(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
cond1(true, x, y) → cond2(gr(x, y), x, y)
cond2(true, x, y) → cond3(gr(x, 0), x, y)
cond2(false, x, y) → cond4(gr(y, 0), x, y)
cond3(true, x, y) → cond3(gr(x, 0), p(x), y)
cond3(false, x, y) → cond1(and(gr(x, 0), gr(y, 0)), x, y)
cond4(true, x, y) → cond4(gr(y, 0), x, p(y))
cond4(false, x, y) → cond1(and(gr(x, 0), gr(y, 0)), x, y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
p(0) → 0
p(s(x)) → x
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted Cpx (relative) TRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond1(true, z0, z1) → cond2(gr(z0, z1), z0, z1)
cond2(true, z0, z1) → cond3(gr(z0, 0), z0, z1)
cond2(false, z0, z1) → cond4(gr(z1, 0), z0, z1)
cond3(true, z0, z1) → cond3(gr(z0, 0), p(z0), z1)
cond3(false, z0, z1) → cond1(and(gr(z0, 0), gr(z1, 0)), z0, z1)
cond4(true, z0, z1) → cond4(gr(z1, 0), z0, p(z1))
cond4(false, z0, z1) → cond1(and(gr(z0, 0), gr(z1, 0)), z0, z1)
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
p(0) → 0
p(s(z0)) → z0
Tuples:
COND1(true, z0, z1) → c(COND2(gr(z0, z1), z0, z1), GR(z0, z1))
COND2(true, z0, z1) → c1(COND3(gr(z0, 0), z0, z1), GR(z0, 0))
COND2(false, z0, z1) → c2(COND4(gr(z1, 0), z0, z1), GR(z1, 0))
COND3(true, z0, z1) → c3(COND3(gr(z0, 0), p(z0), z1), GR(z0, 0), P(z0))
COND3(false, z0, z1) → c4(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1), AND(gr(z0, 0), gr(z1, 0)), GR(z0, 0), GR(z1, 0))
COND4(true, z0, z1) → c5(COND4(gr(z1, 0), z0, p(z1)), GR(z1, 0), P(z1))
COND4(false, z0, z1) → c6(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1), AND(gr(z0, 0), gr(z1, 0)), GR(z0, 0), GR(z1, 0))
GR(0, z0) → c7
GR(s(z0), 0) → c8
GR(s(z0), s(z1)) → c9(GR(z0, z1))
AND(true, true) → c10
AND(false, z0) → c11
AND(z0, false) → c12
P(0) → c13
P(s(z0)) → c14
S tuples:
COND1(true, z0, z1) → c(COND2(gr(z0, z1), z0, z1), GR(z0, z1))
COND2(true, z0, z1) → c1(COND3(gr(z0, 0), z0, z1), GR(z0, 0))
COND2(false, z0, z1) → c2(COND4(gr(z1, 0), z0, z1), GR(z1, 0))
COND3(true, z0, z1) → c3(COND3(gr(z0, 0), p(z0), z1), GR(z0, 0), P(z0))
COND3(false, z0, z1) → c4(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1), AND(gr(z0, 0), gr(z1, 0)), GR(z0, 0), GR(z1, 0))
COND4(true, z0, z1) → c5(COND4(gr(z1, 0), z0, p(z1)), GR(z1, 0), P(z1))
COND4(false, z0, z1) → c6(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1), AND(gr(z0, 0), gr(z1, 0)), GR(z0, 0), GR(z1, 0))
GR(0, z0) → c7
GR(s(z0), 0) → c8
GR(s(z0), s(z1)) → c9(GR(z0, z1))
AND(true, true) → c10
AND(false, z0) → c11
AND(z0, false) → c12
P(0) → c13
P(s(z0)) → c14
K tuples:none
Defined Rule Symbols:
cond1, cond2, cond3, cond4, gr, and, p
Defined Pair Symbols:
COND1, COND2, COND3, COND4, GR, AND, P
Compound Symbols:
c, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14
(3) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 7 trailing nodes:
P(0) → c13
AND(true, true) → c10
P(s(z0)) → c14
AND(z0, false) → c12
GR(s(z0), 0) → c8
AND(false, z0) → c11
GR(0, z0) → c7
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond1(true, z0, z1) → cond2(gr(z0, z1), z0, z1)
cond2(true, z0, z1) → cond3(gr(z0, 0), z0, z1)
cond2(false, z0, z1) → cond4(gr(z1, 0), z0, z1)
cond3(true, z0, z1) → cond3(gr(z0, 0), p(z0), z1)
cond3(false, z0, z1) → cond1(and(gr(z0, 0), gr(z1, 0)), z0, z1)
cond4(true, z0, z1) → cond4(gr(z1, 0), z0, p(z1))
cond4(false, z0, z1) → cond1(and(gr(z0, 0), gr(z1, 0)), z0, z1)
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
p(0) → 0
p(s(z0)) → z0
Tuples:
COND1(true, z0, z1) → c(COND2(gr(z0, z1), z0, z1), GR(z0, z1))
COND2(true, z0, z1) → c1(COND3(gr(z0, 0), z0, z1), GR(z0, 0))
COND2(false, z0, z1) → c2(COND4(gr(z1, 0), z0, z1), GR(z1, 0))
COND3(true, z0, z1) → c3(COND3(gr(z0, 0), p(z0), z1), GR(z0, 0), P(z0))
COND3(false, z0, z1) → c4(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1), AND(gr(z0, 0), gr(z1, 0)), GR(z0, 0), GR(z1, 0))
COND4(true, z0, z1) → c5(COND4(gr(z1, 0), z0, p(z1)), GR(z1, 0), P(z1))
COND4(false, z0, z1) → c6(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1), AND(gr(z0, 0), gr(z1, 0)), GR(z0, 0), GR(z1, 0))
GR(s(z0), s(z1)) → c9(GR(z0, z1))
S tuples:
COND1(true, z0, z1) → c(COND2(gr(z0, z1), z0, z1), GR(z0, z1))
COND2(true, z0, z1) → c1(COND3(gr(z0, 0), z0, z1), GR(z0, 0))
COND2(false, z0, z1) → c2(COND4(gr(z1, 0), z0, z1), GR(z1, 0))
COND3(true, z0, z1) → c3(COND3(gr(z0, 0), p(z0), z1), GR(z0, 0), P(z0))
COND3(false, z0, z1) → c4(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1), AND(gr(z0, 0), gr(z1, 0)), GR(z0, 0), GR(z1, 0))
COND4(true, z0, z1) → c5(COND4(gr(z1, 0), z0, p(z1)), GR(z1, 0), P(z1))
COND4(false, z0, z1) → c6(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1), AND(gr(z0, 0), gr(z1, 0)), GR(z0, 0), GR(z1, 0))
GR(s(z0), s(z1)) → c9(GR(z0, z1))
K tuples:none
Defined Rule Symbols:
cond1, cond2, cond3, cond4, gr, and, p
Defined Pair Symbols:
COND1, COND2, COND3, COND4, GR
Compound Symbols:
c, c1, c2, c3, c4, c5, c6, c9
(5) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 12 trailing tuple parts
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond1(true, z0, z1) → cond2(gr(z0, z1), z0, z1)
cond2(true, z0, z1) → cond3(gr(z0, 0), z0, z1)
cond2(false, z0, z1) → cond4(gr(z1, 0), z0, z1)
cond3(true, z0, z1) → cond3(gr(z0, 0), p(z0), z1)
cond3(false, z0, z1) → cond1(and(gr(z0, 0), gr(z1, 0)), z0, z1)
cond4(true, z0, z1) → cond4(gr(z1, 0), z0, p(z1))
cond4(false, z0, z1) → cond1(and(gr(z0, 0), gr(z1, 0)), z0, z1)
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
p(0) → 0
p(s(z0)) → z0
Tuples:
COND1(true, z0, z1) → c(COND2(gr(z0, z1), z0, z1), GR(z0, z1))
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND2(true, z0, z1) → c1(COND3(gr(z0, 0), z0, z1))
COND2(false, z0, z1) → c2(COND4(gr(z1, 0), z0, z1))
COND3(true, z0, z1) → c3(COND3(gr(z0, 0), p(z0), z1))
COND3(false, z0, z1) → c4(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
COND4(true, z0, z1) → c5(COND4(gr(z1, 0), z0, p(z1)))
COND4(false, z0, z1) → c6(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
S tuples:
COND1(true, z0, z1) → c(COND2(gr(z0, z1), z0, z1), GR(z0, z1))
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND2(true, z0, z1) → c1(COND3(gr(z0, 0), z0, z1))
COND2(false, z0, z1) → c2(COND4(gr(z1, 0), z0, z1))
COND3(true, z0, z1) → c3(COND3(gr(z0, 0), p(z0), z1))
COND3(false, z0, z1) → c4(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
COND4(true, z0, z1) → c5(COND4(gr(z1, 0), z0, p(z1)))
COND4(false, z0, z1) → c6(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
K tuples:none
Defined Rule Symbols:
cond1, cond2, cond3, cond4, gr, and, p
Defined Pair Symbols:
COND1, GR, COND2, COND3, COND4
Compound Symbols:
c, c9, c1, c2, c3, c4, c5, c6
(7) CdtUsableRulesProof (EQUIVALENT transformation)
The following rules are not usable and were removed:
cond1(true, z0, z1) → cond2(gr(z0, z1), z0, z1)
cond2(true, z0, z1) → cond3(gr(z0, 0), z0, z1)
cond2(false, z0, z1) → cond4(gr(z1, 0), z0, z1)
cond3(true, z0, z1) → cond3(gr(z0, 0), p(z0), z1)
cond3(false, z0, z1) → cond1(and(gr(z0, 0), gr(z1, 0)), z0, z1)
cond4(true, z0, z1) → cond4(gr(z1, 0), z0, p(z1))
cond4(false, z0, z1) → cond1(and(gr(z0, 0), gr(z1, 0)), z0, z1)
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
Tuples:
COND1(true, z0, z1) → c(COND2(gr(z0, z1), z0, z1), GR(z0, z1))
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND2(true, z0, z1) → c1(COND3(gr(z0, 0), z0, z1))
COND2(false, z0, z1) → c2(COND4(gr(z1, 0), z0, z1))
COND3(true, z0, z1) → c3(COND3(gr(z0, 0), p(z0), z1))
COND3(false, z0, z1) → c4(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
COND4(true, z0, z1) → c5(COND4(gr(z1, 0), z0, p(z1)))
COND4(false, z0, z1) → c6(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
S tuples:
COND1(true, z0, z1) → c(COND2(gr(z0, z1), z0, z1), GR(z0, z1))
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND2(true, z0, z1) → c1(COND3(gr(z0, 0), z0, z1))
COND2(false, z0, z1) → c2(COND4(gr(z1, 0), z0, z1))
COND3(true, z0, z1) → c3(COND3(gr(z0, 0), p(z0), z1))
COND3(false, z0, z1) → c4(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
COND4(true, z0, z1) → c5(COND4(gr(z1, 0), z0, p(z1)))
COND4(false, z0, z1) → c6(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
K tuples:none
Defined Rule Symbols:
gr, p, and
Defined Pair Symbols:
COND1, GR, COND2, COND3, COND4
Compound Symbols:
c, c9, c1, c2, c3, c4, c5, c6
(9) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND1(
true,
z0,
z1) →
c(
COND2(
gr(
z0,
z1),
z0,
z1),
GR(
z0,
z1)) by
COND1(true, 0, z0) → c(COND2(false, 0, z0), GR(0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0), GR(s(z0), 0))
COND1(true, s(z0), s(z1)) → c(COND2(gr(z0, z1), s(z0), s(z1)), GR(s(z0), s(z1)))
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
Tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND2(true, z0, z1) → c1(COND3(gr(z0, 0), z0, z1))
COND2(false, z0, z1) → c2(COND4(gr(z1, 0), z0, z1))
COND3(true, z0, z1) → c3(COND3(gr(z0, 0), p(z0), z1))
COND3(false, z0, z1) → c4(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
COND4(true, z0, z1) → c5(COND4(gr(z1, 0), z0, p(z1)))
COND4(false, z0, z1) → c6(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0), GR(0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0), GR(s(z0), 0))
COND1(true, s(z0), s(z1)) → c(COND2(gr(z0, z1), s(z0), s(z1)), GR(s(z0), s(z1)))
S tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND2(true, z0, z1) → c1(COND3(gr(z0, 0), z0, z1))
COND2(false, z0, z1) → c2(COND4(gr(z1, 0), z0, z1))
COND3(true, z0, z1) → c3(COND3(gr(z0, 0), p(z0), z1))
COND3(false, z0, z1) → c4(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
COND4(true, z0, z1) → c5(COND4(gr(z1, 0), z0, p(z1)))
COND4(false, z0, z1) → c6(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0), GR(0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0), GR(s(z0), 0))
COND1(true, s(z0), s(z1)) → c(COND2(gr(z0, z1), s(z0), s(z1)), GR(s(z0), s(z1)))
K tuples:none
Defined Rule Symbols:
gr, p, and
Defined Pair Symbols:
GR, COND2, COND3, COND4, COND1
Compound Symbols:
c9, c1, c2, c3, c4, c5, c6, c
(11) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 2 trailing tuple parts
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
Tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND2(true, z0, z1) → c1(COND3(gr(z0, 0), z0, z1))
COND2(false, z0, z1) → c2(COND4(gr(z1, 0), z0, z1))
COND3(true, z0, z1) → c3(COND3(gr(z0, 0), p(z0), z1))
COND3(false, z0, z1) → c4(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
COND4(true, z0, z1) → c5(COND4(gr(z1, 0), z0, p(z1)))
COND4(false, z0, z1) → c6(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
COND1(true, s(z0), s(z1)) → c(COND2(gr(z0, z1), s(z0), s(z1)), GR(s(z0), s(z1)))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
S tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND2(true, z0, z1) → c1(COND3(gr(z0, 0), z0, z1))
COND2(false, z0, z1) → c2(COND4(gr(z1, 0), z0, z1))
COND3(true, z0, z1) → c3(COND3(gr(z0, 0), p(z0), z1))
COND3(false, z0, z1) → c4(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
COND4(true, z0, z1) → c5(COND4(gr(z1, 0), z0, p(z1)))
COND4(false, z0, z1) → c6(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
COND1(true, s(z0), s(z1)) → c(COND2(gr(z0, z1), s(z0), s(z1)), GR(s(z0), s(z1)))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
K tuples:none
Defined Rule Symbols:
gr, p, and
Defined Pair Symbols:
GR, COND2, COND3, COND4, COND1
Compound Symbols:
c9, c1, c2, c3, c4, c5, c6, c, c
(13) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND2(
true,
z0,
z1) →
c1(
COND3(
gr(
z0,
0),
z0,
z1)) by
COND2(true, 0, x1) → c1(COND3(false, 0, x1))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
(14) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
Tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND2(false, z0, z1) → c2(COND4(gr(z1, 0), z0, z1))
COND3(true, z0, z1) → c3(COND3(gr(z0, 0), p(z0), z1))
COND3(false, z0, z1) → c4(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
COND4(true, z0, z1) → c5(COND4(gr(z1, 0), z0, p(z1)))
COND4(false, z0, z1) → c6(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
COND1(true, s(z0), s(z1)) → c(COND2(gr(z0, z1), s(z0), s(z1)), GR(s(z0), s(z1)))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, 0, x1) → c1(COND3(false, 0, x1))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
S tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND2(false, z0, z1) → c2(COND4(gr(z1, 0), z0, z1))
COND3(true, z0, z1) → c3(COND3(gr(z0, 0), p(z0), z1))
COND3(false, z0, z1) → c4(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
COND4(true, z0, z1) → c5(COND4(gr(z1, 0), z0, p(z1)))
COND4(false, z0, z1) → c6(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
COND1(true, s(z0), s(z1)) → c(COND2(gr(z0, z1), s(z0), s(z1)), GR(s(z0), s(z1)))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, 0, x1) → c1(COND3(false, 0, x1))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
K tuples:none
Defined Rule Symbols:
gr, p, and
Defined Pair Symbols:
GR, COND2, COND3, COND4, COND1
Compound Symbols:
c9, c2, c3, c4, c5, c6, c, c, c1
(15) CdtLeafRemovalProof (ComplexityIfPolyImplication transformation)
Removed 1 leading nodes:
COND2(true, 0, x1) → c1(COND3(false, 0, x1))
(16) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
Tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND2(false, z0, z1) → c2(COND4(gr(z1, 0), z0, z1))
COND3(true, z0, z1) → c3(COND3(gr(z0, 0), p(z0), z1))
COND3(false, z0, z1) → c4(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
COND4(true, z0, z1) → c5(COND4(gr(z1, 0), z0, p(z1)))
COND4(false, z0, z1) → c6(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
COND1(true, s(z0), s(z1)) → c(COND2(gr(z0, z1), s(z0), s(z1)), GR(s(z0), s(z1)))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
S tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND2(false, z0, z1) → c2(COND4(gr(z1, 0), z0, z1))
COND3(true, z0, z1) → c3(COND3(gr(z0, 0), p(z0), z1))
COND3(false, z0, z1) → c4(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
COND4(true, z0, z1) → c5(COND4(gr(z1, 0), z0, p(z1)))
COND4(false, z0, z1) → c6(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
COND1(true, s(z0), s(z1)) → c(COND2(gr(z0, z1), s(z0), s(z1)), GR(s(z0), s(z1)))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
K tuples:none
Defined Rule Symbols:
gr, p, and
Defined Pair Symbols:
GR, COND2, COND3, COND4, COND1
Compound Symbols:
c9, c2, c3, c4, c5, c6, c, c, c1
(17) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND2(
false,
z0,
z1) →
c2(
COND4(
gr(
z1,
0),
z0,
z1)) by
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
(18) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
Tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND3(true, z0, z1) → c3(COND3(gr(z0, 0), p(z0), z1))
COND3(false, z0, z1) → c4(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
COND4(true, z0, z1) → c5(COND4(gr(z1, 0), z0, p(z1)))
COND4(false, z0, z1) → c6(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
COND1(true, s(z0), s(z1)) → c(COND2(gr(z0, z1), s(z0), s(z1)), GR(s(z0), s(z1)))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
S tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND3(true, z0, z1) → c3(COND3(gr(z0, 0), p(z0), z1))
COND3(false, z0, z1) → c4(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
COND4(true, z0, z1) → c5(COND4(gr(z1, 0), z0, p(z1)))
COND4(false, z0, z1) → c6(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
COND1(true, s(z0), s(z1)) → c(COND2(gr(z0, z1), s(z0), s(z1)), GR(s(z0), s(z1)))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
K tuples:none
Defined Rule Symbols:
gr, p, and
Defined Pair Symbols:
GR, COND3, COND4, COND1, COND2
Compound Symbols:
c9, c3, c4, c5, c6, c, c, c1, c2
(19) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND3(
true,
z0,
z1) →
c3(
COND3(
gr(
z0,
0),
p(
z0),
z1)) by
COND3(true, 0, x1) → c3(COND3(gr(0, 0), 0, x1))
COND3(true, s(z0), x1) → c3(COND3(gr(s(z0), 0), z0, x1))
COND3(true, 0, x1) → c3(COND3(false, p(0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, p(s(z0)), x1))
(20) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
Tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND3(false, z0, z1) → c4(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
COND4(true, z0, z1) → c5(COND4(gr(z1, 0), z0, p(z1)))
COND4(false, z0, z1) → c6(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
COND1(true, s(z0), s(z1)) → c(COND2(gr(z0, z1), s(z0), s(z1)), GR(s(z0), s(z1)))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(true, 0, x1) → c3(COND3(gr(0, 0), 0, x1))
COND3(true, s(z0), x1) → c3(COND3(gr(s(z0), 0), z0, x1))
COND3(true, 0, x1) → c3(COND3(false, p(0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, p(s(z0)), x1))
S tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND3(false, z0, z1) → c4(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
COND4(true, z0, z1) → c5(COND4(gr(z1, 0), z0, p(z1)))
COND4(false, z0, z1) → c6(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
COND1(true, s(z0), s(z1)) → c(COND2(gr(z0, z1), s(z0), s(z1)), GR(s(z0), s(z1)))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(true, 0, x1) → c3(COND3(gr(0, 0), 0, x1))
COND3(true, s(z0), x1) → c3(COND3(gr(s(z0), 0), z0, x1))
COND3(true, 0, x1) → c3(COND3(false, p(0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, p(s(z0)), x1))
K tuples:none
Defined Rule Symbols:
gr, p, and
Defined Pair Symbols:
GR, COND3, COND4, COND1, COND2
Compound Symbols:
c9, c4, c5, c6, c, c, c1, c2, c3
(21) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
COND3(true, s(z0), x1) → c3(COND3(gr(s(z0), 0), z0, x1))
We considered the (Usable) Rules:
p(0) → 0
p(s(z0)) → z0
And the Tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND3(false, z0, z1) → c4(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
COND4(true, z0, z1) → c5(COND4(gr(z1, 0), z0, p(z1)))
COND4(false, z0, z1) → c6(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
COND1(true, s(z0), s(z1)) → c(COND2(gr(z0, z1), s(z0), s(z1)), GR(s(z0), s(z1)))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(true, 0, x1) → c3(COND3(gr(0, 0), 0, x1))
COND3(true, s(z0), x1) → c3(COND3(gr(s(z0), 0), z0, x1))
COND3(true, 0, x1) → c3(COND3(false, p(0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, p(s(z0)), x1))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(COND1(x1, x2, x3)) = [4]x2
POL(COND2(x1, x2, x3)) = [4]x2
POL(COND3(x1, x2, x3)) = [4]x2
POL(COND4(x1, x2, x3)) = [4]x2
POL(GR(x1, x2)) = 0
POL(and(x1, x2)) = 0
POL(c(x1)) = x1
POL(c(x1, x2)) = x1 + x2
POL(c1(x1)) = x1
POL(c2(x1)) = x1
POL(c3(x1)) = x1
POL(c4(x1)) = x1
POL(c5(x1)) = x1
POL(c6(x1)) = x1
POL(c9(x1)) = x1
POL(false) = 0
POL(gr(x1, x2)) = 0
POL(p(x1)) = x1
POL(s(x1)) = [4] + x1
POL(true) = 0
(22) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
Tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND3(false, z0, z1) → c4(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
COND4(true, z0, z1) → c5(COND4(gr(z1, 0), z0, p(z1)))
COND4(false, z0, z1) → c6(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
COND1(true, s(z0), s(z1)) → c(COND2(gr(z0, z1), s(z0), s(z1)), GR(s(z0), s(z1)))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(true, 0, x1) → c3(COND3(gr(0, 0), 0, x1))
COND3(true, s(z0), x1) → c3(COND3(gr(s(z0), 0), z0, x1))
COND3(true, 0, x1) → c3(COND3(false, p(0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, p(s(z0)), x1))
S tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND3(false, z0, z1) → c4(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
COND4(true, z0, z1) → c5(COND4(gr(z1, 0), z0, p(z1)))
COND4(false, z0, z1) → c6(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
COND1(true, s(z0), s(z1)) → c(COND2(gr(z0, z1), s(z0), s(z1)), GR(s(z0), s(z1)))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(true, 0, x1) → c3(COND3(gr(0, 0), 0, x1))
COND3(true, 0, x1) → c3(COND3(false, p(0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, p(s(z0)), x1))
K tuples:
COND3(true, s(z0), x1) → c3(COND3(gr(s(z0), 0), z0, x1))
Defined Rule Symbols:
gr, p, and
Defined Pair Symbols:
GR, COND3, COND4, COND1, COND2
Compound Symbols:
c9, c4, c5, c6, c, c, c1, c2, c3
(23) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND3(
false,
z0,
z1) →
c4(
COND1(
and(
gr(
z0,
0),
gr(
z1,
0)),
z0,
z1)) by
COND3(false, x0, 0) → c4(COND1(and(gr(x0, 0), false), x0, 0))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
(24) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
Tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND4(true, z0, z1) → c5(COND4(gr(z1, 0), z0, p(z1)))
COND4(false, z0, z1) → c6(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
COND1(true, s(z0), s(z1)) → c(COND2(gr(z0, z1), s(z0), s(z1)), GR(s(z0), s(z1)))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(true, 0, x1) → c3(COND3(gr(0, 0), 0, x1))
COND3(true, s(z0), x1) → c3(COND3(gr(s(z0), 0), z0, x1))
COND3(true, 0, x1) → c3(COND3(false, p(0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, p(s(z0)), x1))
COND3(false, x0, 0) → c4(COND1(and(gr(x0, 0), false), x0, 0))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
S tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND4(true, z0, z1) → c5(COND4(gr(z1, 0), z0, p(z1)))
COND4(false, z0, z1) → c6(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
COND1(true, s(z0), s(z1)) → c(COND2(gr(z0, z1), s(z0), s(z1)), GR(s(z0), s(z1)))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(true, 0, x1) → c3(COND3(gr(0, 0), 0, x1))
COND3(true, 0, x1) → c3(COND3(false, p(0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, p(s(z0)), x1))
COND3(false, x0, 0) → c4(COND1(and(gr(x0, 0), false), x0, 0))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
K tuples:
COND3(true, s(z0), x1) → c3(COND3(gr(s(z0), 0), z0, x1))
Defined Rule Symbols:
gr, p, and
Defined Pair Symbols:
GR, COND4, COND1, COND2, COND3
Compound Symbols:
c9, c5, c6, c, c, c1, c2, c3, c4
(25) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
COND3(false, x0, 0) → c4(COND1(and(gr(x0, 0), false), x0, 0))
We considered the (Usable) Rules:
gr(0, z0) → false
and(true, true) → true
gr(s(z0), 0) → true
and(false, z0) → false
and(z0, false) → false
And the Tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND4(true, z0, z1) → c5(COND4(gr(z1, 0), z0, p(z1)))
COND4(false, z0, z1) → c6(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
COND1(true, s(z0), s(z1)) → c(COND2(gr(z0, z1), s(z0), s(z1)), GR(s(z0), s(z1)))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(true, 0, x1) → c3(COND3(gr(0, 0), 0, x1))
COND3(true, s(z0), x1) → c3(COND3(gr(s(z0), 0), z0, x1))
COND3(true, 0, x1) → c3(COND3(false, p(0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, p(s(z0)), x1))
COND3(false, x0, 0) → c4(COND1(and(gr(x0, 0), false), x0, 0))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(COND1(x1, x2, x3)) = x1
POL(COND2(x1, x2, x3)) = [2]
POL(COND3(x1, x2, x3)) = [2]
POL(COND4(x1, x2, x3)) = [2]
POL(GR(x1, x2)) = 0
POL(and(x1, x2)) = x2
POL(c(x1)) = x1
POL(c(x1, x2)) = x1 + x2
POL(c1(x1)) = x1
POL(c2(x1)) = x1
POL(c3(x1)) = x1
POL(c4(x1)) = x1
POL(c5(x1)) = x1
POL(c6(x1)) = x1
POL(c9(x1)) = x1
POL(false) = 0
POL(gr(x1, x2)) = [2]
POL(p(x1)) = 0
POL(s(x1)) = 0
POL(true) = [2]
(26) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
Tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND4(true, z0, z1) → c5(COND4(gr(z1, 0), z0, p(z1)))
COND4(false, z0, z1) → c6(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
COND1(true, s(z0), s(z1)) → c(COND2(gr(z0, z1), s(z0), s(z1)), GR(s(z0), s(z1)))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(true, 0, x1) → c3(COND3(gr(0, 0), 0, x1))
COND3(true, s(z0), x1) → c3(COND3(gr(s(z0), 0), z0, x1))
COND3(true, 0, x1) → c3(COND3(false, p(0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, p(s(z0)), x1))
COND3(false, x0, 0) → c4(COND1(and(gr(x0, 0), false), x0, 0))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
S tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND4(true, z0, z1) → c5(COND4(gr(z1, 0), z0, p(z1)))
COND4(false, z0, z1) → c6(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
COND1(true, s(z0), s(z1)) → c(COND2(gr(z0, z1), s(z0), s(z1)), GR(s(z0), s(z1)))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(true, 0, x1) → c3(COND3(gr(0, 0), 0, x1))
COND3(true, 0, x1) → c3(COND3(false, p(0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, p(s(z0)), x1))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
K tuples:
COND3(true, s(z0), x1) → c3(COND3(gr(s(z0), 0), z0, x1))
COND3(false, x0, 0) → c4(COND1(and(gr(x0, 0), false), x0, 0))
Defined Rule Symbols:
gr, p, and
Defined Pair Symbols:
GR, COND4, COND1, COND2, COND3
Compound Symbols:
c9, c5, c6, c, c, c1, c2, c3, c4
(27) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
We considered the (Usable) Rules:
gr(0, z0) → false
and(true, true) → true
gr(s(z0), 0) → true
and(false, z0) → false
and(z0, false) → false
And the Tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND4(true, z0, z1) → c5(COND4(gr(z1, 0), z0, p(z1)))
COND4(false, z0, z1) → c6(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
COND1(true, s(z0), s(z1)) → c(COND2(gr(z0, z1), s(z0), s(z1)), GR(s(z0), s(z1)))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(true, 0, x1) → c3(COND3(gr(0, 0), 0, x1))
COND3(true, s(z0), x1) → c3(COND3(gr(s(z0), 0), z0, x1))
COND3(true, 0, x1) → c3(COND3(false, p(0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, p(s(z0)), x1))
COND3(false, x0, 0) → c4(COND1(and(gr(x0, 0), false), x0, 0))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = [2]
POL(COND1(x1, x2, x3)) = x1
POL(COND2(x1, x2, x3)) = [2]
POL(COND3(x1, x2, x3)) = [2]
POL(COND4(x1, x2, x3)) = [2]
POL(GR(x1, x2)) = 0
POL(and(x1, x2)) = x1
POL(c(x1)) = x1
POL(c(x1, x2)) = x1 + x2
POL(c1(x1)) = x1
POL(c2(x1)) = x1
POL(c3(x1)) = x1
POL(c4(x1)) = x1
POL(c5(x1)) = x1
POL(c6(x1)) = x1
POL(c9(x1)) = x1
POL(false) = 0
POL(gr(x1, x2)) = x2
POL(p(x1)) = 0
POL(s(x1)) = 0
POL(true) = [2]
(28) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
Tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND4(true, z0, z1) → c5(COND4(gr(z1, 0), z0, p(z1)))
COND4(false, z0, z1) → c6(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
COND1(true, s(z0), s(z1)) → c(COND2(gr(z0, z1), s(z0), s(z1)), GR(s(z0), s(z1)))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(true, 0, x1) → c3(COND3(gr(0, 0), 0, x1))
COND3(true, s(z0), x1) → c3(COND3(gr(s(z0), 0), z0, x1))
COND3(true, 0, x1) → c3(COND3(false, p(0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, p(s(z0)), x1))
COND3(false, x0, 0) → c4(COND1(and(gr(x0, 0), false), x0, 0))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
S tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND4(true, z0, z1) → c5(COND4(gr(z1, 0), z0, p(z1)))
COND4(false, z0, z1) → c6(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
COND1(true, s(z0), s(z1)) → c(COND2(gr(z0, z1), s(z0), s(z1)), GR(s(z0), s(z1)))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(true, 0, x1) → c3(COND3(gr(0, 0), 0, x1))
COND3(true, 0, x1) → c3(COND3(false, p(0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, p(s(z0)), x1))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
K tuples:
COND3(true, s(z0), x1) → c3(COND3(gr(s(z0), 0), z0, x1))
COND3(false, x0, 0) → c4(COND1(and(gr(x0, 0), false), x0, 0))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
Defined Rule Symbols:
gr, p, and
Defined Pair Symbols:
GR, COND4, COND1, COND2, COND3
Compound Symbols:
c9, c5, c6, c, c, c1, c2, c3, c4
(29) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND4(
true,
z0,
z1) →
c5(
COND4(
gr(
z1,
0),
z0,
p(
z1))) by
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
(30) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
Tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND4(false, z0, z1) → c6(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
COND1(true, s(z0), s(z1)) → c(COND2(gr(z0, z1), s(z0), s(z1)), GR(s(z0), s(z1)))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(true, 0, x1) → c3(COND3(gr(0, 0), 0, x1))
COND3(true, s(z0), x1) → c3(COND3(gr(s(z0), 0), z0, x1))
COND3(true, 0, x1) → c3(COND3(false, p(0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, p(s(z0)), x1))
COND3(false, x0, 0) → c4(COND1(and(gr(x0, 0), false), x0, 0))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
S tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND4(false, z0, z1) → c6(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
COND1(true, s(z0), s(z1)) → c(COND2(gr(z0, z1), s(z0), s(z1)), GR(s(z0), s(z1)))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(true, 0, x1) → c3(COND3(gr(0, 0), 0, x1))
COND3(true, 0, x1) → c3(COND3(false, p(0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, p(s(z0)), x1))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
K tuples:
COND3(true, s(z0), x1) → c3(COND3(gr(s(z0), 0), z0, x1))
COND3(false, x0, 0) → c4(COND1(and(gr(x0, 0), false), x0, 0))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
Defined Rule Symbols:
gr, p, and
Defined Pair Symbols:
GR, COND4, COND1, COND2, COND3
Compound Symbols:
c9, c6, c, c, c1, c2, c3, c4, c5
(31) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
We considered the (Usable) Rules:
p(0) → 0
p(s(z0)) → z0
And the Tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND4(false, z0, z1) → c6(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
COND1(true, s(z0), s(z1)) → c(COND2(gr(z0, z1), s(z0), s(z1)), GR(s(z0), s(z1)))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(true, 0, x1) → c3(COND3(gr(0, 0), 0, x1))
COND3(true, s(z0), x1) → c3(COND3(gr(s(z0), 0), z0, x1))
COND3(true, 0, x1) → c3(COND3(false, p(0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, p(s(z0)), x1))
COND3(false, x0, 0) → c4(COND1(and(gr(x0, 0), false), x0, 0))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(COND1(x1, x2, x3)) = [4]x3
POL(COND2(x1, x2, x3)) = [4]x3
POL(COND3(x1, x2, x3)) = [4]x3
POL(COND4(x1, x2, x3)) = [4]x3
POL(GR(x1, x2)) = 0
POL(and(x1, x2)) = 0
POL(c(x1)) = x1
POL(c(x1, x2)) = x1 + x2
POL(c1(x1)) = x1
POL(c2(x1)) = x1
POL(c3(x1)) = x1
POL(c4(x1)) = x1
POL(c5(x1)) = x1
POL(c6(x1)) = x1
POL(c9(x1)) = x1
POL(false) = 0
POL(gr(x1, x2)) = 0
POL(p(x1)) = x1
POL(s(x1)) = [4] + x1
POL(true) = 0
(32) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
Tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND4(false, z0, z1) → c6(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
COND1(true, s(z0), s(z1)) → c(COND2(gr(z0, z1), s(z0), s(z1)), GR(s(z0), s(z1)))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(true, 0, x1) → c3(COND3(gr(0, 0), 0, x1))
COND3(true, s(z0), x1) → c3(COND3(gr(s(z0), 0), z0, x1))
COND3(true, 0, x1) → c3(COND3(false, p(0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, p(s(z0)), x1))
COND3(false, x0, 0) → c4(COND1(and(gr(x0, 0), false), x0, 0))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
S tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND4(false, z0, z1) → c6(COND1(and(gr(z0, 0), gr(z1, 0)), z0, z1))
COND1(true, s(z0), s(z1)) → c(COND2(gr(z0, z1), s(z0), s(z1)), GR(s(z0), s(z1)))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(true, 0, x1) → c3(COND3(gr(0, 0), 0, x1))
COND3(true, 0, x1) → c3(COND3(false, p(0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, p(s(z0)), x1))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
K tuples:
COND3(true, s(z0), x1) → c3(COND3(gr(s(z0), 0), z0, x1))
COND3(false, x0, 0) → c4(COND1(and(gr(x0, 0), false), x0, 0))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
Defined Rule Symbols:
gr, p, and
Defined Pair Symbols:
GR, COND4, COND1, COND2, COND3
Compound Symbols:
c9, c6, c, c, c1, c2, c3, c4, c5
(33) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND4(
false,
z0,
z1) →
c6(
COND1(
and(
gr(
z0,
0),
gr(
z1,
0)),
z0,
z1)) by
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
(34) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
Tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, s(z0), s(z1)) → c(COND2(gr(z0, z1), s(z0), s(z1)), GR(s(z0), s(z1)))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(true, 0, x1) → c3(COND3(gr(0, 0), 0, x1))
COND3(true, s(z0), x1) → c3(COND3(gr(s(z0), 0), z0, x1))
COND3(true, 0, x1) → c3(COND3(false, p(0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, p(s(z0)), x1))
COND3(false, x0, 0) → c4(COND1(and(gr(x0, 0), false), x0, 0))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
S tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, s(z0), s(z1)) → c(COND2(gr(z0, z1), s(z0), s(z1)), GR(s(z0), s(z1)))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(true, 0, x1) → c3(COND3(gr(0, 0), 0, x1))
COND3(true, 0, x1) → c3(COND3(false, p(0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, p(s(z0)), x1))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
K tuples:
COND3(true, s(z0), x1) → c3(COND3(gr(s(z0), 0), z0, x1))
COND3(false, x0, 0) → c4(COND1(and(gr(x0, 0), false), x0, 0))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
Defined Rule Symbols:
gr, p, and
Defined Pair Symbols:
GR, COND1, COND2, COND3, COND4
Compound Symbols:
c9, c, c, c1, c2, c3, c4, c5, c6
(35) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
We considered the (Usable) Rules:
gr(0, z0) → false
and(true, true) → true
gr(s(z0), 0) → true
and(false, z0) → false
and(z0, false) → false
And the Tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, s(z0), s(z1)) → c(COND2(gr(z0, z1), s(z0), s(z1)), GR(s(z0), s(z1)))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(true, 0, x1) → c3(COND3(gr(0, 0), 0, x1))
COND3(true, s(z0), x1) → c3(COND3(gr(s(z0), 0), z0, x1))
COND3(true, 0, x1) → c3(COND3(false, p(0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, p(s(z0)), x1))
COND3(false, x0, 0) → c4(COND1(and(gr(x0, 0), false), x0, 0))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(COND1(x1, x2, x3)) = x1
POL(COND2(x1, x2, x3)) = [1]
POL(COND3(x1, x2, x3)) = [1]
POL(COND4(x1, x2, x3)) = [1]
POL(GR(x1, x2)) = 0
POL(and(x1, x2)) = x2
POL(c(x1)) = x1
POL(c(x1, x2)) = x1 + x2
POL(c1(x1)) = x1
POL(c2(x1)) = x1
POL(c3(x1)) = x1
POL(c4(x1)) = x1
POL(c5(x1)) = x1
POL(c6(x1)) = x1
POL(c9(x1)) = x1
POL(false) = 0
POL(gr(x1, x2)) = [1]
POL(p(x1)) = 0
POL(s(x1)) = 0
POL(true) = [1]
(36) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
Tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, s(z0), s(z1)) → c(COND2(gr(z0, z1), s(z0), s(z1)), GR(s(z0), s(z1)))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(true, 0, x1) → c3(COND3(gr(0, 0), 0, x1))
COND3(true, s(z0), x1) → c3(COND3(gr(s(z0), 0), z0, x1))
COND3(true, 0, x1) → c3(COND3(false, p(0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, p(s(z0)), x1))
COND3(false, x0, 0) → c4(COND1(and(gr(x0, 0), false), x0, 0))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
S tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, s(z0), s(z1)) → c(COND2(gr(z0, z1), s(z0), s(z1)), GR(s(z0), s(z1)))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(true, 0, x1) → c3(COND3(gr(0, 0), 0, x1))
COND3(true, 0, x1) → c3(COND3(false, p(0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, p(s(z0)), x1))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
K tuples:
COND3(true, s(z0), x1) → c3(COND3(gr(s(z0), 0), z0, x1))
COND3(false, x0, 0) → c4(COND1(and(gr(x0, 0), false), x0, 0))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
Defined Rule Symbols:
gr, p, and
Defined Pair Symbols:
GR, COND1, COND2, COND3, COND4
Compound Symbols:
c9, c, c, c1, c2, c3, c4, c5, c6
(37) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
We considered the (Usable) Rules:
gr(0, z0) → false
and(true, true) → true
gr(s(z0), 0) → true
and(false, z0) → false
and(z0, false) → false
And the Tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, s(z0), s(z1)) → c(COND2(gr(z0, z1), s(z0), s(z1)), GR(s(z0), s(z1)))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(true, 0, x1) → c3(COND3(gr(0, 0), 0, x1))
COND3(true, s(z0), x1) → c3(COND3(gr(s(z0), 0), z0, x1))
COND3(true, 0, x1) → c3(COND3(false, p(0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, p(s(z0)), x1))
COND3(false, x0, 0) → c4(COND1(and(gr(x0, 0), false), x0, 0))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(COND1(x1, x2, x3)) = x1
POL(COND2(x1, x2, x3)) = [1]
POL(COND3(x1, x2, x3)) = [1]
POL(COND4(x1, x2, x3)) = [1]
POL(GR(x1, x2)) = 0
POL(and(x1, x2)) = x1
POL(c(x1)) = x1
POL(c(x1, x2)) = x1 + x2
POL(c1(x1)) = x1
POL(c2(x1)) = x1
POL(c3(x1)) = x1
POL(c4(x1)) = x1
POL(c5(x1)) = x1
POL(c6(x1)) = x1
POL(c9(x1)) = x1
POL(false) = 0
POL(gr(x1, x2)) = [1]
POL(p(x1)) = 0
POL(s(x1)) = 0
POL(true) = [1]
(38) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
Tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, s(z0), s(z1)) → c(COND2(gr(z0, z1), s(z0), s(z1)), GR(s(z0), s(z1)))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(true, 0, x1) → c3(COND3(gr(0, 0), 0, x1))
COND3(true, s(z0), x1) → c3(COND3(gr(s(z0), 0), z0, x1))
COND3(true, 0, x1) → c3(COND3(false, p(0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, p(s(z0)), x1))
COND3(false, x0, 0) → c4(COND1(and(gr(x0, 0), false), x0, 0))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
S tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, s(z0), s(z1)) → c(COND2(gr(z0, z1), s(z0), s(z1)), GR(s(z0), s(z1)))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(true, 0, x1) → c3(COND3(gr(0, 0), 0, x1))
COND3(true, 0, x1) → c3(COND3(false, p(0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, p(s(z0)), x1))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
K tuples:
COND3(true, s(z0), x1) → c3(COND3(gr(s(z0), 0), z0, x1))
COND3(false, x0, 0) → c4(COND1(and(gr(x0, 0), false), x0, 0))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
Defined Rule Symbols:
gr, p, and
Defined Pair Symbols:
GR, COND1, COND2, COND3, COND4
Compound Symbols:
c9, c, c, c1, c2, c3, c4, c5, c6
(39) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND1(
true,
s(
z0),
s(
z1)) →
c(
COND2(
gr(
z0,
z1),
s(
z0),
s(
z1)),
GR(
s(
z0),
s(
z1))) by
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
(40) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
Tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(true, 0, x1) → c3(COND3(gr(0, 0), 0, x1))
COND3(true, s(z0), x1) → c3(COND3(gr(s(z0), 0), z0, x1))
COND3(true, 0, x1) → c3(COND3(false, p(0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, p(s(z0)), x1))
COND3(false, x0, 0) → c4(COND1(and(gr(x0, 0), false), x0, 0))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
S tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(true, 0, x1) → c3(COND3(gr(0, 0), 0, x1))
COND3(true, 0, x1) → c3(COND3(false, p(0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, p(s(z0)), x1))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
K tuples:
COND3(true, s(z0), x1) → c3(COND3(gr(s(z0), 0), z0, x1))
COND3(false, x0, 0) → c4(COND1(and(gr(x0, 0), false), x0, 0))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
Defined Rule Symbols:
gr, p, and
Defined Pair Symbols:
GR, COND1, COND2, COND3, COND4
Compound Symbols:
c9, c, c1, c2, c3, c4, c5, c6, c
(41) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
We considered the (Usable) Rules:none
And the Tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(true, 0, x1) → c3(COND3(gr(0, 0), 0, x1))
COND3(true, s(z0), x1) → c3(COND3(gr(s(z0), 0), z0, x1))
COND3(true, 0, x1) → c3(COND3(false, p(0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, p(s(z0)), x1))
COND3(false, x0, 0) → c4(COND1(and(gr(x0, 0), false), x0, 0))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = [5]
POL(COND1(x1, x2, x3)) = [1]
POL(COND2(x1, x2, x3)) = [1]
POL(COND3(x1, x2, x3)) = [1]
POL(COND4(x1, x2, x3)) = [1]
POL(GR(x1, x2)) = 0
POL(and(x1, x2)) = [4]
POL(c(x1)) = x1
POL(c(x1, x2)) = x1 + x2
POL(c1(x1)) = x1
POL(c2(x1)) = x1
POL(c3(x1)) = x1
POL(c4(x1)) = x1
POL(c5(x1)) = x1
POL(c6(x1)) = x1
POL(c9(x1)) = x1
POL(false) = [3]
POL(gr(x1, x2)) = [2] + [3]x1 + [4]x2
POL(p(x1)) = [4] + [4]x1
POL(s(x1)) = [2] + x1
POL(true) = [3]
(42) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
Tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(true, 0, x1) → c3(COND3(gr(0, 0), 0, x1))
COND3(true, s(z0), x1) → c3(COND3(gr(s(z0), 0), z0, x1))
COND3(true, 0, x1) → c3(COND3(false, p(0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, p(s(z0)), x1))
COND3(false, x0, 0) → c4(COND1(and(gr(x0, 0), false), x0, 0))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
S tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(true, 0, x1) → c3(COND3(gr(0, 0), 0, x1))
COND3(true, 0, x1) → c3(COND3(false, p(0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, p(s(z0)), x1))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
K tuples:
COND3(true, s(z0), x1) → c3(COND3(gr(s(z0), 0), z0, x1))
COND3(false, x0, 0) → c4(COND1(and(gr(x0, 0), false), x0, 0))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
Defined Rule Symbols:
gr, p, and
Defined Pair Symbols:
GR, COND1, COND2, COND3, COND4
Compound Symbols:
c9, c, c1, c2, c3, c4, c5, c6, c
(43) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND3(
true,
0,
x1) →
c3(
COND3(
gr(
0,
0),
0,
x1)) by
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
(44) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
Tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(true, s(z0), x1) → c3(COND3(gr(s(z0), 0), z0, x1))
COND3(true, 0, x1) → c3(COND3(false, p(0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, p(s(z0)), x1))
COND3(false, x0, 0) → c4(COND1(and(gr(x0, 0), false), x0, 0))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
S tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(true, 0, x1) → c3(COND3(false, p(0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, p(s(z0)), x1))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
K tuples:
COND3(true, s(z0), x1) → c3(COND3(gr(s(z0), 0), z0, x1))
COND3(false, x0, 0) → c4(COND1(and(gr(x0, 0), false), x0, 0))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
Defined Rule Symbols:
gr, p, and
Defined Pair Symbols:
GR, COND1, COND2, COND3, COND4
Compound Symbols:
c9, c, c1, c2, c3, c4, c5, c6, c
(45) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND3(
true,
s(
z0),
x1) →
c3(
COND3(
gr(
s(
z0),
0),
z0,
x1)) by
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
(46) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
Tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(true, 0, x1) → c3(COND3(false, p(0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, p(s(z0)), x1))
COND3(false, x0, 0) → c4(COND1(and(gr(x0, 0), false), x0, 0))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
S tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(true, 0, x1) → c3(COND3(false, p(0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, p(s(z0)), x1))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
K tuples:
COND3(true, s(z0), x1) → c3(COND3(gr(s(z0), 0), z0, x1))
COND3(false, x0, 0) → c4(COND1(and(gr(x0, 0), false), x0, 0))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
Defined Rule Symbols:
gr, p, and
Defined Pair Symbols:
GR, COND1, COND2, COND3, COND4
Compound Symbols:
c9, c, c1, c2, c3, c4, c5, c6, c
(47) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND3(
true,
0,
x1) →
c3(
COND3(
false,
p(
0),
x1)) by
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
(48) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
Tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(true, s(z0), x1) → c3(COND3(true, p(s(z0)), x1))
COND3(false, x0, 0) → c4(COND1(and(gr(x0, 0), false), x0, 0))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
S tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(true, s(z0), x1) → c3(COND3(true, p(s(z0)), x1))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
K tuples:
COND3(true, s(z0), x1) → c3(COND3(gr(s(z0), 0), z0, x1))
COND3(false, x0, 0) → c4(COND1(and(gr(x0, 0), false), x0, 0))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
Defined Rule Symbols:
gr, p, and
Defined Pair Symbols:
GR, COND1, COND2, COND3, COND4
Compound Symbols:
c9, c, c1, c2, c3, c4, c5, c6, c
(49) CdtKnowledgeProof (BOTH BOUNDS(ID, ID) transformation)
The following tuples could be moved from S to K by knowledge propagation:
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
(50) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
Tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(true, s(z0), x1) → c3(COND3(true, p(s(z0)), x1))
COND3(false, x0, 0) → c4(COND1(and(gr(x0, 0), false), x0, 0))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
S tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(true, s(z0), x1) → c3(COND3(true, p(s(z0)), x1))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
K tuples:
COND3(true, s(z0), x1) → c3(COND3(gr(s(z0), 0), z0, x1))
COND3(false, x0, 0) → c4(COND1(and(gr(x0, 0), false), x0, 0))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
Defined Rule Symbols:
gr, p, and
Defined Pair Symbols:
GR, COND1, COND2, COND3, COND4
Compound Symbols:
c9, c, c1, c2, c3, c4, c5, c6, c
(51) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND3(
true,
s(
z0),
x1) →
c3(
COND3(
true,
p(
s(
z0)),
x1)) by
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
(52) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
Tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(false, x0, 0) → c4(COND1(and(gr(x0, 0), false), x0, 0))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
S tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
K tuples:
COND3(true, s(z0), x1) → c3(COND3(gr(s(z0), 0), z0, x1))
COND3(false, x0, 0) → c4(COND1(and(gr(x0, 0), false), x0, 0))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
Defined Rule Symbols:
gr, p, and
Defined Pair Symbols:
GR, COND1, COND2, COND3, COND4
Compound Symbols:
c9, c, c1, c2, c4, c5, c6, c, c3
(53) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
We considered the (Usable) Rules:none
And the Tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(false, x0, 0) → c4(COND1(and(gr(x0, 0), false), x0, 0))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = [3]
POL(COND1(x1, x2, x3)) = x2
POL(COND2(x1, x2, x3)) = x2
POL(COND3(x1, x2, x3)) = [3]x1 + x2
POL(COND4(x1, x2, x3)) = x2
POL(GR(x1, x2)) = 0
POL(and(x1, x2)) = [2] + x1 + [2]x2
POL(c(x1)) = x1
POL(c(x1, x2)) = x1 + x2
POL(c1(x1)) = x1
POL(c2(x1)) = x1
POL(c3(x1)) = x1
POL(c4(x1)) = x1
POL(c5(x1)) = x1
POL(c6(x1)) = x1
POL(c9(x1)) = x1
POL(false) = 0
POL(gr(x1, x2)) = [3] + [4]x1
POL(p(x1)) = [5]
POL(s(x1)) = [4] + x1
POL(true) = 0
(54) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
Tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(false, x0, 0) → c4(COND1(and(gr(x0, 0), false), x0, 0))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
S tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
K tuples:
COND3(true, s(z0), x1) → c3(COND3(gr(s(z0), 0), z0, x1))
COND3(false, x0, 0) → c4(COND1(and(gr(x0, 0), false), x0, 0))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
Defined Rule Symbols:
gr, p, and
Defined Pair Symbols:
GR, COND1, COND2, COND3, COND4
Compound Symbols:
c9, c, c1, c2, c4, c5, c6, c, c3
(55) CdtKnowledgeProof (BOTH BOUNDS(ID, ID) transformation)
The following tuples could be moved from S to K by knowledge propagation:
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(false, x0, 0) → c4(COND1(and(gr(x0, 0), false), x0, 0))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
(56) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
Tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(false, x0, 0) → c4(COND1(and(gr(x0, 0), false), x0, 0))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
S tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
K tuples:
COND3(true, s(z0), x1) → c3(COND3(gr(s(z0), 0), z0, x1))
COND3(false, x0, 0) → c4(COND1(and(gr(x0, 0), false), x0, 0))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
Defined Rule Symbols:
gr, p, and
Defined Pair Symbols:
GR, COND1, COND2, COND3, COND4
Compound Symbols:
c9, c, c1, c2, c4, c5, c6, c, c3
(57) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND3(
false,
x0,
0) →
c4(
COND1(
and(
gr(
x0,
0),
false),
x0,
0)) by
COND3(false, x0, 0) → c4(COND1(false, x0, 0))
COND3(false, 0, 0) → c4(COND1(and(false, false), 0, 0))
COND3(false, s(z0), 0) → c4(COND1(and(true, false), s(z0), 0))
(58) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
Tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(false, x0, 0) → c4(COND1(false, x0, 0))
COND3(false, 0, 0) → c4(COND1(and(false, false), 0, 0))
COND3(false, s(z0), 0) → c4(COND1(and(true, false), s(z0), 0))
S tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
K tuples:
COND3(true, s(z0), x1) → c3(COND3(gr(s(z0), 0), z0, x1))
COND3(false, x0, 0) → c4(COND1(and(gr(x0, 0), false), x0, 0))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
Defined Rule Symbols:
gr, p, and
Defined Pair Symbols:
GR, COND1, COND2, COND3, COND4
Compound Symbols:
c9, c, c1, c2, c4, c5, c6, c, c3
(59) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
COND3(false, x0, 0) → c4(COND1(false, x0, 0))
(60) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
Tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(false, 0, 0) → c4(COND1(and(false, false), 0, 0))
COND3(false, s(z0), 0) → c4(COND1(and(true, false), s(z0), 0))
S tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
K tuples:
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
Defined Rule Symbols:
gr, p, and
Defined Pair Symbols:
GR, COND1, COND2, COND3, COND4
Compound Symbols:
c9, c, c1, c2, c4, c5, c6, c, c3
(61) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND3(
false,
x0,
s(
z0)) →
c4(
COND1(
and(
gr(
x0,
0),
true),
x0,
s(
z0))) by
COND3(false, 0, s(x1)) → c4(COND1(and(false, true), 0, s(x1)))
COND3(false, s(z0), s(x1)) → c4(COND1(and(true, true), s(z0), s(x1)))
(62) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
Tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(false, 0, 0) → c4(COND1(and(false, false), 0, 0))
COND3(false, s(z0), 0) → c4(COND1(and(true, false), s(z0), 0))
COND3(false, 0, s(x1)) → c4(COND1(and(false, true), 0, s(x1)))
COND3(false, s(z0), s(x1)) → c4(COND1(and(true, true), s(z0), s(x1)))
S tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
K tuples:
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
Defined Rule Symbols:
gr, p, and
Defined Pair Symbols:
GR, COND1, COND2, COND3, COND4
Compound Symbols:
c9, c, c1, c2, c4, c5, c6, c, c3
(63) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND3(
false,
0,
x1) →
c4(
COND1(
and(
false,
gr(
x1,
0)),
0,
x1)) by
COND3(false, 0, x0) → c4(COND1(false, 0, x0))
COND3(false, 0, 0) → c4(COND1(and(false, false), 0, 0))
COND3(false, 0, s(z0)) → c4(COND1(and(false, true), 0, s(z0)))
(64) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
Tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(false, 0, 0) → c4(COND1(and(false, false), 0, 0))
COND3(false, s(z0), 0) → c4(COND1(and(true, false), s(z0), 0))
COND3(false, 0, s(x1)) → c4(COND1(and(false, true), 0, s(x1)))
COND3(false, s(z0), s(x1)) → c4(COND1(and(true, true), s(z0), s(x1)))
COND3(false, 0, x0) → c4(COND1(false, 0, x0))
S tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
K tuples:
COND3(false, 0, x1) → c4(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(false, x0, s(z0)) → c4(COND1(and(gr(x0, 0), true), x0, s(z0)))
Defined Rule Symbols:
gr, p, and
Defined Pair Symbols:
GR, COND1, COND2, COND3, COND4
Compound Symbols:
c9, c, c1, c2, c4, c5, c6, c, c3
(65) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
COND3(false, 0, x0) → c4(COND1(false, 0, x0))
(66) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
Tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(false, 0, 0) → c4(COND1(and(false, false), 0, 0))
COND3(false, s(z0), 0) → c4(COND1(and(true, false), s(z0), 0))
COND3(false, 0, s(x1)) → c4(COND1(and(false, true), 0, s(x1)))
COND3(false, s(z0), s(x1)) → c4(COND1(and(true, true), s(z0), s(x1)))
S tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
K tuples:
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
Defined Rule Symbols:
gr, p, and
Defined Pair Symbols:
GR, COND1, COND2, COND3, COND4
Compound Symbols:
c9, c, c1, c2, c4, c5, c6, c, c3
(67) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
COND1(true, 0, z0) → c(COND2(false, 0, z0))
We considered the (Usable) Rules:
gr(0, z0) → false
and(true, true) → true
gr(s(z0), 0) → true
and(z0, false) → false
and(false, z0) → false
And the Tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(false, 0, 0) → c4(COND1(and(false, false), 0, 0))
COND3(false, s(z0), 0) → c4(COND1(and(true, false), s(z0), 0))
COND3(false, 0, s(x1)) → c4(COND1(and(false, true), 0, s(x1)))
COND3(false, s(z0), s(x1)) → c4(COND1(and(true, true), s(z0), s(x1)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(COND1(x1, x2, x3)) = x1
POL(COND2(x1, x2, x3)) = x2
POL(COND3(x1, x2, x3)) = [1]
POL(COND4(x1, x2, x3)) = x2
POL(GR(x1, x2)) = 0
POL(and(x1, x2)) = x1
POL(c(x1)) = x1
POL(c(x1, x2)) = x1 + x2
POL(c1(x1)) = x1
POL(c2(x1)) = x1
POL(c3(x1)) = x1
POL(c4(x1)) = x1
POL(c5(x1)) = x1
POL(c6(x1)) = x1
POL(c9(x1)) = x1
POL(false) = 0
POL(gr(x1, x2)) = x1
POL(p(x1)) = [5]
POL(s(x1)) = [1]
POL(true) = [1]
(68) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
Tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(false, 0, 0) → c4(COND1(and(false, false), 0, 0))
COND3(false, s(z0), 0) → c4(COND1(and(true, false), s(z0), 0))
COND3(false, 0, s(x1)) → c4(COND1(and(false, true), 0, s(x1)))
COND3(false, s(z0), s(x1)) → c4(COND1(and(true, true), s(z0), s(x1)))
S tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
K tuples:
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
Defined Rule Symbols:
gr, p, and
Defined Pair Symbols:
GR, COND1, COND2, COND3, COND4
Compound Symbols:
c9, c, c1, c2, c4, c5, c6, c, c3
(69) CdtKnowledgeProof (BOTH BOUNDS(ID, ID) transformation)
The following tuples could be moved from S to K by knowledge propagation:
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
(70) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
Tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(false, 0, 0) → c4(COND1(and(false, false), 0, 0))
COND3(false, s(z0), 0) → c4(COND1(and(true, false), s(z0), 0))
COND3(false, 0, s(x1)) → c4(COND1(and(false, true), 0, s(x1)))
COND3(false, s(z0), s(x1)) → c4(COND1(and(true, true), s(z0), s(x1)))
S tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
K tuples:
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
Defined Rule Symbols:
gr, p, and
Defined Pair Symbols:
GR, COND1, COND2, COND3, COND4
Compound Symbols:
c9, c, c1, c2, c4, c5, c6, c, c3
(71) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND3(
false,
s(
z0),
x1) →
c4(
COND1(
and(
true,
gr(
x1,
0)),
s(
z0),
x1)) by
COND3(false, s(x0), 0) → c4(COND1(and(true, false), s(x0), 0))
COND3(false, s(x0), s(z0)) → c4(COND1(and(true, true), s(x0), s(z0)))
(72) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
Tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(false, 0, 0) → c4(COND1(and(false, false), 0, 0))
COND3(false, s(z0), 0) → c4(COND1(and(true, false), s(z0), 0))
COND3(false, 0, s(x1)) → c4(COND1(and(false, true), 0, s(x1)))
COND3(false, s(z0), s(x1)) → c4(COND1(and(true, true), s(z0), s(x1)))
S tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND4(true, x0, 0) → c5(COND4(gr(0, 0), x0, 0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
K tuples:
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
Defined Rule Symbols:
gr, p, and
Defined Pair Symbols:
GR, COND1, COND2, COND4, COND3
Compound Symbols:
c9, c, c1, c2, c5, c6, c, c3, c4
(73) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND4(
true,
x0,
0) →
c5(
COND4(
gr(
0,
0),
x0,
0)) by
COND4(true, x0, 0) → c5(COND4(false, x0, 0))
(74) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
Tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(false, 0, 0) → c4(COND1(and(false, false), 0, 0))
COND3(false, s(z0), 0) → c4(COND1(and(true, false), s(z0), 0))
COND3(false, 0, s(x1)) → c4(COND1(and(false, true), 0, s(x1)))
COND3(false, s(z0), s(x1)) → c4(COND1(and(true, true), s(z0), s(x1)))
COND4(true, x0, 0) → c5(COND4(false, x0, 0))
S tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND4(true, x0, 0) → c5(COND4(false, x0, 0))
K tuples:
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
Defined Rule Symbols:
gr, p, and
Defined Pair Symbols:
GR, COND1, COND2, COND4, COND3
Compound Symbols:
c9, c, c1, c2, c5, c6, c, c3, c4
(75) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND4(
true,
x0,
s(
z0)) →
c5(
COND4(
gr(
s(
z0),
0),
x0,
z0)) by
COND4(true, x0, s(z0)) → c5(COND4(true, x0, z0))
(76) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
Tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(false, 0, 0) → c4(COND1(and(false, false), 0, 0))
COND3(false, s(z0), 0) → c4(COND1(and(true, false), s(z0), 0))
COND3(false, 0, s(x1)) → c4(COND1(and(false, true), 0, s(x1)))
COND3(false, s(z0), s(x1)) → c4(COND1(and(true, true), s(z0), s(x1)))
COND4(true, x0, 0) → c5(COND4(false, x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, z0))
S tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND4(true, x0, 0) → c5(COND4(false, x0, p(0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND4(true, x0, 0) → c5(COND4(false, x0, 0))
K tuples:
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
Defined Rule Symbols:
gr, p, and
Defined Pair Symbols:
GR, COND1, COND2, COND4, COND3
Compound Symbols:
c9, c, c1, c2, c5, c6, c, c3, c4
(77) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND4(
true,
x0,
0) →
c5(
COND4(
false,
x0,
p(
0))) by
COND4(true, x0, 0) → c5(COND4(false, x0, 0))
(78) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
Tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(false, 0, 0) → c4(COND1(and(false, false), 0, 0))
COND3(false, s(z0), 0) → c4(COND1(and(true, false), s(z0), 0))
COND3(false, 0, s(x1)) → c4(COND1(and(false, true), 0, s(x1)))
COND3(false, s(z0), s(x1)) → c4(COND1(and(true, true), s(z0), s(x1)))
COND4(true, x0, 0) → c5(COND4(false, x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, z0))
S tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND4(true, x0, 0) → c5(COND4(false, x0, 0))
K tuples:
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
Defined Rule Symbols:
gr, p, and
Defined Pair Symbols:
GR, COND1, COND2, COND4, COND3
Compound Symbols:
c9, c, c1, c2, c5, c6, c, c3, c4
(79) CdtKnowledgeProof (BOTH BOUNDS(ID, ID) transformation)
The following tuples could be moved from S to K by knowledge propagation:
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
(80) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
Tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(false, 0, 0) → c4(COND1(and(false, false), 0, 0))
COND3(false, s(z0), 0) → c4(COND1(and(true, false), s(z0), 0))
COND3(false, 0, s(x1)) → c4(COND1(and(false, true), 0, s(x1)))
COND3(false, s(z0), s(x1)) → c4(COND1(and(true, true), s(z0), s(x1)))
COND4(true, x0, 0) → c5(COND4(false, x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, z0))
S tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND4(true, x0, 0) → c5(COND4(false, x0, 0))
K tuples:
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
Defined Rule Symbols:
gr, p, and
Defined Pair Symbols:
GR, COND1, COND2, COND4, COND3
Compound Symbols:
c9, c, c1, c2, c5, c6, c, c3, c4
(81) CdtUsableRulesProof (EQUIVALENT transformation)
The following rules are not usable and were removed:
p(0) → 0
(82) Obligation:
Complexity Dependency Tuples Problem
Rules:
p(s(z0)) → z0
and(false, z0) → false
and(z0, false) → false
and(true, true) → true
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
Tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(false, 0, 0) → c4(COND1(and(false, false), 0, 0))
COND3(false, s(z0), 0) → c4(COND1(and(true, false), s(z0), 0))
COND3(false, 0, s(x1)) → c4(COND1(and(false, true), 0, s(x1)))
COND3(false, s(z0), s(x1)) → c4(COND1(and(true, true), s(z0), s(x1)))
COND4(true, x0, 0) → c5(COND4(false, x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, z0))
S tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, p(s(z0))))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND4(true, x0, 0) → c5(COND4(false, x0, 0))
K tuples:
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
Defined Rule Symbols:
p, and, gr
Defined Pair Symbols:
GR, COND1, COND2, COND4, COND3
Compound Symbols:
c9, c, c1, c2, c5, c6, c, c3, c4
(83) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND4(
true,
x0,
s(
z0)) →
c5(
COND4(
true,
x0,
p(
s(
z0)))) by
COND4(true, x0, s(z0)) → c5(COND4(true, x0, z0))
(84) Obligation:
Complexity Dependency Tuples Problem
Rules:
p(s(z0)) → z0
and(false, z0) → false
and(z0, false) → false
and(true, true) → true
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
Tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(false, 0, 0) → c4(COND1(and(false, false), 0, 0))
COND3(false, s(z0), 0) → c4(COND1(and(true, false), s(z0), 0))
COND3(false, 0, s(x1)) → c4(COND1(and(false, true), 0, s(x1)))
COND3(false, s(z0), s(x1)) → c4(COND1(and(true, true), s(z0), s(x1)))
COND4(true, x0, 0) → c5(COND4(false, x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, z0))
S tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND4(true, x0, 0) → c5(COND4(false, x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, z0))
K tuples:
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
Defined Rule Symbols:
p, and, gr
Defined Pair Symbols:
GR, COND1, COND2, COND4, COND3
Compound Symbols:
c9, c, c1, c2, c6, c, c3, c4, c5
(85) CdtUsableRulesProof (EQUIVALENT transformation)
The following rules are not usable and were removed:
p(s(z0)) → z0
(86) Obligation:
Complexity Dependency Tuples Problem
Rules:
and(false, z0) → false
and(z0, false) → false
and(true, true) → true
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
Tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(false, 0, 0) → c4(COND1(and(false, false), 0, 0))
COND3(false, s(z0), 0) → c4(COND1(and(true, false), s(z0), 0))
COND3(false, 0, s(x1)) → c4(COND1(and(false, true), 0, s(x1)))
COND3(false, s(z0), s(x1)) → c4(COND1(and(true, true), s(z0), s(x1)))
COND4(true, x0, 0) → c5(COND4(false, x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, z0))
S tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND4(true, x0, 0) → c5(COND4(false, x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, z0))
K tuples:
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
Defined Rule Symbols:
and, gr
Defined Pair Symbols:
GR, COND1, COND2, COND4, COND3
Compound Symbols:
c9, c, c1, c2, c6, c, c3, c4, c5
(87) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
COND4(true, x0, s(z0)) → c5(COND4(true, x0, z0))
We considered the (Usable) Rules:none
And the Tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(false, 0, 0) → c4(COND1(and(false, false), 0, 0))
COND3(false, s(z0), 0) → c4(COND1(and(true, false), s(z0), 0))
COND3(false, 0, s(x1)) → c4(COND1(and(false, true), 0, s(x1)))
COND3(false, s(z0), s(x1)) → c4(COND1(and(true, true), s(z0), s(x1)))
COND4(true, x0, 0) → c5(COND4(false, x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(COND1(x1, x2, x3)) = [2]x3
POL(COND2(x1, x2, x3)) = [2]x3
POL(COND3(x1, x2, x3)) = [2]x3
POL(COND4(x1, x2, x3)) = [2]x3
POL(GR(x1, x2)) = 0
POL(and(x1, x2)) = 0
POL(c(x1)) = x1
POL(c(x1, x2)) = x1 + x2
POL(c1(x1)) = x1
POL(c2(x1)) = x1
POL(c3(x1)) = x1
POL(c4(x1)) = x1
POL(c5(x1)) = x1
POL(c6(x1)) = x1
POL(c9(x1)) = x1
POL(false) = 0
POL(gr(x1, x2)) = 0
POL(s(x1)) = [4] + x1
POL(true) = 0
(88) Obligation:
Complexity Dependency Tuples Problem
Rules:
and(false, z0) → false
and(z0, false) → false
and(true, true) → true
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
Tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(false, 0, 0) → c4(COND1(and(false, false), 0, 0))
COND3(false, s(z0), 0) → c4(COND1(and(true, false), s(z0), 0))
COND3(false, 0, s(x1)) → c4(COND1(and(false, true), 0, s(x1)))
COND3(false, s(z0), s(x1)) → c4(COND1(and(true, true), s(z0), s(x1)))
COND4(true, x0, 0) → c5(COND4(false, x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, z0))
S tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND4(true, x0, 0) → c5(COND4(false, x0, 0))
K tuples:
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, z0))
Defined Rule Symbols:
and, gr
Defined Pair Symbols:
GR, COND1, COND2, COND4, COND3
Compound Symbols:
c9, c, c1, c2, c6, c, c3, c4, c5
(89) CdtKnowledgeProof (BOTH BOUNDS(ID, ID) transformation)
The following tuples could be moved from S to K by knowledge propagation:
COND4(true, x0, 0) → c5(COND4(false, x0, 0))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
(90) Obligation:
Complexity Dependency Tuples Problem
Rules:
and(false, z0) → false
and(z0, false) → false
and(true, true) → true
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
Tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(false, 0, 0) → c4(COND1(and(false, false), 0, 0))
COND3(false, s(z0), 0) → c4(COND1(and(true, false), s(z0), 0))
COND3(false, 0, s(x1)) → c4(COND1(and(false, true), 0, s(x1)))
COND3(false, s(z0), s(x1)) → c4(COND1(and(true, true), s(z0), s(x1)))
COND4(true, x0, 0) → c5(COND4(false, x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, z0))
S tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
K tuples:
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, z0))
COND4(true, x0, 0) → c5(COND4(false, x0, 0))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
Defined Rule Symbols:
and, gr
Defined Pair Symbols:
GR, COND1, COND2, COND4, COND3
Compound Symbols:
c9, c, c1, c2, c6, c, c3, c4, c5
(91) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND4(
false,
x0,
0) →
c6(
COND1(
and(
gr(
x0,
0),
false),
x0,
0)) by
COND4(false, x0, 0) → c6(COND1(false, x0, 0))
COND4(false, 0, 0) → c6(COND1(and(false, false), 0, 0))
COND4(false, s(z0), 0) → c6(COND1(and(true, false), s(z0), 0))
(92) Obligation:
Complexity Dependency Tuples Problem
Rules:
and(false, z0) → false
and(z0, false) → false
and(true, true) → true
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
Tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(false, 0, 0) → c4(COND1(and(false, false), 0, 0))
COND3(false, s(z0), 0) → c4(COND1(and(true, false), s(z0), 0))
COND3(false, 0, s(x1)) → c4(COND1(and(false, true), 0, s(x1)))
COND3(false, s(z0), s(x1)) → c4(COND1(and(true, true), s(z0), s(x1)))
COND4(true, x0, 0) → c5(COND4(false, x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, z0))
COND4(false, x0, 0) → c6(COND1(false, x0, 0))
COND4(false, 0, 0) → c6(COND1(and(false, false), 0, 0))
COND4(false, s(z0), 0) → c6(COND1(and(true, false), s(z0), 0))
S tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
K tuples:
COND4(true, x0, s(z0)) → c5(COND4(gr(s(z0), 0), x0, z0))
COND4(false, x0, 0) → c6(COND1(and(gr(x0, 0), false), x0, 0))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(false, s(z0), x1) → c4(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, z0))
COND4(true, x0, 0) → c5(COND4(false, x0, 0))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
Defined Rule Symbols:
and, gr
Defined Pair Symbols:
GR, COND1, COND2, COND4, COND3
Compound Symbols:
c9, c, c1, c2, c6, c, c3, c4, c5
(93) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
COND4(false, x0, 0) → c6(COND1(false, x0, 0))
(94) Obligation:
Complexity Dependency Tuples Problem
Rules:
and(false, z0) → false
and(z0, false) → false
and(true, true) → true
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
Tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(false, 0, 0) → c4(COND1(and(false, false), 0, 0))
COND3(false, s(z0), 0) → c4(COND1(and(true, false), s(z0), 0))
COND3(false, 0, s(x1)) → c4(COND1(and(false, true), 0, s(x1)))
COND3(false, s(z0), s(x1)) → c4(COND1(and(true, true), s(z0), s(x1)))
COND4(true, x0, 0) → c5(COND4(false, x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, z0))
COND4(false, 0, 0) → c6(COND1(and(false, false), 0, 0))
COND4(false, s(z0), 0) → c6(COND1(and(true, false), s(z0), 0))
S tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
K tuples:
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, z0))
COND4(true, x0, 0) → c5(COND4(false, x0, 0))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
Defined Rule Symbols:
and, gr
Defined Pair Symbols:
GR, COND1, COND2, COND4, COND3
Compound Symbols:
c9, c, c1, c2, c6, c, c3, c4, c5
(95) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
We considered the (Usable) Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
And the Tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(false, 0, 0) → c4(COND1(and(false, false), 0, 0))
COND3(false, s(z0), 0) → c4(COND1(and(true, false), s(z0), 0))
COND3(false, 0, s(x1)) → c4(COND1(and(false, true), 0, s(x1)))
COND3(false, s(z0), s(x1)) → c4(COND1(and(true, true), s(z0), s(x1)))
COND4(true, x0, 0) → c5(COND4(false, x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, z0))
COND4(false, 0, 0) → c6(COND1(and(false, false), 0, 0))
COND4(false, s(z0), 0) → c6(COND1(and(true, false), s(z0), 0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(COND1(x1, x2, x3)) = [2]x2·x3
POL(COND2(x1, x2, x3)) = x1·x2
POL(COND3(x1, x2, x3)) = [2]x1·x2
POL(COND4(x1, x2, x3)) = [2]x2 + x1·x3
POL(GR(x1, x2)) = 0
POL(and(x1, x2)) = 0
POL(c(x1)) = x1
POL(c(x1, x2)) = x1 + x2
POL(c1(x1)) = x1
POL(c2(x1)) = x1
POL(c3(x1)) = x1
POL(c4(x1)) = x1
POL(c5(x1)) = x1
POL(c6(x1)) = x1
POL(c9(x1)) = x1
POL(false) = [2]
POL(gr(x1, x2)) = [2]
POL(s(x1)) = [1]
POL(true) = 0
(96) Obligation:
Complexity Dependency Tuples Problem
Rules:
and(false, z0) → false
and(z0, false) → false
and(true, true) → true
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
Tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(false, 0, 0) → c4(COND1(and(false, false), 0, 0))
COND3(false, s(z0), 0) → c4(COND1(and(true, false), s(z0), 0))
COND3(false, 0, s(x1)) → c4(COND1(and(false, true), 0, s(x1)))
COND3(false, s(z0), s(x1)) → c4(COND1(and(true, true), s(z0), s(x1)))
COND4(true, x0, 0) → c5(COND4(false, x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, z0))
COND4(false, 0, 0) → c6(COND1(and(false, false), 0, 0))
COND4(false, s(z0), 0) → c6(COND1(and(true, false), s(z0), 0))
S tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
K tuples:
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, z0))
COND4(true, x0, 0) → c5(COND4(false, x0, 0))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
Defined Rule Symbols:
and, gr
Defined Pair Symbols:
GR, COND1, COND2, COND4, COND3
Compound Symbols:
c9, c, c1, c2, c6, c, c3, c4, c5
(97) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND4(
false,
x0,
s(
z0)) →
c6(
COND1(
and(
gr(
x0,
0),
true),
x0,
s(
z0))) by
COND4(false, 0, s(x1)) → c6(COND1(and(false, true), 0, s(x1)))
COND4(false, s(z0), s(x1)) → c6(COND1(and(true, true), s(z0), s(x1)))
(98) Obligation:
Complexity Dependency Tuples Problem
Rules:
and(false, z0) → false
and(z0, false) → false
and(true, true) → true
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
Tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(false, 0, 0) → c4(COND1(and(false, false), 0, 0))
COND3(false, s(z0), 0) → c4(COND1(and(true, false), s(z0), 0))
COND3(false, 0, s(x1)) → c4(COND1(and(false, true), 0, s(x1)))
COND3(false, s(z0), s(x1)) → c4(COND1(and(true, true), s(z0), s(x1)))
COND4(true, x0, 0) → c5(COND4(false, x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, z0))
COND4(false, 0, 0) → c6(COND1(and(false, false), 0, 0))
COND4(false, s(z0), 0) → c6(COND1(and(true, false), s(z0), 0))
COND4(false, 0, s(x1)) → c6(COND1(and(false, true), 0, s(x1)))
COND4(false, s(z0), s(x1)) → c6(COND1(and(true, true), s(z0), s(x1)))
S tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
K tuples:
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, z0))
COND4(true, x0, 0) → c5(COND4(false, x0, 0))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
Defined Rule Symbols:
and, gr
Defined Pair Symbols:
GR, COND1, COND2, COND4, COND3
Compound Symbols:
c9, c, c1, c2, c6, c, c3, c4, c5
(99) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND4(
false,
0,
x1) →
c6(
COND1(
and(
false,
gr(
x1,
0)),
0,
x1)) by
COND4(false, 0, x0) → c6(COND1(false, 0, x0))
COND4(false, 0, 0) → c6(COND1(and(false, false), 0, 0))
COND4(false, 0, s(z0)) → c6(COND1(and(false, true), 0, s(z0)))
(100) Obligation:
Complexity Dependency Tuples Problem
Rules:
and(false, z0) → false
and(z0, false) → false
and(true, true) → true
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
Tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(false, 0, 0) → c4(COND1(and(false, false), 0, 0))
COND3(false, s(z0), 0) → c4(COND1(and(true, false), s(z0), 0))
COND3(false, 0, s(x1)) → c4(COND1(and(false, true), 0, s(x1)))
COND3(false, s(z0), s(x1)) → c4(COND1(and(true, true), s(z0), s(x1)))
COND4(true, x0, 0) → c5(COND4(false, x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, z0))
COND4(false, 0, 0) → c6(COND1(and(false, false), 0, 0))
COND4(false, s(z0), 0) → c6(COND1(and(true, false), s(z0), 0))
COND4(false, 0, s(x1)) → c6(COND1(and(false, true), 0, s(x1)))
COND4(false, s(z0), s(x1)) → c6(COND1(and(true, true), s(z0), s(x1)))
COND4(false, 0, x0) → c6(COND1(false, 0, x0))
S tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
K tuples:
COND4(false, 0, x1) → c6(COND1(and(false, gr(x1, 0)), 0, x1))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND4(false, x0, s(z0)) → c6(COND1(and(gr(x0, 0), true), x0, s(z0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, z0))
COND4(true, x0, 0) → c5(COND4(false, x0, 0))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
Defined Rule Symbols:
and, gr
Defined Pair Symbols:
GR, COND1, COND2, COND4, COND3
Compound Symbols:
c9, c, c1, c2, c6, c, c3, c4, c5
(101) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
COND4(false, 0, x0) → c6(COND1(false, 0, x0))
(102) Obligation:
Complexity Dependency Tuples Problem
Rules:
and(false, z0) → false
and(z0, false) → false
and(true, true) → true
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
Tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(false, 0, 0) → c4(COND1(and(false, false), 0, 0))
COND3(false, s(z0), 0) → c4(COND1(and(true, false), s(z0), 0))
COND3(false, 0, s(x1)) → c4(COND1(and(false, true), 0, s(x1)))
COND3(false, s(z0), s(x1)) → c4(COND1(and(true, true), s(z0), s(x1)))
COND4(true, x0, 0) → c5(COND4(false, x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, z0))
COND4(false, 0, 0) → c6(COND1(and(false, false), 0, 0))
COND4(false, s(z0), 0) → c6(COND1(and(true, false), s(z0), 0))
COND4(false, 0, s(x1)) → c6(COND1(and(false, true), 0, s(x1)))
COND4(false, s(z0), s(x1)) → c6(COND1(and(true, true), s(z0), s(x1)))
S tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
K tuples:
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, z0))
COND4(true, x0, 0) → c5(COND4(false, x0, 0))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
Defined Rule Symbols:
and, gr
Defined Pair Symbols:
GR, COND1, COND2, COND4, COND3
Compound Symbols:
c9, c, c1, c2, c6, c, c3, c4, c5
(103) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
We considered the (Usable) Rules:none
And the Tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(false, 0, 0) → c4(COND1(and(false, false), 0, 0))
COND3(false, s(z0), 0) → c4(COND1(and(true, false), s(z0), 0))
COND3(false, 0, s(x1)) → c4(COND1(and(false, true), 0, s(x1)))
COND3(false, s(z0), s(x1)) → c4(COND1(and(true, true), s(z0), s(x1)))
COND4(true, x0, 0) → c5(COND4(false, x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, z0))
COND4(false, 0, 0) → c6(COND1(and(false, false), 0, 0))
COND4(false, s(z0), 0) → c6(COND1(and(true, false), s(z0), 0))
COND4(false, 0, s(x1)) → c6(COND1(and(false, true), 0, s(x1)))
COND4(false, s(z0), s(x1)) → c6(COND1(and(true, true), s(z0), s(x1)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(COND1(x1, x2, x3)) = [2]x2
POL(COND2(x1, x2, x3)) = [2]x2
POL(COND3(x1, x2, x3)) = x1·x2
POL(COND4(x1, x2, x3)) = [2]x2
POL(GR(x1, x2)) = 0
POL(and(x1, x2)) = 0
POL(c(x1)) = x1
POL(c(x1, x2)) = x1 + x2
POL(c1(x1)) = x1
POL(c2(x1)) = x1
POL(c3(x1)) = x1
POL(c4(x1)) = x1
POL(c5(x1)) = x1
POL(c6(x1)) = x1
POL(c9(x1)) = x1
POL(false) = [2]
POL(gr(x1, x2)) = 0
POL(s(x1)) = [1]
POL(true) = 0
(104) Obligation:
Complexity Dependency Tuples Problem
Rules:
and(false, z0) → false
and(z0, false) → false
and(true, true) → true
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
Tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(false, 0, 0) → c4(COND1(and(false, false), 0, 0))
COND3(false, s(z0), 0) → c4(COND1(and(true, false), s(z0), 0))
COND3(false, 0, s(x1)) → c4(COND1(and(false, true), 0, s(x1)))
COND3(false, s(z0), s(x1)) → c4(COND1(and(true, true), s(z0), s(x1)))
COND4(true, x0, 0) → c5(COND4(false, x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, z0))
COND4(false, 0, 0) → c6(COND1(and(false, false), 0, 0))
COND4(false, s(z0), 0) → c6(COND1(and(true, false), s(z0), 0))
COND4(false, 0, s(x1)) → c6(COND1(and(false, true), 0, s(x1)))
COND4(false, s(z0), s(x1)) → c6(COND1(and(true, true), s(z0), s(x1)))
S tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
K tuples:
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, z0))
COND4(true, x0, 0) → c5(COND4(false, x0, 0))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
Defined Rule Symbols:
and, gr
Defined Pair Symbols:
GR, COND1, COND2, COND4, COND3
Compound Symbols:
c9, c, c1, c2, c6, c, c3, c4, c5
(105) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
We considered the (Usable) Rules:none
And the Tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(false, 0, 0) → c4(COND1(and(false, false), 0, 0))
COND3(false, s(z0), 0) → c4(COND1(and(true, false), s(z0), 0))
COND3(false, 0, s(x1)) → c4(COND1(and(false, true), 0, s(x1)))
COND3(false, s(z0), s(x1)) → c4(COND1(and(true, true), s(z0), s(x1)))
COND4(true, x0, 0) → c5(COND4(false, x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, z0))
COND4(false, 0, 0) → c6(COND1(and(false, false), 0, 0))
COND4(false, s(z0), 0) → c6(COND1(and(true, false), s(z0), 0))
COND4(false, 0, s(x1)) → c6(COND1(and(false, true), 0, s(x1)))
COND4(false, s(z0), s(x1)) → c6(COND1(and(true, true), s(z0), s(x1)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(COND1(x1, x2, x3)) = x2·x3
POL(COND2(x1, x2, x3)) = 0
POL(COND3(x1, x2, x3)) = x1·x2
POL(COND4(x1, x2, x3)) = x1·x3
POL(GR(x1, x2)) = 0
POL(and(x1, x2)) = 0
POL(c(x1)) = x1
POL(c(x1, x2)) = x1 + x2
POL(c1(x1)) = x1
POL(c2(x1)) = x1
POL(c3(x1)) = x1
POL(c4(x1)) = x1
POL(c5(x1)) = x1
POL(c6(x1)) = x1
POL(c9(x1)) = x1
POL(false) = [2]
POL(gr(x1, x2)) = 0
POL(s(x1)) = [2]
POL(true) = 0
(106) Obligation:
Complexity Dependency Tuples Problem
Rules:
and(false, z0) → false
and(z0, false) → false
and(true, true) → true
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
Tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(false, 0, 0) → c4(COND1(and(false, false), 0, 0))
COND3(false, s(z0), 0) → c4(COND1(and(true, false), s(z0), 0))
COND3(false, 0, s(x1)) → c4(COND1(and(false, true), 0, s(x1)))
COND3(false, s(z0), s(x1)) → c4(COND1(and(true, true), s(z0), s(x1)))
COND4(true, x0, 0) → c5(COND4(false, x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, z0))
COND4(false, 0, 0) → c6(COND1(and(false, false), 0, 0))
COND4(false, s(z0), 0) → c6(COND1(and(true, false), s(z0), 0))
COND4(false, 0, s(x1)) → c6(COND1(and(false, true), 0, s(x1)))
COND4(false, s(z0), s(x1)) → c6(COND1(and(true, true), s(z0), s(x1)))
S tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
K tuples:
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, z0))
COND4(true, x0, 0) → c5(COND4(false, x0, 0))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
Defined Rule Symbols:
and, gr
Defined Pair Symbols:
GR, COND1, COND2, COND4, COND3
Compound Symbols:
c9, c, c1, c2, c6, c, c3, c4, c5
(107) CdtKnowledgeProof (BOTH BOUNDS(ID, ID) transformation)
The following tuples could be moved from S to K by knowledge propagation:
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, z0))
(108) Obligation:
Complexity Dependency Tuples Problem
Rules:
and(false, z0) → false
and(z0, false) → false
and(true, true) → true
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
Tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(false, 0, 0) → c4(COND1(and(false, false), 0, 0))
COND3(false, s(z0), 0) → c4(COND1(and(true, false), s(z0), 0))
COND3(false, 0, s(x1)) → c4(COND1(and(false, true), 0, s(x1)))
COND3(false, s(z0), s(x1)) → c4(COND1(and(true, true), s(z0), s(x1)))
COND4(true, x0, 0) → c5(COND4(false, x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, z0))
COND4(false, 0, 0) → c6(COND1(and(false, false), 0, 0))
COND4(false, s(z0), 0) → c6(COND1(and(true, false), s(z0), 0))
COND4(false, 0, s(x1)) → c6(COND1(and(false, true), 0, s(x1)))
COND4(false, s(z0), s(x1)) → c6(COND1(and(true, true), s(z0), s(x1)))
S tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
K tuples:
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, z0))
COND4(true, x0, 0) → c5(COND4(false, x0, 0))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
Defined Rule Symbols:
and, gr
Defined Pair Symbols:
GR, COND1, COND2, COND4, COND3
Compound Symbols:
c9, c, c1, c2, c6, c, c3, c4, c5
(109) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND4(
false,
s(
z0),
x1) →
c6(
COND1(
and(
true,
gr(
x1,
0)),
s(
z0),
x1)) by
COND4(false, s(x0), 0) → c6(COND1(and(true, false), s(x0), 0))
COND4(false, s(x0), s(z0)) → c6(COND1(and(true, true), s(x0), s(z0)))
(110) Obligation:
Complexity Dependency Tuples Problem
Rules:
and(false, z0) → false
and(z0, false) → false
and(true, true) → true
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
Tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(false, 0, 0) → c4(COND1(and(false, false), 0, 0))
COND3(false, s(z0), 0) → c4(COND1(and(true, false), s(z0), 0))
COND3(false, 0, s(x1)) → c4(COND1(and(false, true), 0, s(x1)))
COND3(false, s(z0), s(x1)) → c4(COND1(and(true, true), s(z0), s(x1)))
COND4(true, x0, 0) → c5(COND4(false, x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, z0))
COND4(false, 0, 0) → c6(COND1(and(false, false), 0, 0))
COND4(false, s(z0), 0) → c6(COND1(and(true, false), s(z0), 0))
COND4(false, 0, s(x1)) → c6(COND1(and(false, true), 0, s(x1)))
COND4(false, s(z0), s(x1)) → c6(COND1(and(true, true), s(z0), s(x1)))
S tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
K tuples:
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, z0))
COND4(true, x0, 0) → c5(COND4(false, x0, 0))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND1(true, s(s(z0)), s(0)) → c(COND2(true, s(s(z0)), s(0)), GR(s(s(z0)), s(0)))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND1(true, s(0), s(z0)) → c(COND2(false, s(0), s(z0)), GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(s(z1))) → c(COND2(gr(z0, z1), s(s(z0)), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
Defined Rule Symbols:
and, gr
Defined Pair Symbols:
GR, COND1, COND2, COND3, COND4
Compound Symbols:
c9, c, c1, c2, c, c3, c4, c5, c6
(111) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID) transformation)
Split RHS of tuples not part of any SCC
(112) Obligation:
Complexity Dependency Tuples Problem
Rules:
and(false, z0) → false
and(z0, false) → false
and(true, true) → true
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
Tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(false, 0, 0) → c4(COND1(and(false, false), 0, 0))
COND3(false, s(z0), 0) → c4(COND1(and(true, false), s(z0), 0))
COND3(false, 0, s(x1)) → c4(COND1(and(false, true), 0, s(x1)))
COND3(false, s(z0), s(x1)) → c4(COND1(and(true, true), s(z0), s(x1)))
COND4(true, x0, 0) → c5(COND4(false, x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, z0))
COND4(false, 0, 0) → c6(COND1(and(false, false), 0, 0))
COND4(false, s(z0), 0) → c6(COND1(and(true, false), s(z0), 0))
COND4(false, 0, s(x1)) → c6(COND1(and(false, true), 0, s(x1)))
COND4(false, s(z0), s(x1)) → c6(COND1(and(true, true), s(z0), s(x1)))
COND1(true, s(0), s(z0)) → c7(COND2(false, s(0), s(z0)))
COND1(true, s(0), s(z0)) → c7(GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c7(COND2(true, s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(0)) → c7(GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c7(COND2(gr(z0, z1), s(s(z0)), s(s(z1))))
COND1(true, s(s(z0)), s(s(z1))) → c7(GR(s(s(z0)), s(s(z1))))
S tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
K tuples:
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, z0))
COND4(true, x0, 0) → c5(COND4(false, x0, 0))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND1(true, s(0), s(z0)) → c7(COND2(false, s(0), s(z0)))
COND1(true, s(0), s(z0)) → c7(GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c7(COND2(true, s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(0)) → c7(GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c7(COND2(gr(z0, z1), s(s(z0)), s(s(z1))))
COND1(true, s(s(z0)), s(s(z1))) → c7(GR(s(s(z0)), s(s(z1))))
Defined Rule Symbols:
and, gr
Defined Pair Symbols:
GR, COND1, COND2, COND3, COND4
Compound Symbols:
c9, c, c1, c2, c3, c4, c5, c6, c7
(113) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
GR(s(z0), s(z1)) → c9(GR(z0, z1))
We considered the (Usable) Rules:none
And the Tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(false, 0, 0) → c4(COND1(and(false, false), 0, 0))
COND3(false, s(z0), 0) → c4(COND1(and(true, false), s(z0), 0))
COND3(false, 0, s(x1)) → c4(COND1(and(false, true), 0, s(x1)))
COND3(false, s(z0), s(x1)) → c4(COND1(and(true, true), s(z0), s(x1)))
COND4(true, x0, 0) → c5(COND4(false, x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, z0))
COND4(false, 0, 0) → c6(COND1(and(false, false), 0, 0))
COND4(false, s(z0), 0) → c6(COND1(and(true, false), s(z0), 0))
COND4(false, 0, s(x1)) → c6(COND1(and(false, true), 0, s(x1)))
COND4(false, s(z0), s(x1)) → c6(COND1(and(true, true), s(z0), s(x1)))
COND1(true, s(0), s(z0)) → c7(COND2(false, s(0), s(z0)))
COND1(true, s(0), s(z0)) → c7(GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c7(COND2(true, s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(0)) → c7(GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c7(COND2(gr(z0, z1), s(s(z0)), s(s(z1))))
COND1(true, s(s(z0)), s(s(z1))) → c7(GR(s(s(z0)), s(s(z1))))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(COND1(x1, x2, x3)) = x3
POL(COND2(x1, x2, x3)) = x3
POL(COND3(x1, x2, x3)) = [5]x1 + x3
POL(COND4(x1, x2, x3)) = [2]x1 + x3
POL(GR(x1, x2)) = x2
POL(and(x1, x2)) = 0
POL(c(x1)) = x1
POL(c1(x1)) = x1
POL(c2(x1)) = x1
POL(c3(x1)) = x1
POL(c4(x1)) = x1
POL(c5(x1)) = x1
POL(c6(x1)) = x1
POL(c7(x1)) = x1
POL(c9(x1)) = x1
POL(false) = 0
POL(gr(x1, x2)) = [3] + [3]x2
POL(s(x1)) = [2] + x1
POL(true) = 0
(114) Obligation:
Complexity Dependency Tuples Problem
Rules:
and(false, z0) → false
and(z0, false) → false
and(true, true) → true
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
Tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(false, 0, 0) → c4(COND1(and(false, false), 0, 0))
COND3(false, s(z0), 0) → c4(COND1(and(true, false), s(z0), 0))
COND3(false, 0, s(x1)) → c4(COND1(and(false, true), 0, s(x1)))
COND3(false, s(z0), s(x1)) → c4(COND1(and(true, true), s(z0), s(x1)))
COND4(true, x0, 0) → c5(COND4(false, x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, z0))
COND4(false, 0, 0) → c6(COND1(and(false, false), 0, 0))
COND4(false, s(z0), 0) → c6(COND1(and(true, false), s(z0), 0))
COND4(false, 0, s(x1)) → c6(COND1(and(false, true), 0, s(x1)))
COND4(false, s(z0), s(x1)) → c6(COND1(and(true, true), s(z0), s(x1)))
COND1(true, s(0), s(z0)) → c7(COND2(false, s(0), s(z0)))
COND1(true, s(0), s(z0)) → c7(GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c7(COND2(true, s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(0)) → c7(GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c7(COND2(gr(z0, z1), s(s(z0)), s(s(z1))))
COND1(true, s(s(z0)), s(s(z1))) → c7(GR(s(s(z0)), s(s(z1))))
S tuples:
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
K tuples:
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, z0))
COND4(true, x0, 0) → c5(COND4(false, x0, 0))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND1(true, s(0), s(z0)) → c7(COND2(false, s(0), s(z0)))
COND1(true, s(0), s(z0)) → c7(GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c7(COND2(true, s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(0)) → c7(GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c7(COND2(gr(z0, z1), s(s(z0)), s(s(z1))))
COND1(true, s(s(z0)), s(s(z1))) → c7(GR(s(s(z0)), s(s(z1))))
GR(s(z0), s(z1)) → c9(GR(z0, z1))
Defined Rule Symbols:
and, gr
Defined Pair Symbols:
GR, COND1, COND2, COND3, COND4
Compound Symbols:
c9, c, c1, c2, c3, c4, c5, c6, c7
(115) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
We considered the (Usable) Rules:
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
And the Tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(false, 0, 0) → c4(COND1(and(false, false), 0, 0))
COND3(false, s(z0), 0) → c4(COND1(and(true, false), s(z0), 0))
COND3(false, 0, s(x1)) → c4(COND1(and(false, true), 0, s(x1)))
COND3(false, s(z0), s(x1)) → c4(COND1(and(true, true), s(z0), s(x1)))
COND4(true, x0, 0) → c5(COND4(false, x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, z0))
COND4(false, 0, 0) → c6(COND1(and(false, false), 0, 0))
COND4(false, s(z0), 0) → c6(COND1(and(true, false), s(z0), 0))
COND4(false, 0, s(x1)) → c6(COND1(and(false, true), 0, s(x1)))
COND4(false, s(z0), s(x1)) → c6(COND1(and(true, true), s(z0), s(x1)))
COND1(true, s(0), s(z0)) → c7(COND2(false, s(0), s(z0)))
COND1(true, s(0), s(z0)) → c7(GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c7(COND2(true, s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(0)) → c7(GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c7(COND2(gr(z0, z1), s(s(z0)), s(s(z1))))
COND1(true, s(s(z0)), s(s(z1))) → c7(GR(s(s(z0)), s(s(z1))))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = [1]
POL(COND1(x1, x2, x3)) = x1 + x3
POL(COND2(x1, x2, x3)) = [1]
POL(COND3(x1, x2, x3)) = [1]
POL(COND4(x1, x2, x3)) = [1]
POL(GR(x1, x2)) = 0
POL(and(x1, x2)) = x2
POL(c(x1)) = x1
POL(c1(x1)) = x1
POL(c2(x1)) = x1
POL(c3(x1)) = x1
POL(c4(x1)) = x1
POL(c5(x1)) = x1
POL(c6(x1)) = x1
POL(c7(x1)) = x1
POL(c9(x1)) = x1
POL(false) = 0
POL(gr(x1, x2)) = [5] + [3]x1 + [3]x2
POL(s(x1)) = 0
POL(true) = [1]
(116) Obligation:
Complexity Dependency Tuples Problem
Rules:
and(false, z0) → false
and(z0, false) → false
and(true, true) → true
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
Tuples:
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(false, 0, 0) → c4(COND1(and(false, false), 0, 0))
COND3(false, s(z0), 0) → c4(COND1(and(true, false), s(z0), 0))
COND3(false, 0, s(x1)) → c4(COND1(and(false, true), 0, s(x1)))
COND3(false, s(z0), s(x1)) → c4(COND1(and(true, true), s(z0), s(x1)))
COND4(true, x0, 0) → c5(COND4(false, x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, z0))
COND4(false, 0, 0) → c6(COND1(and(false, false), 0, 0))
COND4(false, s(z0), 0) → c6(COND1(and(true, false), s(z0), 0))
COND4(false, 0, s(x1)) → c6(COND1(and(false, true), 0, s(x1)))
COND4(false, s(z0), s(x1)) → c6(COND1(and(true, true), s(z0), s(x1)))
COND1(true, s(0), s(z0)) → c7(COND2(false, s(0), s(z0)))
COND1(true, s(0), s(z0)) → c7(GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c7(COND2(true, s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(0)) → c7(GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c7(COND2(gr(z0, z1), s(s(z0)), s(s(z1))))
COND1(true, s(s(z0)), s(s(z1))) → c7(GR(s(s(z0)), s(s(z1))))
S tuples:none
K tuples:
COND1(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND3(true, s(z0), x1) → c3(COND3(true, z0, x1))
COND3(true, 0, x0) → c3(COND3(false, 0, x0))
COND1(true, 0, z0) → c(COND2(false, 0, z0))
COND2(false, x0, 0) → c2(COND4(false, x0, 0))
COND4(true, x0, s(z0)) → c5(COND4(true, x0, z0))
COND4(true, x0, 0) → c5(COND4(false, x0, 0))
COND4(false, s(z0), x1) → c6(COND1(and(true, gr(x1, 0)), s(z0), x1))
COND2(true, s(z0), x1) → c1(COND3(true, s(z0), x1))
COND2(false, x0, s(z0)) → c2(COND4(true, x0, s(z0)))
COND1(true, s(0), s(z0)) → c7(COND2(false, s(0), s(z0)))
COND1(true, s(0), s(z0)) → c7(GR(s(0), s(z0)))
COND1(true, s(s(z0)), s(0)) → c7(COND2(true, s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(0)) → c7(GR(s(s(z0)), s(0)))
COND1(true, s(s(z0)), s(s(z1))) → c7(COND2(gr(z0, z1), s(s(z0)), s(s(z1))))
COND1(true, s(s(z0)), s(s(z1))) → c7(GR(s(s(z0)), s(s(z1))))
GR(s(z0), s(z1)) → c9(GR(z0, z1))
COND1(true, s(z0), 0) → c(COND2(true, s(z0), 0))
Defined Rule Symbols:
and, gr
Defined Pair Symbols:
GR, COND1, COND2, COND3, COND4
Compound Symbols:
c9, c, c1, c2, c3, c4, c5, c6, c7
(117) SIsEmptyProof (BOTH BOUNDS(ID, ID) transformation)
The set S is empty
(118) BOUNDS(1, 1)