0(a), gen_0':s3_0(n638_0)) → gen_0':s3_0(*(n638_0, a)), rt ∈ Ω(1 + a·n6380 + n6380)
(31) BOUNDS(n^2, INF)
(32) Obligation:
Innermost TRS:
Rules:
+'(
x,
0') →
x+'(
x,
s(
y)) →
s(
+'(
x,
y))
*'(
x,
0') →
0'*'(
x,
s(
y)) →
+'(
*'(
x,
y),
x)
ge(
x,
0') →
truege(
0',
s(
y)) →
falsege(
s(
x),
s(
y)) →
ge(
x,
y)
-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
fact(
x) →
iffact(
x,
ge(
x,
s(
s(
0'))))
iffact(
x,
true) →
*'(
x,
fact(
-(
x,
s(
0'))))
iffact(
x,
false) →
s(
0')
Types:
+' :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
*' :: 0':s → 0':s → 0':s
ge :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
- :: 0':s → 0':s → 0':s
fact :: 0':s → 0':s
iffact :: 0':s → true:false → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Lemmas:
+'(gen_0':s3_0(a), gen_0':s3_0(n5_0)) → gen_0':s3_0(+(n5_0, a)), rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(33) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
+'(gen_0':s3_0(a), gen_0':s3_0(n5_0)) → gen_0':s3_0(+(n5_0, a)), rt ∈ Ω(1 + n50)
(34) BOUNDS(n^1, INF)