(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
cond1(true, x, y) → cond2(gr(y, 0), x, y)
cond2(true, x, y) → cond2(gr(y, 0), p(x), p(y))
cond2(false, x, y) → cond1(and(eq(x, y), gr(x, 0)), x, y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(x)) → false
eq(s(x), s(y)) → eq(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted Cpx (relative) TRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond1(true, z0, z1) → cond2(gr(z1, 0), z0, z1)
cond2(true, z0, z1) → cond2(gr(z1, 0), p(z0), p(z1))
cond2(false, z0, z1) → cond1(and(eq(z0, z1), gr(z0, 0)), z0, z1)
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
eq(0, 0) → true
eq(s(z0), 0) → false
eq(0, s(z0)) → false
eq(s(z0), s(z1)) → eq(z0, z1)
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
Tuples:
COND1(true, z0, z1) → c(COND2(gr(z1, 0), z0, z1), GR(z1, 0))
COND2(true, z0, z1) → c1(COND2(gr(z1, 0), p(z0), p(z1)), GR(z1, 0), P(z0), P(z1))
COND2(false, z0, z1) → c2(COND1(and(eq(z0, z1), gr(z0, 0)), z0, z1), AND(eq(z0, z1), gr(z0, 0)), EQ(z0, z1), GR(z0, 0))
GR(0, z0) → c3
GR(s(z0), 0) → c4
GR(s(z0), s(z1)) → c5(GR(z0, z1))
P(0) → c6
P(s(z0)) → c7
EQ(0, 0) → c8
EQ(s(z0), 0) → c9
EQ(0, s(z0)) → c10
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
AND(true, true) → c12
AND(false, z0) → c13
AND(z0, false) → c14
S tuples:
COND1(true, z0, z1) → c(COND2(gr(z1, 0), z0, z1), GR(z1, 0))
COND2(true, z0, z1) → c1(COND2(gr(z1, 0), p(z0), p(z1)), GR(z1, 0), P(z0), P(z1))
COND2(false, z0, z1) → c2(COND1(and(eq(z0, z1), gr(z0, 0)), z0, z1), AND(eq(z0, z1), gr(z0, 0)), EQ(z0, z1), GR(z0, 0))
GR(0, z0) → c3
GR(s(z0), 0) → c4
GR(s(z0), s(z1)) → c5(GR(z0, z1))
P(0) → c6
P(s(z0)) → c7
EQ(0, 0) → c8
EQ(s(z0), 0) → c9
EQ(0, s(z0)) → c10
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
AND(true, true) → c12
AND(false, z0) → c13
AND(z0, false) → c14
K tuples:none
Defined Rule Symbols:
cond1, cond2, gr, p, eq, and
Defined Pair Symbols:
COND1, COND2, GR, P, EQ, AND
Compound Symbols:
c, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14
(3) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 10 trailing nodes:
AND(true, true) → c12
AND(false, z0) → c13
GR(0, z0) → c3
EQ(s(z0), 0) → c9
EQ(0, 0) → c8
AND(z0, false) → c14
P(0) → c6
P(s(z0)) → c7
EQ(0, s(z0)) → c10
GR(s(z0), 0) → c4
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond1(true, z0, z1) → cond2(gr(z1, 0), z0, z1)
cond2(true, z0, z1) → cond2(gr(z1, 0), p(z0), p(z1))
cond2(false, z0, z1) → cond1(and(eq(z0, z1), gr(z0, 0)), z0, z1)
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
eq(0, 0) → true
eq(s(z0), 0) → false
eq(0, s(z0)) → false
eq(s(z0), s(z1)) → eq(z0, z1)
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
Tuples:
COND1(true, z0, z1) → c(COND2(gr(z1, 0), z0, z1), GR(z1, 0))
COND2(true, z0, z1) → c1(COND2(gr(z1, 0), p(z0), p(z1)), GR(z1, 0), P(z0), P(z1))
COND2(false, z0, z1) → c2(COND1(and(eq(z0, z1), gr(z0, 0)), z0, z1), AND(eq(z0, z1), gr(z0, 0)), EQ(z0, z1), GR(z0, 0))
GR(s(z0), s(z1)) → c5(GR(z0, z1))
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
S tuples:
COND1(true, z0, z1) → c(COND2(gr(z1, 0), z0, z1), GR(z1, 0))
COND2(true, z0, z1) → c1(COND2(gr(z1, 0), p(z0), p(z1)), GR(z1, 0), P(z0), P(z1))
COND2(false, z0, z1) → c2(COND1(and(eq(z0, z1), gr(z0, 0)), z0, z1), AND(eq(z0, z1), gr(z0, 0)), EQ(z0, z1), GR(z0, 0))
GR(s(z0), s(z1)) → c5(GR(z0, z1))
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
K tuples:none
Defined Rule Symbols:
cond1, cond2, gr, p, eq, and
Defined Pair Symbols:
COND1, COND2, GR, EQ
Compound Symbols:
c, c1, c2, c5, c11
(5) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 6 trailing tuple parts
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond1(true, z0, z1) → cond2(gr(z1, 0), z0, z1)
cond2(true, z0, z1) → cond2(gr(z1, 0), p(z0), p(z1))
cond2(false, z0, z1) → cond1(and(eq(z0, z1), gr(z0, 0)), z0, z1)
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
eq(0, 0) → true
eq(s(z0), 0) → false
eq(0, s(z0)) → false
eq(s(z0), s(z1)) → eq(z0, z1)
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, z0, z1) → c(COND2(gr(z1, 0), z0, z1))
COND2(true, z0, z1) → c1(COND2(gr(z1, 0), p(z0), p(z1)))
COND2(false, z0, z1) → c2(COND1(and(eq(z0, z1), gr(z0, 0)), z0, z1), EQ(z0, z1))
S tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, z0, z1) → c(COND2(gr(z1, 0), z0, z1))
COND2(true, z0, z1) → c1(COND2(gr(z1, 0), p(z0), p(z1)))
COND2(false, z0, z1) → c2(COND1(and(eq(z0, z1), gr(z0, 0)), z0, z1), EQ(z0, z1))
K tuples:none
Defined Rule Symbols:
cond1, cond2, gr, p, eq, and
Defined Pair Symbols:
GR, EQ, COND1, COND2
Compound Symbols:
c5, c11, c, c1, c2
(7) CdtUsableRulesProof (EQUIVALENT transformation)
The following rules are not usable and were removed:
cond1(true, z0, z1) → cond2(gr(z1, 0), z0, z1)
cond2(true, z0, z1) → cond2(gr(z1, 0), p(z0), p(z1))
cond2(false, z0, z1) → cond1(and(eq(z0, z1), gr(z0, 0)), z0, z1)
gr(s(z0), s(z1)) → gr(z0, z1)
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
eq(0, 0) → true
eq(s(z0), 0) → false
eq(0, s(z0)) → false
eq(s(z0), s(z1)) → eq(z0, z1)
Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, z0, z1) → c(COND2(gr(z1, 0), z0, z1))
COND2(true, z0, z1) → c1(COND2(gr(z1, 0), p(z0), p(z1)))
COND2(false, z0, z1) → c2(COND1(and(eq(z0, z1), gr(z0, 0)), z0, z1), EQ(z0, z1))
S tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, z0, z1) → c(COND2(gr(z1, 0), z0, z1))
COND2(true, z0, z1) → c1(COND2(gr(z1, 0), p(z0), p(z1)))
COND2(false, z0, z1) → c2(COND1(and(eq(z0, z1), gr(z0, 0)), z0, z1), EQ(z0, z1))
K tuples:none
Defined Rule Symbols:
gr, p, and, eq
Defined Pair Symbols:
GR, EQ, COND1, COND2
Compound Symbols:
c5, c11, c, c1, c2
(9) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
GR(s(z0), s(z1)) → c5(GR(z0, z1))
We considered the (Usable) Rules:none
And the Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, z0, z1) → c(COND2(gr(z1, 0), z0, z1))
COND2(true, z0, z1) → c1(COND2(gr(z1, 0), p(z0), p(z1)))
COND2(false, z0, z1) → c2(COND1(and(eq(z0, z1), gr(z0, 0)), z0, z1), EQ(z0, z1))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(COND1(x1, x2, x3)) = 0
POL(COND2(x1, x2, x3)) = 0
POL(EQ(x1, x2)) = 0
POL(GR(x1, x2)) = [4]x1 + [4]x2
POL(and(x1, x2)) = 0
POL(c(x1)) = x1
POL(c1(x1)) = x1
POL(c11(x1)) = x1
POL(c2(x1, x2)) = x1 + x2
POL(c5(x1)) = x1
POL(eq(x1, x2)) = [2] + [4]x1
POL(false) = [2]
POL(gr(x1, x2)) = [5]x1 + [2]x2
POL(p(x1)) = [3]
POL(s(x1)) = [4] + x1
POL(true) = 0
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
eq(0, 0) → true
eq(s(z0), 0) → false
eq(0, s(z0)) → false
eq(s(z0), s(z1)) → eq(z0, z1)
Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, z0, z1) → c(COND2(gr(z1, 0), z0, z1))
COND2(true, z0, z1) → c1(COND2(gr(z1, 0), p(z0), p(z1)))
COND2(false, z0, z1) → c2(COND1(and(eq(z0, z1), gr(z0, 0)), z0, z1), EQ(z0, z1))
S tuples:
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, z0, z1) → c(COND2(gr(z1, 0), z0, z1))
COND2(true, z0, z1) → c1(COND2(gr(z1, 0), p(z0), p(z1)))
COND2(false, z0, z1) → c2(COND1(and(eq(z0, z1), gr(z0, 0)), z0, z1), EQ(z0, z1))
K tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
Defined Rule Symbols:
gr, p, and, eq
Defined Pair Symbols:
GR, EQ, COND1, COND2
Compound Symbols:
c5, c11, c, c1, c2
(11) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND1(
true,
z0,
z1) →
c(
COND2(
gr(
z1,
0),
z0,
z1)) by
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
eq(0, 0) → true
eq(s(z0), 0) → false
eq(0, s(z0)) → false
eq(s(z0), s(z1)) → eq(z0, z1)
Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND2(true, z0, z1) → c1(COND2(gr(z1, 0), p(z0), p(z1)))
COND2(false, z0, z1) → c2(COND1(and(eq(z0, z1), gr(z0, 0)), z0, z1), EQ(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
S tuples:
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND2(true, z0, z1) → c1(COND2(gr(z1, 0), p(z0), p(z1)))
COND2(false, z0, z1) → c2(COND1(and(eq(z0, z1), gr(z0, 0)), z0, z1), EQ(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
K tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
Defined Rule Symbols:
gr, p, and, eq
Defined Pair Symbols:
GR, EQ, COND2, COND1
Compound Symbols:
c5, c11, c1, c2, c
(13) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND2(
true,
z0,
z1) →
c1(
COND2(
gr(
z1,
0),
p(
z0),
p(
z1))) by
COND2(true, x0, 0) → c1(COND2(gr(0, 0), p(x0), 0))
COND2(true, x0, s(z0)) → c1(COND2(gr(s(z0), 0), p(x0), z0))
COND2(true, 0, x1) → c1(COND2(gr(x1, 0), 0, p(x1)))
COND2(true, s(z0), x1) → c1(COND2(gr(x1, 0), z0, p(x1)))
COND2(true, x0, 0) → c1(COND2(false, p(x0), p(0)))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), p(s(z0))))
(14) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
eq(0, 0) → true
eq(s(z0), 0) → false
eq(0, s(z0)) → false
eq(s(z0), s(z1)) → eq(z0, z1)
Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND2(false, z0, z1) → c2(COND1(and(eq(z0, z1), gr(z0, 0)), z0, z1), EQ(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, x0, 0) → c1(COND2(gr(0, 0), p(x0), 0))
COND2(true, x0, s(z0)) → c1(COND2(gr(s(z0), 0), p(x0), z0))
COND2(true, 0, x1) → c1(COND2(gr(x1, 0), 0, p(x1)))
COND2(true, s(z0), x1) → c1(COND2(gr(x1, 0), z0, p(x1)))
COND2(true, x0, 0) → c1(COND2(false, p(x0), p(0)))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), p(s(z0))))
S tuples:
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND2(false, z0, z1) → c2(COND1(and(eq(z0, z1), gr(z0, 0)), z0, z1), EQ(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, x0, 0) → c1(COND2(gr(0, 0), p(x0), 0))
COND2(true, x0, s(z0)) → c1(COND2(gr(s(z0), 0), p(x0), z0))
COND2(true, 0, x1) → c1(COND2(gr(x1, 0), 0, p(x1)))
COND2(true, s(z0), x1) → c1(COND2(gr(x1, 0), z0, p(x1)))
COND2(true, x0, 0) → c1(COND2(false, p(x0), p(0)))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), p(s(z0))))
K tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
Defined Rule Symbols:
gr, p, and, eq
Defined Pair Symbols:
GR, EQ, COND2, COND1
Compound Symbols:
c5, c11, c2, c, c1
(15) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
COND2(true, s(z0), x1) → c1(COND2(gr(x1, 0), z0, p(x1)))
We considered the (Usable) Rules:
p(0) → 0
p(s(z0)) → z0
And the Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND2(false, z0, z1) → c2(COND1(and(eq(z0, z1), gr(z0, 0)), z0, z1), EQ(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, x0, 0) → c1(COND2(gr(0, 0), p(x0), 0))
COND2(true, x0, s(z0)) → c1(COND2(gr(s(z0), 0), p(x0), z0))
COND2(true, 0, x1) → c1(COND2(gr(x1, 0), 0, p(x1)))
COND2(true, s(z0), x1) → c1(COND2(gr(x1, 0), z0, p(x1)))
COND2(true, x0, 0) → c1(COND2(false, p(x0), p(0)))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), p(s(z0))))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(COND1(x1, x2, x3)) = [4]x2
POL(COND2(x1, x2, x3)) = [4]x2
POL(EQ(x1, x2)) = 0
POL(GR(x1, x2)) = [3]x1 + [4]x2
POL(and(x1, x2)) = 0
POL(c(x1)) = x1
POL(c1(x1)) = x1
POL(c11(x1)) = x1
POL(c2(x1, x2)) = x1 + x2
POL(c5(x1)) = x1
POL(eq(x1, x2)) = 0
POL(false) = 0
POL(gr(x1, x2)) = 0
POL(p(x1)) = x1
POL(s(x1)) = [2] + x1
POL(true) = [1]
(16) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
eq(0, 0) → true
eq(s(z0), 0) → false
eq(0, s(z0)) → false
eq(s(z0), s(z1)) → eq(z0, z1)
Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND2(false, z0, z1) → c2(COND1(and(eq(z0, z1), gr(z0, 0)), z0, z1), EQ(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, x0, 0) → c1(COND2(gr(0, 0), p(x0), 0))
COND2(true, x0, s(z0)) → c1(COND2(gr(s(z0), 0), p(x0), z0))
COND2(true, 0, x1) → c1(COND2(gr(x1, 0), 0, p(x1)))
COND2(true, s(z0), x1) → c1(COND2(gr(x1, 0), z0, p(x1)))
COND2(true, x0, 0) → c1(COND2(false, p(x0), p(0)))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), p(s(z0))))
S tuples:
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND2(false, z0, z1) → c2(COND1(and(eq(z0, z1), gr(z0, 0)), z0, z1), EQ(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, x0, 0) → c1(COND2(gr(0, 0), p(x0), 0))
COND2(true, x0, s(z0)) → c1(COND2(gr(s(z0), 0), p(x0), z0))
COND2(true, 0, x1) → c1(COND2(gr(x1, 0), 0, p(x1)))
COND2(true, x0, 0) → c1(COND2(false, p(x0), p(0)))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), p(s(z0))))
K tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND2(true, s(z0), x1) → c1(COND2(gr(x1, 0), z0, p(x1)))
Defined Rule Symbols:
gr, p, and, eq
Defined Pair Symbols:
GR, EQ, COND2, COND1
Compound Symbols:
c5, c11, c2, c, c1
(17) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
COND2(true, x0, s(z0)) → c1(COND2(gr(s(z0), 0), p(x0), z0))
We considered the (Usable) Rules:
p(0) → 0
p(s(z0)) → z0
And the Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND2(false, z0, z1) → c2(COND1(and(eq(z0, z1), gr(z0, 0)), z0, z1), EQ(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, x0, 0) → c1(COND2(gr(0, 0), p(x0), 0))
COND2(true, x0, s(z0)) → c1(COND2(gr(s(z0), 0), p(x0), z0))
COND2(true, 0, x1) → c1(COND2(gr(x1, 0), 0, p(x1)))
COND2(true, s(z0), x1) → c1(COND2(gr(x1, 0), z0, p(x1)))
COND2(true, x0, 0) → c1(COND2(false, p(x0), p(0)))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), p(s(z0))))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(COND1(x1, x2, x3)) = [2]x3
POL(COND2(x1, x2, x3)) = [2]x3
POL(EQ(x1, x2)) = 0
POL(GR(x1, x2)) = [5]x1 + [4]x2
POL(and(x1, x2)) = 0
POL(c(x1)) = x1
POL(c1(x1)) = x1
POL(c11(x1)) = x1
POL(c2(x1, x2)) = x1 + x2
POL(c5(x1)) = x1
POL(eq(x1, x2)) = [2]x2
POL(false) = 0
POL(gr(x1, x2)) = 0
POL(p(x1)) = x1
POL(s(x1)) = [4] + x1
POL(true) = 0
(18) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
eq(0, 0) → true
eq(s(z0), 0) → false
eq(0, s(z0)) → false
eq(s(z0), s(z1)) → eq(z0, z1)
Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND2(false, z0, z1) → c2(COND1(and(eq(z0, z1), gr(z0, 0)), z0, z1), EQ(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, x0, 0) → c1(COND2(gr(0, 0), p(x0), 0))
COND2(true, x0, s(z0)) → c1(COND2(gr(s(z0), 0), p(x0), z0))
COND2(true, 0, x1) → c1(COND2(gr(x1, 0), 0, p(x1)))
COND2(true, s(z0), x1) → c1(COND2(gr(x1, 0), z0, p(x1)))
COND2(true, x0, 0) → c1(COND2(false, p(x0), p(0)))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), p(s(z0))))
S tuples:
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND2(false, z0, z1) → c2(COND1(and(eq(z0, z1), gr(z0, 0)), z0, z1), EQ(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, x0, 0) → c1(COND2(gr(0, 0), p(x0), 0))
COND2(true, 0, x1) → c1(COND2(gr(x1, 0), 0, p(x1)))
COND2(true, x0, 0) → c1(COND2(false, p(x0), p(0)))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), p(s(z0))))
K tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND2(true, s(z0), x1) → c1(COND2(gr(x1, 0), z0, p(x1)))
COND2(true, x0, s(z0)) → c1(COND2(gr(s(z0), 0), p(x0), z0))
Defined Rule Symbols:
gr, p, and, eq
Defined Pair Symbols:
GR, EQ, COND2, COND1
Compound Symbols:
c5, c11, c2, c, c1
(19) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND2(
false,
z0,
z1) →
c2(
COND1(
and(
eq(
z0,
z1),
gr(
z0,
0)),
z0,
z1),
EQ(
z0,
z1)) by
COND2(false, 0, x1) → c2(COND1(and(eq(0, x1), false), 0, x1), EQ(0, x1))
COND2(false, s(z0), x1) → c2(COND1(and(eq(s(z0), x1), true), s(z0), x1), EQ(s(z0), x1))
COND2(false, 0, 0) → c2(COND1(and(true, gr(0, 0)), 0, 0), EQ(0, 0))
COND2(false, s(z0), 0) → c2(COND1(and(false, gr(s(z0), 0)), s(z0), 0), EQ(s(z0), 0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, gr(0, 0)), 0, s(z0)), EQ(0, s(z0)))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), gr(s(z0), 0)), s(z0), s(z1)), EQ(s(z0), s(z1)))
(20) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
eq(0, 0) → true
eq(s(z0), 0) → false
eq(0, s(z0)) → false
eq(s(z0), s(z1)) → eq(z0, z1)
Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, x0, 0) → c1(COND2(gr(0, 0), p(x0), 0))
COND2(true, x0, s(z0)) → c1(COND2(gr(s(z0), 0), p(x0), z0))
COND2(true, 0, x1) → c1(COND2(gr(x1, 0), 0, p(x1)))
COND2(true, s(z0), x1) → c1(COND2(gr(x1, 0), z0, p(x1)))
COND2(true, x0, 0) → c1(COND2(false, p(x0), p(0)))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), p(s(z0))))
COND2(false, 0, x1) → c2(COND1(and(eq(0, x1), false), 0, x1), EQ(0, x1))
COND2(false, s(z0), x1) → c2(COND1(and(eq(s(z0), x1), true), s(z0), x1), EQ(s(z0), x1))
COND2(false, 0, 0) → c2(COND1(and(true, gr(0, 0)), 0, 0), EQ(0, 0))
COND2(false, s(z0), 0) → c2(COND1(and(false, gr(s(z0), 0)), s(z0), 0), EQ(s(z0), 0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, gr(0, 0)), 0, s(z0)), EQ(0, s(z0)))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), gr(s(z0), 0)), s(z0), s(z1)), EQ(s(z0), s(z1)))
S tuples:
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, x0, 0) → c1(COND2(gr(0, 0), p(x0), 0))
COND2(true, 0, x1) → c1(COND2(gr(x1, 0), 0, p(x1)))
COND2(true, x0, 0) → c1(COND2(false, p(x0), p(0)))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), p(s(z0))))
COND2(false, 0, x1) → c2(COND1(and(eq(0, x1), false), 0, x1), EQ(0, x1))
COND2(false, s(z0), x1) → c2(COND1(and(eq(s(z0), x1), true), s(z0), x1), EQ(s(z0), x1))
COND2(false, 0, 0) → c2(COND1(and(true, gr(0, 0)), 0, 0), EQ(0, 0))
COND2(false, s(z0), 0) → c2(COND1(and(false, gr(s(z0), 0)), s(z0), 0), EQ(s(z0), 0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, gr(0, 0)), 0, s(z0)), EQ(0, s(z0)))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), gr(s(z0), 0)), s(z0), s(z1)), EQ(s(z0), s(z1)))
K tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND2(true, s(z0), x1) → c1(COND2(gr(x1, 0), z0, p(x1)))
COND2(true, x0, s(z0)) → c1(COND2(gr(s(z0), 0), p(x0), z0))
Defined Rule Symbols:
gr, p, and, eq
Defined Pair Symbols:
GR, EQ, COND1, COND2
Compound Symbols:
c5, c11, c, c1, c2
(21) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 4 trailing tuple parts
(22) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
eq(0, 0) → true
eq(s(z0), 0) → false
eq(0, s(z0)) → false
eq(s(z0), s(z1)) → eq(z0, z1)
Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, x0, 0) → c1(COND2(gr(0, 0), p(x0), 0))
COND2(true, x0, s(z0)) → c1(COND2(gr(s(z0), 0), p(x0), z0))
COND2(true, 0, x1) → c1(COND2(gr(x1, 0), 0, p(x1)))
COND2(true, s(z0), x1) → c1(COND2(gr(x1, 0), z0, p(x1)))
COND2(true, x0, 0) → c1(COND2(false, p(x0), p(0)))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), p(s(z0))))
COND2(false, s(z0), x1) → c2(COND1(and(eq(s(z0), x1), true), s(z0), x1), EQ(s(z0), x1))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), gr(s(z0), 0)), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(false, 0, x1) → c2(COND1(and(eq(0, x1), false), 0, x1))
COND2(false, 0, 0) → c2(COND1(and(true, gr(0, 0)), 0, 0))
COND2(false, s(z0), 0) → c2(COND1(and(false, gr(s(z0), 0)), s(z0), 0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, gr(0, 0)), 0, s(z0)))
S tuples:
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, x0, 0) → c1(COND2(gr(0, 0), p(x0), 0))
COND2(true, 0, x1) → c1(COND2(gr(x1, 0), 0, p(x1)))
COND2(true, x0, 0) → c1(COND2(false, p(x0), p(0)))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), p(s(z0))))
COND2(false, s(z0), x1) → c2(COND1(and(eq(s(z0), x1), true), s(z0), x1), EQ(s(z0), x1))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), gr(s(z0), 0)), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(false, 0, x1) → c2(COND1(and(eq(0, x1), false), 0, x1))
COND2(false, 0, 0) → c2(COND1(and(true, gr(0, 0)), 0, 0))
COND2(false, s(z0), 0) → c2(COND1(and(false, gr(s(z0), 0)), s(z0), 0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, gr(0, 0)), 0, s(z0)))
K tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND2(true, s(z0), x1) → c1(COND2(gr(x1, 0), z0, p(x1)))
COND2(true, x0, s(z0)) → c1(COND2(gr(s(z0), 0), p(x0), z0))
Defined Rule Symbols:
gr, p, and, eq
Defined Pair Symbols:
GR, EQ, COND1, COND2
Compound Symbols:
c5, c11, c, c1, c2, c2
(23) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
COND2(false, 0, x1) → c2(COND1(and(eq(0, x1), false), 0, x1))
COND2(false, 0, 0) → c2(COND1(and(true, gr(0, 0)), 0, 0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, gr(0, 0)), 0, s(z0)))
We considered the (Usable) Rules:
gr(0, z0) → false
and(true, true) → true
gr(s(z0), 0) → true
and(false, z0) → false
and(z0, false) → false
And the Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, x0, 0) → c1(COND2(gr(0, 0), p(x0), 0))
COND2(true, x0, s(z0)) → c1(COND2(gr(s(z0), 0), p(x0), z0))
COND2(true, 0, x1) → c1(COND2(gr(x1, 0), 0, p(x1)))
COND2(true, s(z0), x1) → c1(COND2(gr(x1, 0), z0, p(x1)))
COND2(true, x0, 0) → c1(COND2(false, p(x0), p(0)))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), p(s(z0))))
COND2(false, s(z0), x1) → c2(COND1(and(eq(s(z0), x1), true), s(z0), x1), EQ(s(z0), x1))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), gr(s(z0), 0)), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(false, 0, x1) → c2(COND1(and(eq(0, x1), false), 0, x1))
COND2(false, 0, 0) → c2(COND1(and(true, gr(0, 0)), 0, 0))
COND2(false, s(z0), 0) → c2(COND1(and(false, gr(s(z0), 0)), s(z0), 0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, gr(0, 0)), 0, s(z0)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(COND1(x1, x2, x3)) = [3] + [2]x1
POL(COND2(x1, x2, x3)) = [5]
POL(EQ(x1, x2)) = 0
POL(GR(x1, x2)) = 0
POL(and(x1, x2)) = x2
POL(c(x1)) = x1
POL(c1(x1)) = x1
POL(c11(x1)) = x1
POL(c2(x1)) = x1
POL(c2(x1, x2)) = x1 + x2
POL(c5(x1)) = x1
POL(eq(x1, x2)) = 0
POL(false) = 0
POL(gr(x1, x2)) = x1
POL(p(x1)) = 0
POL(s(x1)) = [1]
POL(true) = [1]
(24) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
eq(0, 0) → true
eq(s(z0), 0) → false
eq(0, s(z0)) → false
eq(s(z0), s(z1)) → eq(z0, z1)
Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, x0, 0) → c1(COND2(gr(0, 0), p(x0), 0))
COND2(true, x0, s(z0)) → c1(COND2(gr(s(z0), 0), p(x0), z0))
COND2(true, 0, x1) → c1(COND2(gr(x1, 0), 0, p(x1)))
COND2(true, s(z0), x1) → c1(COND2(gr(x1, 0), z0, p(x1)))
COND2(true, x0, 0) → c1(COND2(false, p(x0), p(0)))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), p(s(z0))))
COND2(false, s(z0), x1) → c2(COND1(and(eq(s(z0), x1), true), s(z0), x1), EQ(s(z0), x1))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), gr(s(z0), 0)), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(false, 0, x1) → c2(COND1(and(eq(0, x1), false), 0, x1))
COND2(false, 0, 0) → c2(COND1(and(true, gr(0, 0)), 0, 0))
COND2(false, s(z0), 0) → c2(COND1(and(false, gr(s(z0), 0)), s(z0), 0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, gr(0, 0)), 0, s(z0)))
S tuples:
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, x0, 0) → c1(COND2(gr(0, 0), p(x0), 0))
COND2(true, 0, x1) → c1(COND2(gr(x1, 0), 0, p(x1)))
COND2(true, x0, 0) → c1(COND2(false, p(x0), p(0)))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), p(s(z0))))
COND2(false, s(z0), x1) → c2(COND1(and(eq(s(z0), x1), true), s(z0), x1), EQ(s(z0), x1))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), gr(s(z0), 0)), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(false, s(z0), 0) → c2(COND1(and(false, gr(s(z0), 0)), s(z0), 0))
K tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND2(true, s(z0), x1) → c1(COND2(gr(x1, 0), z0, p(x1)))
COND2(true, x0, s(z0)) → c1(COND2(gr(s(z0), 0), p(x0), z0))
COND2(false, 0, x1) → c2(COND1(and(eq(0, x1), false), 0, x1))
COND2(false, 0, 0) → c2(COND1(and(true, gr(0, 0)), 0, 0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, gr(0, 0)), 0, s(z0)))
Defined Rule Symbols:
gr, p, and, eq
Defined Pair Symbols:
GR, EQ, COND1, COND2
Compound Symbols:
c5, c11, c, c1, c2, c2
(25) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
COND2(false, s(z0), 0) → c2(COND1(and(false, gr(s(z0), 0)), s(z0), 0))
We considered the (Usable) Rules:
eq(s(z0), 0) → false
eq(s(z0), s(z1)) → eq(z0, z1)
eq(0, s(z0)) → false
and(true, true) → true
eq(0, 0) → true
and(false, z0) → false
and(z0, false) → false
And the Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, x0, 0) → c1(COND2(gr(0, 0), p(x0), 0))
COND2(true, x0, s(z0)) → c1(COND2(gr(s(z0), 0), p(x0), z0))
COND2(true, 0, x1) → c1(COND2(gr(x1, 0), 0, p(x1)))
COND2(true, s(z0), x1) → c1(COND2(gr(x1, 0), z0, p(x1)))
COND2(true, x0, 0) → c1(COND2(false, p(x0), p(0)))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), p(s(z0))))
COND2(false, s(z0), x1) → c2(COND1(and(eq(s(z0), x1), true), s(z0), x1), EQ(s(z0), x1))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), gr(s(z0), 0)), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(false, 0, x1) → c2(COND1(and(eq(0, x1), false), 0, x1))
COND2(false, 0, 0) → c2(COND1(and(true, gr(0, 0)), 0, 0))
COND2(false, s(z0), 0) → c2(COND1(and(false, gr(s(z0), 0)), s(z0), 0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, gr(0, 0)), 0, s(z0)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(COND1(x1, x2, x3)) = x1
POL(COND2(x1, x2, x3)) = [1]
POL(EQ(x1, x2)) = 0
POL(GR(x1, x2)) = 0
POL(and(x1, x2)) = x1
POL(c(x1)) = x1
POL(c1(x1)) = x1
POL(c11(x1)) = x1
POL(c2(x1)) = x1
POL(c2(x1, x2)) = x1 + x2
POL(c5(x1)) = x1
POL(eq(x1, x2)) = [1]
POL(false) = 0
POL(gr(x1, x2)) = 0
POL(p(x1)) = 0
POL(s(x1)) = 0
POL(true) = [1]
(26) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
eq(0, 0) → true
eq(s(z0), 0) → false
eq(0, s(z0)) → false
eq(s(z0), s(z1)) → eq(z0, z1)
Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, x0, 0) → c1(COND2(gr(0, 0), p(x0), 0))
COND2(true, x0, s(z0)) → c1(COND2(gr(s(z0), 0), p(x0), z0))
COND2(true, 0, x1) → c1(COND2(gr(x1, 0), 0, p(x1)))
COND2(true, s(z0), x1) → c1(COND2(gr(x1, 0), z0, p(x1)))
COND2(true, x0, 0) → c1(COND2(false, p(x0), p(0)))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), p(s(z0))))
COND2(false, s(z0), x1) → c2(COND1(and(eq(s(z0), x1), true), s(z0), x1), EQ(s(z0), x1))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), gr(s(z0), 0)), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(false, 0, x1) → c2(COND1(and(eq(0, x1), false), 0, x1))
COND2(false, 0, 0) → c2(COND1(and(true, gr(0, 0)), 0, 0))
COND2(false, s(z0), 0) → c2(COND1(and(false, gr(s(z0), 0)), s(z0), 0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, gr(0, 0)), 0, s(z0)))
S tuples:
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, x0, 0) → c1(COND2(gr(0, 0), p(x0), 0))
COND2(true, 0, x1) → c1(COND2(gr(x1, 0), 0, p(x1)))
COND2(true, x0, 0) → c1(COND2(false, p(x0), p(0)))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), p(s(z0))))
COND2(false, s(z0), x1) → c2(COND1(and(eq(s(z0), x1), true), s(z0), x1), EQ(s(z0), x1))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), gr(s(z0), 0)), s(z0), s(z1)), EQ(s(z0), s(z1)))
K tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND2(true, s(z0), x1) → c1(COND2(gr(x1, 0), z0, p(x1)))
COND2(true, x0, s(z0)) → c1(COND2(gr(s(z0), 0), p(x0), z0))
COND2(false, 0, x1) → c2(COND1(and(eq(0, x1), false), 0, x1))
COND2(false, 0, 0) → c2(COND1(and(true, gr(0, 0)), 0, 0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, gr(0, 0)), 0, s(z0)))
COND2(false, s(z0), 0) → c2(COND1(and(false, gr(s(z0), 0)), s(z0), 0))
Defined Rule Symbols:
gr, p, and, eq
Defined Pair Symbols:
GR, EQ, COND1, COND2
Compound Symbols:
c5, c11, c, c1, c2, c2
(27) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND2(
true,
x0,
0) →
c1(
COND2(
gr(
0,
0),
p(
x0),
0)) by
COND2(true, 0, 0) → c1(COND2(gr(0, 0), 0, 0))
COND2(true, s(z0), 0) → c1(COND2(gr(0, 0), z0, 0))
COND2(true, x0, 0) → c1(COND2(false, p(x0), 0))
(28) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
eq(0, 0) → true
eq(s(z0), 0) → false
eq(0, s(z0)) → false
eq(s(z0), s(z1)) → eq(z0, z1)
Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, x0, s(z0)) → c1(COND2(gr(s(z0), 0), p(x0), z0))
COND2(true, 0, x1) → c1(COND2(gr(x1, 0), 0, p(x1)))
COND2(true, s(z0), x1) → c1(COND2(gr(x1, 0), z0, p(x1)))
COND2(true, x0, 0) → c1(COND2(false, p(x0), p(0)))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), p(s(z0))))
COND2(false, s(z0), x1) → c2(COND1(and(eq(s(z0), x1), true), s(z0), x1), EQ(s(z0), x1))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), gr(s(z0), 0)), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(false, 0, x1) → c2(COND1(and(eq(0, x1), false), 0, x1))
COND2(false, 0, 0) → c2(COND1(and(true, gr(0, 0)), 0, 0))
COND2(false, s(z0), 0) → c2(COND1(and(false, gr(s(z0), 0)), s(z0), 0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, gr(0, 0)), 0, s(z0)))
COND2(true, 0, 0) → c1(COND2(gr(0, 0), 0, 0))
COND2(true, s(z0), 0) → c1(COND2(gr(0, 0), z0, 0))
COND2(true, x0, 0) → c1(COND2(false, p(x0), 0))
S tuples:
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, 0, x1) → c1(COND2(gr(x1, 0), 0, p(x1)))
COND2(true, x0, 0) → c1(COND2(false, p(x0), p(0)))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), p(s(z0))))
COND2(false, s(z0), x1) → c2(COND1(and(eq(s(z0), x1), true), s(z0), x1), EQ(s(z0), x1))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), gr(s(z0), 0)), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(true, 0, 0) → c1(COND2(gr(0, 0), 0, 0))
COND2(true, s(z0), 0) → c1(COND2(gr(0, 0), z0, 0))
COND2(true, x0, 0) → c1(COND2(false, p(x0), 0))
K tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND2(true, s(z0), x1) → c1(COND2(gr(x1, 0), z0, p(x1)))
COND2(true, x0, s(z0)) → c1(COND2(gr(s(z0), 0), p(x0), z0))
COND2(false, 0, x1) → c2(COND1(and(eq(0, x1), false), 0, x1))
COND2(false, 0, 0) → c2(COND1(and(true, gr(0, 0)), 0, 0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, gr(0, 0)), 0, s(z0)))
COND2(false, s(z0), 0) → c2(COND1(and(false, gr(s(z0), 0)), s(z0), 0))
Defined Rule Symbols:
gr, p, and, eq
Defined Pair Symbols:
GR, EQ, COND1, COND2
Compound Symbols:
c5, c11, c, c1, c2, c2
(29) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
COND2(true, s(z0), 0) → c1(COND2(gr(0, 0), z0, 0))
We considered the (Usable) Rules:
p(0) → 0
p(s(z0)) → z0
And the Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, x0, s(z0)) → c1(COND2(gr(s(z0), 0), p(x0), z0))
COND2(true, 0, x1) → c1(COND2(gr(x1, 0), 0, p(x1)))
COND2(true, s(z0), x1) → c1(COND2(gr(x1, 0), z0, p(x1)))
COND2(true, x0, 0) → c1(COND2(false, p(x0), p(0)))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), p(s(z0))))
COND2(false, s(z0), x1) → c2(COND1(and(eq(s(z0), x1), true), s(z0), x1), EQ(s(z0), x1))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), gr(s(z0), 0)), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(false, 0, x1) → c2(COND1(and(eq(0, x1), false), 0, x1))
COND2(false, 0, 0) → c2(COND1(and(true, gr(0, 0)), 0, 0))
COND2(false, s(z0), 0) → c2(COND1(and(false, gr(s(z0), 0)), s(z0), 0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, gr(0, 0)), 0, s(z0)))
COND2(true, 0, 0) → c1(COND2(gr(0, 0), 0, 0))
COND2(true, s(z0), 0) → c1(COND2(gr(0, 0), z0, 0))
COND2(true, x0, 0) → c1(COND2(false, p(x0), 0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(COND1(x1, x2, x3)) = [2]x2
POL(COND2(x1, x2, x3)) = [2]x2
POL(EQ(x1, x2)) = 0
POL(GR(x1, x2)) = [4]x1 + x2
POL(and(x1, x2)) = 0
POL(c(x1)) = x1
POL(c1(x1)) = x1
POL(c11(x1)) = x1
POL(c2(x1)) = x1
POL(c2(x1, x2)) = x1 + x2
POL(c5(x1)) = x1
POL(eq(x1, x2)) = [4]x1
POL(false) = 0
POL(gr(x1, x2)) = x2
POL(p(x1)) = x1
POL(s(x1)) = [1] + x1
POL(true) = [2]
(30) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
eq(0, 0) → true
eq(s(z0), 0) → false
eq(0, s(z0)) → false
eq(s(z0), s(z1)) → eq(z0, z1)
Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, x0, s(z0)) → c1(COND2(gr(s(z0), 0), p(x0), z0))
COND2(true, 0, x1) → c1(COND2(gr(x1, 0), 0, p(x1)))
COND2(true, s(z0), x1) → c1(COND2(gr(x1, 0), z0, p(x1)))
COND2(true, x0, 0) → c1(COND2(false, p(x0), p(0)))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), p(s(z0))))
COND2(false, s(z0), x1) → c2(COND1(and(eq(s(z0), x1), true), s(z0), x1), EQ(s(z0), x1))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), gr(s(z0), 0)), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(false, 0, x1) → c2(COND1(and(eq(0, x1), false), 0, x1))
COND2(false, 0, 0) → c2(COND1(and(true, gr(0, 0)), 0, 0))
COND2(false, s(z0), 0) → c2(COND1(and(false, gr(s(z0), 0)), s(z0), 0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, gr(0, 0)), 0, s(z0)))
COND2(true, 0, 0) → c1(COND2(gr(0, 0), 0, 0))
COND2(true, s(z0), 0) → c1(COND2(gr(0, 0), z0, 0))
COND2(true, x0, 0) → c1(COND2(false, p(x0), 0))
S tuples:
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, 0, x1) → c1(COND2(gr(x1, 0), 0, p(x1)))
COND2(true, x0, 0) → c1(COND2(false, p(x0), p(0)))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), p(s(z0))))
COND2(false, s(z0), x1) → c2(COND1(and(eq(s(z0), x1), true), s(z0), x1), EQ(s(z0), x1))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), gr(s(z0), 0)), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(true, 0, 0) → c1(COND2(gr(0, 0), 0, 0))
COND2(true, x0, 0) → c1(COND2(false, p(x0), 0))
K tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND2(true, s(z0), x1) → c1(COND2(gr(x1, 0), z0, p(x1)))
COND2(true, x0, s(z0)) → c1(COND2(gr(s(z0), 0), p(x0), z0))
COND2(false, 0, x1) → c2(COND1(and(eq(0, x1), false), 0, x1))
COND2(false, 0, 0) → c2(COND1(and(true, gr(0, 0)), 0, 0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, gr(0, 0)), 0, s(z0)))
COND2(false, s(z0), 0) → c2(COND1(and(false, gr(s(z0), 0)), s(z0), 0))
COND2(true, s(z0), 0) → c1(COND2(gr(0, 0), z0, 0))
Defined Rule Symbols:
gr, p, and, eq
Defined Pair Symbols:
GR, EQ, COND1, COND2
Compound Symbols:
c5, c11, c, c1, c2, c2
(31) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND2(
true,
x0,
s(
z0)) →
c1(
COND2(
gr(
s(
z0),
0),
p(
x0),
z0)) by
COND2(true, 0, s(x1)) → c1(COND2(gr(s(x1), 0), 0, x1))
COND2(true, s(z0), s(x1)) → c1(COND2(gr(s(x1), 0), z0, x1))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
(32) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
eq(0, 0) → true
eq(s(z0), 0) → false
eq(0, s(z0)) → false
eq(s(z0), s(z1)) → eq(z0, z1)
Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, 0, x1) → c1(COND2(gr(x1, 0), 0, p(x1)))
COND2(true, s(z0), x1) → c1(COND2(gr(x1, 0), z0, p(x1)))
COND2(true, x0, 0) → c1(COND2(false, p(x0), p(0)))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), p(s(z0))))
COND2(false, s(z0), x1) → c2(COND1(and(eq(s(z0), x1), true), s(z0), x1), EQ(s(z0), x1))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), gr(s(z0), 0)), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(false, 0, x1) → c2(COND1(and(eq(0, x1), false), 0, x1))
COND2(false, 0, 0) → c2(COND1(and(true, gr(0, 0)), 0, 0))
COND2(false, s(z0), 0) → c2(COND1(and(false, gr(s(z0), 0)), s(z0), 0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, gr(0, 0)), 0, s(z0)))
COND2(true, 0, 0) → c1(COND2(gr(0, 0), 0, 0))
COND2(true, s(z0), 0) → c1(COND2(gr(0, 0), z0, 0))
COND2(true, x0, 0) → c1(COND2(false, p(x0), 0))
COND2(true, 0, s(x1)) → c1(COND2(gr(s(x1), 0), 0, x1))
COND2(true, s(z0), s(x1)) → c1(COND2(gr(s(x1), 0), z0, x1))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
S tuples:
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, 0, x1) → c1(COND2(gr(x1, 0), 0, p(x1)))
COND2(true, x0, 0) → c1(COND2(false, p(x0), p(0)))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), p(s(z0))))
COND2(false, s(z0), x1) → c2(COND1(and(eq(s(z0), x1), true), s(z0), x1), EQ(s(z0), x1))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), gr(s(z0), 0)), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(true, 0, 0) → c1(COND2(gr(0, 0), 0, 0))
COND2(true, x0, 0) → c1(COND2(false, p(x0), 0))
K tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND2(true, s(z0), x1) → c1(COND2(gr(x1, 0), z0, p(x1)))
COND2(true, x0, s(z0)) → c1(COND2(gr(s(z0), 0), p(x0), z0))
COND2(false, 0, x1) → c2(COND1(and(eq(0, x1), false), 0, x1))
COND2(false, 0, 0) → c2(COND1(and(true, gr(0, 0)), 0, 0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, gr(0, 0)), 0, s(z0)))
COND2(false, s(z0), 0) → c2(COND1(and(false, gr(s(z0), 0)), s(z0), 0))
COND2(true, s(z0), 0) → c1(COND2(gr(0, 0), z0, 0))
Defined Rule Symbols:
gr, p, and, eq
Defined Pair Symbols:
GR, EQ, COND1, COND2
Compound Symbols:
c5, c11, c, c1, c2, c2
(33) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND2(
true,
0,
x1) →
c1(
COND2(
gr(
x1,
0),
0,
p(
x1))) by
COND2(true, 0, 0) → c1(COND2(gr(0, 0), 0, 0))
COND2(true, 0, s(z0)) → c1(COND2(gr(s(z0), 0), 0, z0))
COND2(true, 0, 0) → c1(COND2(false, 0, p(0)))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, p(s(z0))))
(34) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
eq(0, 0) → true
eq(s(z0), 0) → false
eq(0, s(z0)) → false
eq(s(z0), s(z1)) → eq(z0, z1)
Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, s(z0), x1) → c1(COND2(gr(x1, 0), z0, p(x1)))
COND2(true, x0, 0) → c1(COND2(false, p(x0), p(0)))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), p(s(z0))))
COND2(false, s(z0), x1) → c2(COND1(and(eq(s(z0), x1), true), s(z0), x1), EQ(s(z0), x1))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), gr(s(z0), 0)), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(false, 0, x1) → c2(COND1(and(eq(0, x1), false), 0, x1))
COND2(false, 0, 0) → c2(COND1(and(true, gr(0, 0)), 0, 0))
COND2(false, s(z0), 0) → c2(COND1(and(false, gr(s(z0), 0)), s(z0), 0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, gr(0, 0)), 0, s(z0)))
COND2(true, 0, 0) → c1(COND2(gr(0, 0), 0, 0))
COND2(true, s(z0), 0) → c1(COND2(gr(0, 0), z0, 0))
COND2(true, x0, 0) → c1(COND2(false, p(x0), 0))
COND2(true, 0, s(x1)) → c1(COND2(gr(s(x1), 0), 0, x1))
COND2(true, s(z0), s(x1)) → c1(COND2(gr(s(x1), 0), z0, x1))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
COND2(true, 0, 0) → c1(COND2(false, 0, p(0)))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, p(s(z0))))
S tuples:
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, x0, 0) → c1(COND2(false, p(x0), p(0)))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), p(s(z0))))
COND2(false, s(z0), x1) → c2(COND1(and(eq(s(z0), x1), true), s(z0), x1), EQ(s(z0), x1))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), gr(s(z0), 0)), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(true, 0, 0) → c1(COND2(gr(0, 0), 0, 0))
COND2(true, x0, 0) → c1(COND2(false, p(x0), 0))
COND2(true, 0, s(z0)) → c1(COND2(gr(s(z0), 0), 0, z0))
COND2(true, 0, 0) → c1(COND2(false, 0, p(0)))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, p(s(z0))))
K tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND2(true, s(z0), x1) → c1(COND2(gr(x1, 0), z0, p(x1)))
COND2(true, x0, s(z0)) → c1(COND2(gr(s(z0), 0), p(x0), z0))
COND2(false, 0, x1) → c2(COND1(and(eq(0, x1), false), 0, x1))
COND2(false, 0, 0) → c2(COND1(and(true, gr(0, 0)), 0, 0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, gr(0, 0)), 0, s(z0)))
COND2(false, s(z0), 0) → c2(COND1(and(false, gr(s(z0), 0)), s(z0), 0))
COND2(true, s(z0), 0) → c1(COND2(gr(0, 0), z0, 0))
Defined Rule Symbols:
gr, p, and, eq
Defined Pair Symbols:
GR, EQ, COND1, COND2
Compound Symbols:
c5, c11, c, c1, c2, c2
(35) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
COND2(true, 0, s(x1)) → c1(COND2(gr(s(x1), 0), 0, x1))
We considered the (Usable) Rules:
p(0) → 0
p(s(z0)) → z0
And the Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, s(z0), x1) → c1(COND2(gr(x1, 0), z0, p(x1)))
COND2(true, x0, 0) → c1(COND2(false, p(x0), p(0)))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), p(s(z0))))
COND2(false, s(z0), x1) → c2(COND1(and(eq(s(z0), x1), true), s(z0), x1), EQ(s(z0), x1))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), gr(s(z0), 0)), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(false, 0, x1) → c2(COND1(and(eq(0, x1), false), 0, x1))
COND2(false, 0, 0) → c2(COND1(and(true, gr(0, 0)), 0, 0))
COND2(false, s(z0), 0) → c2(COND1(and(false, gr(s(z0), 0)), s(z0), 0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, gr(0, 0)), 0, s(z0)))
COND2(true, 0, 0) → c1(COND2(gr(0, 0), 0, 0))
COND2(true, s(z0), 0) → c1(COND2(gr(0, 0), z0, 0))
COND2(true, x0, 0) → c1(COND2(false, p(x0), 0))
COND2(true, 0, s(x1)) → c1(COND2(gr(s(x1), 0), 0, x1))
COND2(true, s(z0), s(x1)) → c1(COND2(gr(s(x1), 0), z0, x1))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
COND2(true, 0, 0) → c1(COND2(false, 0, p(0)))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, p(s(z0))))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(COND1(x1, x2, x3)) = x3
POL(COND2(x1, x2, x3)) = x3
POL(EQ(x1, x2)) = 0
POL(GR(x1, x2)) = [2]x1 + [3]x2
POL(and(x1, x2)) = 0
POL(c(x1)) = x1
POL(c1(x1)) = x1
POL(c11(x1)) = x1
POL(c2(x1)) = x1
POL(c2(x1, x2)) = x1 + x2
POL(c5(x1)) = x1
POL(eq(x1, x2)) = [3] + [4]x2
POL(false) = 0
POL(gr(x1, x2)) = [3]x2
POL(p(x1)) = x1
POL(s(x1)) = [4] + x1
POL(true) = 0
(36) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
eq(0, 0) → true
eq(s(z0), 0) → false
eq(0, s(z0)) → false
eq(s(z0), s(z1)) → eq(z0, z1)
Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, s(z0), x1) → c1(COND2(gr(x1, 0), z0, p(x1)))
COND2(true, x0, 0) → c1(COND2(false, p(x0), p(0)))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), p(s(z0))))
COND2(false, s(z0), x1) → c2(COND1(and(eq(s(z0), x1), true), s(z0), x1), EQ(s(z0), x1))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), gr(s(z0), 0)), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(false, 0, x1) → c2(COND1(and(eq(0, x1), false), 0, x1))
COND2(false, 0, 0) → c2(COND1(and(true, gr(0, 0)), 0, 0))
COND2(false, s(z0), 0) → c2(COND1(and(false, gr(s(z0), 0)), s(z0), 0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, gr(0, 0)), 0, s(z0)))
COND2(true, 0, 0) → c1(COND2(gr(0, 0), 0, 0))
COND2(true, s(z0), 0) → c1(COND2(gr(0, 0), z0, 0))
COND2(true, x0, 0) → c1(COND2(false, p(x0), 0))
COND2(true, 0, s(x1)) → c1(COND2(gr(s(x1), 0), 0, x1))
COND2(true, s(z0), s(x1)) → c1(COND2(gr(s(x1), 0), z0, x1))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
COND2(true, 0, 0) → c1(COND2(false, 0, p(0)))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, p(s(z0))))
S tuples:
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, x0, 0) → c1(COND2(false, p(x0), p(0)))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), p(s(z0))))
COND2(false, s(z0), x1) → c2(COND1(and(eq(s(z0), x1), true), s(z0), x1), EQ(s(z0), x1))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), gr(s(z0), 0)), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(true, 0, 0) → c1(COND2(gr(0, 0), 0, 0))
COND2(true, x0, 0) → c1(COND2(false, p(x0), 0))
COND2(true, 0, 0) → c1(COND2(false, 0, p(0)))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, p(s(z0))))
K tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND2(true, s(z0), x1) → c1(COND2(gr(x1, 0), z0, p(x1)))
COND2(true, x0, s(z0)) → c1(COND2(gr(s(z0), 0), p(x0), z0))
COND2(false, 0, x1) → c2(COND1(and(eq(0, x1), false), 0, x1))
COND2(false, 0, 0) → c2(COND1(and(true, gr(0, 0)), 0, 0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, gr(0, 0)), 0, s(z0)))
COND2(false, s(z0), 0) → c2(COND1(and(false, gr(s(z0), 0)), s(z0), 0))
COND2(true, s(z0), 0) → c1(COND2(gr(0, 0), z0, 0))
COND2(true, 0, s(x1)) → c1(COND2(gr(s(x1), 0), 0, x1))
Defined Rule Symbols:
gr, p, and, eq
Defined Pair Symbols:
GR, EQ, COND1, COND2
Compound Symbols:
c5, c11, c, c1, c2, c2
(37) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND2(
true,
s(
z0),
x1) →
c1(
COND2(
gr(
x1,
0),
z0,
p(
x1))) by
COND2(true, s(x0), 0) → c1(COND2(gr(0, 0), x0, 0))
COND2(true, s(x0), s(z0)) → c1(COND2(gr(s(z0), 0), x0, z0))
COND2(true, s(x0), 0) → c1(COND2(false, x0, p(0)))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, p(s(z0))))
(38) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
eq(0, 0) → true
eq(s(z0), 0) → false
eq(0, s(z0)) → false
eq(s(z0), s(z1)) → eq(z0, z1)
Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, x0, 0) → c1(COND2(false, p(x0), p(0)))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), p(s(z0))))
COND2(false, s(z0), x1) → c2(COND1(and(eq(s(z0), x1), true), s(z0), x1), EQ(s(z0), x1))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), gr(s(z0), 0)), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(false, 0, x1) → c2(COND1(and(eq(0, x1), false), 0, x1))
COND2(false, 0, 0) → c2(COND1(and(true, gr(0, 0)), 0, 0))
COND2(false, s(z0), 0) → c2(COND1(and(false, gr(s(z0), 0)), s(z0), 0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, gr(0, 0)), 0, s(z0)))
COND2(true, 0, 0) → c1(COND2(gr(0, 0), 0, 0))
COND2(true, s(z0), 0) → c1(COND2(gr(0, 0), z0, 0))
COND2(true, x0, 0) → c1(COND2(false, p(x0), 0))
COND2(true, 0, s(x1)) → c1(COND2(gr(s(x1), 0), 0, x1))
COND2(true, s(z0), s(x1)) → c1(COND2(gr(s(x1), 0), z0, x1))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
COND2(true, 0, 0) → c1(COND2(false, 0, p(0)))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, p(s(z0))))
COND2(true, s(x0), 0) → c1(COND2(false, x0, p(0)))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, p(s(z0))))
S tuples:
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, x0, 0) → c1(COND2(false, p(x0), p(0)))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), p(s(z0))))
COND2(false, s(z0), x1) → c2(COND1(and(eq(s(z0), x1), true), s(z0), x1), EQ(s(z0), x1))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), gr(s(z0), 0)), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(true, 0, 0) → c1(COND2(gr(0, 0), 0, 0))
COND2(true, x0, 0) → c1(COND2(false, p(x0), 0))
COND2(true, 0, 0) → c1(COND2(false, 0, p(0)))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, p(s(z0))))
K tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND2(true, s(z0), x1) → c1(COND2(gr(x1, 0), z0, p(x1)))
COND2(true, x0, s(z0)) → c1(COND2(gr(s(z0), 0), p(x0), z0))
COND2(false, 0, x1) → c2(COND1(and(eq(0, x1), false), 0, x1))
COND2(false, 0, 0) → c2(COND1(and(true, gr(0, 0)), 0, 0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, gr(0, 0)), 0, s(z0)))
COND2(false, s(z0), 0) → c2(COND1(and(false, gr(s(z0), 0)), s(z0), 0))
COND2(true, s(z0), 0) → c1(COND2(gr(0, 0), z0, 0))
COND2(true, 0, s(x1)) → c1(COND2(gr(s(x1), 0), 0, x1))
Defined Rule Symbols:
gr, p, and, eq
Defined Pair Symbols:
GR, EQ, COND1, COND2
Compound Symbols:
c5, c11, c, c1, c2, c2
(39) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND2(
true,
x0,
0) →
c1(
COND2(
false,
p(
x0),
p(
0))) by
COND2(true, x0, 0) → c1(COND2(false, p(x0), 0))
COND2(true, 0, 0) → c1(COND2(false, 0, p(0)))
COND2(true, s(z0), 0) → c1(COND2(false, z0, p(0)))
(40) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
eq(0, 0) → true
eq(s(z0), 0) → false
eq(0, s(z0)) → false
eq(s(z0), s(z1)) → eq(z0, z1)
Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), p(s(z0))))
COND2(false, s(z0), x1) → c2(COND1(and(eq(s(z0), x1), true), s(z0), x1), EQ(s(z0), x1))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), gr(s(z0), 0)), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(false, 0, x1) → c2(COND1(and(eq(0, x1), false), 0, x1))
COND2(false, 0, 0) → c2(COND1(and(true, gr(0, 0)), 0, 0))
COND2(false, s(z0), 0) → c2(COND1(and(false, gr(s(z0), 0)), s(z0), 0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, gr(0, 0)), 0, s(z0)))
COND2(true, 0, 0) → c1(COND2(gr(0, 0), 0, 0))
COND2(true, s(z0), 0) → c1(COND2(gr(0, 0), z0, 0))
COND2(true, x0, 0) → c1(COND2(false, p(x0), 0))
COND2(true, 0, s(x1)) → c1(COND2(gr(s(x1), 0), 0, x1))
COND2(true, s(z0), s(x1)) → c1(COND2(gr(s(x1), 0), z0, x1))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
COND2(true, 0, 0) → c1(COND2(false, 0, p(0)))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, p(s(z0))))
COND2(true, s(x0), 0) → c1(COND2(false, x0, p(0)))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, p(s(z0))))
S tuples:
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), p(s(z0))))
COND2(false, s(z0), x1) → c2(COND1(and(eq(s(z0), x1), true), s(z0), x1), EQ(s(z0), x1))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), gr(s(z0), 0)), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(true, 0, 0) → c1(COND2(gr(0, 0), 0, 0))
COND2(true, x0, 0) → c1(COND2(false, p(x0), 0))
COND2(true, 0, 0) → c1(COND2(false, 0, p(0)))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, p(s(z0))))
COND2(true, s(z0), 0) → c1(COND2(false, z0, p(0)))
K tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND2(true, s(z0), x1) → c1(COND2(gr(x1, 0), z0, p(x1)))
COND2(true, x0, s(z0)) → c1(COND2(gr(s(z0), 0), p(x0), z0))
COND2(false, 0, x1) → c2(COND1(and(eq(0, x1), false), 0, x1))
COND2(false, 0, 0) → c2(COND1(and(true, gr(0, 0)), 0, 0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, gr(0, 0)), 0, s(z0)))
COND2(false, s(z0), 0) → c2(COND1(and(false, gr(s(z0), 0)), s(z0), 0))
COND2(true, s(z0), 0) → c1(COND2(gr(0, 0), z0, 0))
COND2(true, 0, s(x1)) → c1(COND2(gr(s(x1), 0), 0, x1))
Defined Rule Symbols:
gr, p, and, eq
Defined Pair Symbols:
GR, EQ, COND1, COND2
Compound Symbols:
c5, c11, c, c1, c2, c2
(41) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
COND2(true, s(x0), 0) → c1(COND2(false, x0, p(0)))
We considered the (Usable) Rules:
p(0) → 0
p(s(z0)) → z0
And the Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), p(s(z0))))
COND2(false, s(z0), x1) → c2(COND1(and(eq(s(z0), x1), true), s(z0), x1), EQ(s(z0), x1))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), gr(s(z0), 0)), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(false, 0, x1) → c2(COND1(and(eq(0, x1), false), 0, x1))
COND2(false, 0, 0) → c2(COND1(and(true, gr(0, 0)), 0, 0))
COND2(false, s(z0), 0) → c2(COND1(and(false, gr(s(z0), 0)), s(z0), 0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, gr(0, 0)), 0, s(z0)))
COND2(true, 0, 0) → c1(COND2(gr(0, 0), 0, 0))
COND2(true, s(z0), 0) → c1(COND2(gr(0, 0), z0, 0))
COND2(true, x0, 0) → c1(COND2(false, p(x0), 0))
COND2(true, 0, s(x1)) → c1(COND2(gr(s(x1), 0), 0, x1))
COND2(true, s(z0), s(x1)) → c1(COND2(gr(s(x1), 0), z0, x1))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
COND2(true, 0, 0) → c1(COND2(false, 0, p(0)))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, p(s(z0))))
COND2(true, s(x0), 0) → c1(COND2(false, x0, p(0)))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, p(s(z0))))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(COND1(x1, x2, x3)) = x2
POL(COND2(x1, x2, x3)) = x2
POL(EQ(x1, x2)) = 0
POL(GR(x1, x2)) = 0
POL(and(x1, x2)) = 0
POL(c(x1)) = x1
POL(c1(x1)) = x1
POL(c11(x1)) = x1
POL(c2(x1)) = x1
POL(c2(x1, x2)) = x1 + x2
POL(c5(x1)) = x1
POL(eq(x1, x2)) = 0
POL(false) = 0
POL(gr(x1, x2)) = [2]x2
POL(p(x1)) = x1
POL(s(x1)) = [2] + x1
POL(true) = 0
(42) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
eq(0, 0) → true
eq(s(z0), 0) → false
eq(0, s(z0)) → false
eq(s(z0), s(z1)) → eq(z0, z1)
Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), p(s(z0))))
COND2(false, s(z0), x1) → c2(COND1(and(eq(s(z0), x1), true), s(z0), x1), EQ(s(z0), x1))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), gr(s(z0), 0)), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(false, 0, x1) → c2(COND1(and(eq(0, x1), false), 0, x1))
COND2(false, 0, 0) → c2(COND1(and(true, gr(0, 0)), 0, 0))
COND2(false, s(z0), 0) → c2(COND1(and(false, gr(s(z0), 0)), s(z0), 0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, gr(0, 0)), 0, s(z0)))
COND2(true, 0, 0) → c1(COND2(gr(0, 0), 0, 0))
COND2(true, s(z0), 0) → c1(COND2(gr(0, 0), z0, 0))
COND2(true, x0, 0) → c1(COND2(false, p(x0), 0))
COND2(true, 0, s(x1)) → c1(COND2(gr(s(x1), 0), 0, x1))
COND2(true, s(z0), s(x1)) → c1(COND2(gr(s(x1), 0), z0, x1))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
COND2(true, 0, 0) → c1(COND2(false, 0, p(0)))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, p(s(z0))))
COND2(true, s(x0), 0) → c1(COND2(false, x0, p(0)))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, p(s(z0))))
S tuples:
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), p(s(z0))))
COND2(false, s(z0), x1) → c2(COND1(and(eq(s(z0), x1), true), s(z0), x1), EQ(s(z0), x1))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), gr(s(z0), 0)), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(true, 0, 0) → c1(COND2(gr(0, 0), 0, 0))
COND2(true, x0, 0) → c1(COND2(false, p(x0), 0))
COND2(true, 0, 0) → c1(COND2(false, 0, p(0)))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, p(s(z0))))
K tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND2(true, s(z0), x1) → c1(COND2(gr(x1, 0), z0, p(x1)))
COND2(true, x0, s(z0)) → c1(COND2(gr(s(z0), 0), p(x0), z0))
COND2(false, 0, x1) → c2(COND1(and(eq(0, x1), false), 0, x1))
COND2(false, 0, 0) → c2(COND1(and(true, gr(0, 0)), 0, 0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, gr(0, 0)), 0, s(z0)))
COND2(false, s(z0), 0) → c2(COND1(and(false, gr(s(z0), 0)), s(z0), 0))
COND2(true, s(z0), 0) → c1(COND2(gr(0, 0), z0, 0))
COND2(true, 0, s(x1)) → c1(COND2(gr(s(x1), 0), 0, x1))
COND2(true, s(x0), 0) → c1(COND2(false, x0, p(0)))
Defined Rule Symbols:
gr, p, and, eq
Defined Pair Symbols:
GR, EQ, COND1, COND2
Compound Symbols:
c5, c11, c, c1, c2, c2
(43) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND2(
true,
x0,
s(
z0)) →
c1(
COND2(
true,
p(
x0),
p(
s(
z0)))) by
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
COND2(true, 0, s(x1)) → c1(COND2(true, 0, p(s(x1))))
COND2(true, s(z0), s(x1)) → c1(COND2(true, z0, p(s(x1))))
(44) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
eq(0, 0) → true
eq(s(z0), 0) → false
eq(0, s(z0)) → false
eq(s(z0), s(z1)) → eq(z0, z1)
Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(false, s(z0), x1) → c2(COND1(and(eq(s(z0), x1), true), s(z0), x1), EQ(s(z0), x1))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), gr(s(z0), 0)), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(false, 0, x1) → c2(COND1(and(eq(0, x1), false), 0, x1))
COND2(false, 0, 0) → c2(COND1(and(true, gr(0, 0)), 0, 0))
COND2(false, s(z0), 0) → c2(COND1(and(false, gr(s(z0), 0)), s(z0), 0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, gr(0, 0)), 0, s(z0)))
COND2(true, 0, 0) → c1(COND2(gr(0, 0), 0, 0))
COND2(true, s(z0), 0) → c1(COND2(gr(0, 0), z0, 0))
COND2(true, x0, 0) → c1(COND2(false, p(x0), 0))
COND2(true, 0, s(x1)) → c1(COND2(gr(s(x1), 0), 0, x1))
COND2(true, s(z0), s(x1)) → c1(COND2(gr(s(x1), 0), z0, x1))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
COND2(true, 0, 0) → c1(COND2(false, 0, p(0)))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, p(s(z0))))
COND2(true, s(x0), 0) → c1(COND2(false, x0, p(0)))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, p(s(z0))))
S tuples:
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(false, s(z0), x1) → c2(COND1(and(eq(s(z0), x1), true), s(z0), x1), EQ(s(z0), x1))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), gr(s(z0), 0)), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(true, 0, 0) → c1(COND2(gr(0, 0), 0, 0))
COND2(true, x0, 0) → c1(COND2(false, p(x0), 0))
COND2(true, 0, 0) → c1(COND2(false, 0, p(0)))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, p(s(z0))))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
COND2(true, s(z0), s(x1)) → c1(COND2(true, z0, p(s(x1))))
K tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND2(true, s(z0), x1) → c1(COND2(gr(x1, 0), z0, p(x1)))
COND2(true, x0, s(z0)) → c1(COND2(gr(s(z0), 0), p(x0), z0))
COND2(false, 0, x1) → c2(COND1(and(eq(0, x1), false), 0, x1))
COND2(false, 0, 0) → c2(COND1(and(true, gr(0, 0)), 0, 0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, gr(0, 0)), 0, s(z0)))
COND2(false, s(z0), 0) → c2(COND1(and(false, gr(s(z0), 0)), s(z0), 0))
COND2(true, s(z0), 0) → c1(COND2(gr(0, 0), z0, 0))
COND2(true, 0, s(x1)) → c1(COND2(gr(s(x1), 0), 0, x1))
COND2(true, s(x0), 0) → c1(COND2(false, x0, p(0)))
Defined Rule Symbols:
gr, p, and, eq
Defined Pair Symbols:
GR, EQ, COND1, COND2
Compound Symbols:
c5, c11, c, c2, c2, c1
(45) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, p(s(z0))))
We considered the (Usable) Rules:
p(0) → 0
p(s(z0)) → z0
And the Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(false, s(z0), x1) → c2(COND1(and(eq(s(z0), x1), true), s(z0), x1), EQ(s(z0), x1))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), gr(s(z0), 0)), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(false, 0, x1) → c2(COND1(and(eq(0, x1), false), 0, x1))
COND2(false, 0, 0) → c2(COND1(and(true, gr(0, 0)), 0, 0))
COND2(false, s(z0), 0) → c2(COND1(and(false, gr(s(z0), 0)), s(z0), 0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, gr(0, 0)), 0, s(z0)))
COND2(true, 0, 0) → c1(COND2(gr(0, 0), 0, 0))
COND2(true, s(z0), 0) → c1(COND2(gr(0, 0), z0, 0))
COND2(true, x0, 0) → c1(COND2(false, p(x0), 0))
COND2(true, 0, s(x1)) → c1(COND2(gr(s(x1), 0), 0, x1))
COND2(true, s(z0), s(x1)) → c1(COND2(gr(s(x1), 0), z0, x1))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
COND2(true, 0, 0) → c1(COND2(false, 0, p(0)))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, p(s(z0))))
COND2(true, s(x0), 0) → c1(COND2(false, x0, p(0)))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, p(s(z0))))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(COND1(x1, x2, x3)) = x2
POL(COND2(x1, x2, x3)) = x2
POL(EQ(x1, x2)) = 0
POL(GR(x1, x2)) = [5]x2
POL(and(x1, x2)) = 0
POL(c(x1)) = x1
POL(c1(x1)) = x1
POL(c11(x1)) = x1
POL(c2(x1)) = x1
POL(c2(x1, x2)) = x1 + x2
POL(c5(x1)) = x1
POL(eq(x1, x2)) = [2] + [3]x2
POL(false) = 0
POL(gr(x1, x2)) = [1] + [2]x2
POL(p(x1)) = x1
POL(s(x1)) = [1] + x1
POL(true) = 0
(46) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
eq(0, 0) → true
eq(s(z0), 0) → false
eq(0, s(z0)) → false
eq(s(z0), s(z1)) → eq(z0, z1)
Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(false, s(z0), x1) → c2(COND1(and(eq(s(z0), x1), true), s(z0), x1), EQ(s(z0), x1))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), gr(s(z0), 0)), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(false, 0, x1) → c2(COND1(and(eq(0, x1), false), 0, x1))
COND2(false, 0, 0) → c2(COND1(and(true, gr(0, 0)), 0, 0))
COND2(false, s(z0), 0) → c2(COND1(and(false, gr(s(z0), 0)), s(z0), 0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, gr(0, 0)), 0, s(z0)))
COND2(true, 0, 0) → c1(COND2(gr(0, 0), 0, 0))
COND2(true, s(z0), 0) → c1(COND2(gr(0, 0), z0, 0))
COND2(true, x0, 0) → c1(COND2(false, p(x0), 0))
COND2(true, 0, s(x1)) → c1(COND2(gr(s(x1), 0), 0, x1))
COND2(true, s(z0), s(x1)) → c1(COND2(gr(s(x1), 0), z0, x1))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
COND2(true, 0, 0) → c1(COND2(false, 0, p(0)))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, p(s(z0))))
COND2(true, s(x0), 0) → c1(COND2(false, x0, p(0)))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, p(s(z0))))
S tuples:
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(false, s(z0), x1) → c2(COND1(and(eq(s(z0), x1), true), s(z0), x1), EQ(s(z0), x1))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), gr(s(z0), 0)), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(true, 0, 0) → c1(COND2(gr(0, 0), 0, 0))
COND2(true, x0, 0) → c1(COND2(false, p(x0), 0))
COND2(true, 0, 0) → c1(COND2(false, 0, p(0)))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, p(s(z0))))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
K tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND2(true, s(z0), x1) → c1(COND2(gr(x1, 0), z0, p(x1)))
COND2(true, x0, s(z0)) → c1(COND2(gr(s(z0), 0), p(x0), z0))
COND2(false, 0, x1) → c2(COND1(and(eq(0, x1), false), 0, x1))
COND2(false, 0, 0) → c2(COND1(and(true, gr(0, 0)), 0, 0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, gr(0, 0)), 0, s(z0)))
COND2(false, s(z0), 0) → c2(COND1(and(false, gr(s(z0), 0)), s(z0), 0))
COND2(true, s(z0), 0) → c1(COND2(gr(0, 0), z0, 0))
COND2(true, 0, s(x1)) → c1(COND2(gr(s(x1), 0), 0, x1))
COND2(true, s(x0), 0) → c1(COND2(false, x0, p(0)))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, p(s(z0))))
Defined Rule Symbols:
gr, p, and, eq
Defined Pair Symbols:
GR, EQ, COND1, COND2
Compound Symbols:
c5, c11, c, c2, c2, c1
(47) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
We considered the (Usable) Rules:
p(0) → 0
p(s(z0)) → z0
And the Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(false, s(z0), x1) → c2(COND1(and(eq(s(z0), x1), true), s(z0), x1), EQ(s(z0), x1))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), gr(s(z0), 0)), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(false, 0, x1) → c2(COND1(and(eq(0, x1), false), 0, x1))
COND2(false, 0, 0) → c2(COND1(and(true, gr(0, 0)), 0, 0))
COND2(false, s(z0), 0) → c2(COND1(and(false, gr(s(z0), 0)), s(z0), 0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, gr(0, 0)), 0, s(z0)))
COND2(true, 0, 0) → c1(COND2(gr(0, 0), 0, 0))
COND2(true, s(z0), 0) → c1(COND2(gr(0, 0), z0, 0))
COND2(true, x0, 0) → c1(COND2(false, p(x0), 0))
COND2(true, 0, s(x1)) → c1(COND2(gr(s(x1), 0), 0, x1))
COND2(true, s(z0), s(x1)) → c1(COND2(gr(s(x1), 0), z0, x1))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
COND2(true, 0, 0) → c1(COND2(false, 0, p(0)))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, p(s(z0))))
COND2(true, s(x0), 0) → c1(COND2(false, x0, p(0)))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, p(s(z0))))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(COND1(x1, x2, x3)) = [2]x3
POL(COND2(x1, x2, x3)) = [2]x3
POL(EQ(x1, x2)) = 0
POL(GR(x1, x2)) = [4]x1 + [3]x2
POL(and(x1, x2)) = 0
POL(c(x1)) = x1
POL(c1(x1)) = x1
POL(c11(x1)) = x1
POL(c2(x1)) = x1
POL(c2(x1, x2)) = x1 + x2
POL(c5(x1)) = x1
POL(eq(x1, x2)) = 0
POL(false) = 0
POL(gr(x1, x2)) = 0
POL(p(x1)) = x1
POL(s(x1)) = [2] + x1
POL(true) = 0
(48) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
eq(0, 0) → true
eq(s(z0), 0) → false
eq(0, s(z0)) → false
eq(s(z0), s(z1)) → eq(z0, z1)
Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(false, s(z0), x1) → c2(COND1(and(eq(s(z0), x1), true), s(z0), x1), EQ(s(z0), x1))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), gr(s(z0), 0)), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(false, 0, x1) → c2(COND1(and(eq(0, x1), false), 0, x1))
COND2(false, 0, 0) → c2(COND1(and(true, gr(0, 0)), 0, 0))
COND2(false, s(z0), 0) → c2(COND1(and(false, gr(s(z0), 0)), s(z0), 0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, gr(0, 0)), 0, s(z0)))
COND2(true, 0, 0) → c1(COND2(gr(0, 0), 0, 0))
COND2(true, s(z0), 0) → c1(COND2(gr(0, 0), z0, 0))
COND2(true, x0, 0) → c1(COND2(false, p(x0), 0))
COND2(true, 0, s(x1)) → c1(COND2(gr(s(x1), 0), 0, x1))
COND2(true, s(z0), s(x1)) → c1(COND2(gr(s(x1), 0), z0, x1))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
COND2(true, 0, 0) → c1(COND2(false, 0, p(0)))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, p(s(z0))))
COND2(true, s(x0), 0) → c1(COND2(false, x0, p(0)))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, p(s(z0))))
S tuples:
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(false, s(z0), x1) → c2(COND1(and(eq(s(z0), x1), true), s(z0), x1), EQ(s(z0), x1))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), gr(s(z0), 0)), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(true, 0, 0) → c1(COND2(gr(0, 0), 0, 0))
COND2(true, x0, 0) → c1(COND2(false, p(x0), 0))
COND2(true, 0, 0) → c1(COND2(false, 0, p(0)))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, p(s(z0))))
K tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND2(true, s(z0), x1) → c1(COND2(gr(x1, 0), z0, p(x1)))
COND2(true, x0, s(z0)) → c1(COND2(gr(s(z0), 0), p(x0), z0))
COND2(false, 0, x1) → c2(COND1(and(eq(0, x1), false), 0, x1))
COND2(false, 0, 0) → c2(COND1(and(true, gr(0, 0)), 0, 0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, gr(0, 0)), 0, s(z0)))
COND2(false, s(z0), 0) → c2(COND1(and(false, gr(s(z0), 0)), s(z0), 0))
COND2(true, s(z0), 0) → c1(COND2(gr(0, 0), z0, 0))
COND2(true, 0, s(x1)) → c1(COND2(gr(s(x1), 0), 0, x1))
COND2(true, s(x0), 0) → c1(COND2(false, x0, p(0)))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, p(s(z0))))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
Defined Rule Symbols:
gr, p, and, eq
Defined Pair Symbols:
GR, EQ, COND1, COND2
Compound Symbols:
c5, c11, c, c2, c2, c1
(49) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND2(
false,
s(
z0),
x1) →
c2(
COND1(
and(
eq(
s(
z0),
x1),
true),
s(
z0),
x1),
EQ(
s(
z0),
x1)) by
COND2(false, s(z0), 0) → c2(COND1(and(false, true), s(z0), 0), EQ(s(z0), 0))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), true), s(z0), s(z1)), EQ(s(z0), s(z1)))
(50) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
eq(0, 0) → true
eq(s(z0), 0) → false
eq(0, s(z0)) → false
eq(s(z0), s(z1)) → eq(z0, z1)
Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), gr(s(z0), 0)), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(false, 0, x1) → c2(COND1(and(eq(0, x1), false), 0, x1))
COND2(false, 0, 0) → c2(COND1(and(true, gr(0, 0)), 0, 0))
COND2(false, s(z0), 0) → c2(COND1(and(false, gr(s(z0), 0)), s(z0), 0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, gr(0, 0)), 0, s(z0)))
COND2(true, 0, 0) → c1(COND2(gr(0, 0), 0, 0))
COND2(true, s(z0), 0) → c1(COND2(gr(0, 0), z0, 0))
COND2(true, x0, 0) → c1(COND2(false, p(x0), 0))
COND2(true, 0, s(x1)) → c1(COND2(gr(s(x1), 0), 0, x1))
COND2(true, s(z0), s(x1)) → c1(COND2(gr(s(x1), 0), z0, x1))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
COND2(true, 0, 0) → c1(COND2(false, 0, p(0)))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, p(s(z0))))
COND2(true, s(x0), 0) → c1(COND2(false, x0, p(0)))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, p(s(z0))))
COND2(false, s(z0), 0) → c2(COND1(and(false, true), s(z0), 0), EQ(s(z0), 0))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), true), s(z0), s(z1)), EQ(s(z0), s(z1)))
S tuples:
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), gr(s(z0), 0)), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(true, 0, 0) → c1(COND2(gr(0, 0), 0, 0))
COND2(true, x0, 0) → c1(COND2(false, p(x0), 0))
COND2(true, 0, 0) → c1(COND2(false, 0, p(0)))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, p(s(z0))))
COND2(false, s(z0), 0) → c2(COND1(and(false, true), s(z0), 0), EQ(s(z0), 0))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), true), s(z0), s(z1)), EQ(s(z0), s(z1)))
K tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND2(true, s(z0), x1) → c1(COND2(gr(x1, 0), z0, p(x1)))
COND2(true, x0, s(z0)) → c1(COND2(gr(s(z0), 0), p(x0), z0))
COND2(false, 0, x1) → c2(COND1(and(eq(0, x1), false), 0, x1))
COND2(false, 0, 0) → c2(COND1(and(true, gr(0, 0)), 0, 0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, gr(0, 0)), 0, s(z0)))
COND2(false, s(z0), 0) → c2(COND1(and(false, gr(s(z0), 0)), s(z0), 0))
COND2(true, s(z0), 0) → c1(COND2(gr(0, 0), z0, 0))
COND2(true, 0, s(x1)) → c1(COND2(gr(s(x1), 0), 0, x1))
COND2(true, s(x0), 0) → c1(COND2(false, x0, p(0)))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, p(s(z0))))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
Defined Rule Symbols:
gr, p, and, eq
Defined Pair Symbols:
GR, EQ, COND1, COND2
Compound Symbols:
c5, c11, c, c2, c2, c1
(51) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing tuple parts
(52) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
eq(0, 0) → true
eq(s(z0), 0) → false
eq(0, s(z0)) → false
eq(s(z0), s(z1)) → eq(z0, z1)
Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), gr(s(z0), 0)), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(false, 0, x1) → c2(COND1(and(eq(0, x1), false), 0, x1))
COND2(false, 0, 0) → c2(COND1(and(true, gr(0, 0)), 0, 0))
COND2(false, s(z0), 0) → c2(COND1(and(false, gr(s(z0), 0)), s(z0), 0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, gr(0, 0)), 0, s(z0)))
COND2(true, 0, 0) → c1(COND2(gr(0, 0), 0, 0))
COND2(true, s(z0), 0) → c1(COND2(gr(0, 0), z0, 0))
COND2(true, x0, 0) → c1(COND2(false, p(x0), 0))
COND2(true, 0, s(x1)) → c1(COND2(gr(s(x1), 0), 0, x1))
COND2(true, s(z0), s(x1)) → c1(COND2(gr(s(x1), 0), z0, x1))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
COND2(true, 0, 0) → c1(COND2(false, 0, p(0)))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, p(s(z0))))
COND2(true, s(x0), 0) → c1(COND2(false, x0, p(0)))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, p(s(z0))))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), true), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(false, s(z0), 0) → c2(COND1(and(false, true), s(z0), 0))
S tuples:
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), gr(s(z0), 0)), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(true, 0, 0) → c1(COND2(gr(0, 0), 0, 0))
COND2(true, x0, 0) → c1(COND2(false, p(x0), 0))
COND2(true, 0, 0) → c1(COND2(false, 0, p(0)))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, p(s(z0))))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), true), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(false, s(z0), 0) → c2(COND1(and(false, true), s(z0), 0))
K tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND2(true, s(z0), x1) → c1(COND2(gr(x1, 0), z0, p(x1)))
COND2(true, x0, s(z0)) → c1(COND2(gr(s(z0), 0), p(x0), z0))
COND2(false, 0, x1) → c2(COND1(and(eq(0, x1), false), 0, x1))
COND2(false, 0, 0) → c2(COND1(and(true, gr(0, 0)), 0, 0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, gr(0, 0)), 0, s(z0)))
COND2(false, s(z0), 0) → c2(COND1(and(false, gr(s(z0), 0)), s(z0), 0))
COND2(true, s(z0), 0) → c1(COND2(gr(0, 0), z0, 0))
COND2(true, 0, s(x1)) → c1(COND2(gr(s(x1), 0), 0, x1))
COND2(true, s(x0), 0) → c1(COND2(false, x0, p(0)))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, p(s(z0))))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
Defined Rule Symbols:
gr, p, and, eq
Defined Pair Symbols:
GR, EQ, COND1, COND2
Compound Symbols:
c5, c11, c, c2, c2, c1
(53) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
COND2(false, s(z0), 0) → c2(COND1(and(false, true), s(z0), 0))
We considered the (Usable) Rules:
eq(s(z0), 0) → false
eq(0, s(z0)) → false
eq(s(z0), s(z1)) → eq(z0, z1)
eq(0, 0) → true
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
And the Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), gr(s(z0), 0)), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(false, 0, x1) → c2(COND1(and(eq(0, x1), false), 0, x1))
COND2(false, 0, 0) → c2(COND1(and(true, gr(0, 0)), 0, 0))
COND2(false, s(z0), 0) → c2(COND1(and(false, gr(s(z0), 0)), s(z0), 0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, gr(0, 0)), 0, s(z0)))
COND2(true, 0, 0) → c1(COND2(gr(0, 0), 0, 0))
COND2(true, s(z0), 0) → c1(COND2(gr(0, 0), z0, 0))
COND2(true, x0, 0) → c1(COND2(false, p(x0), 0))
COND2(true, 0, s(x1)) → c1(COND2(gr(s(x1), 0), 0, x1))
COND2(true, s(z0), s(x1)) → c1(COND2(gr(s(x1), 0), z0, x1))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
COND2(true, 0, 0) → c1(COND2(false, 0, p(0)))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, p(s(z0))))
COND2(true, s(x0), 0) → c1(COND2(false, x0, p(0)))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, p(s(z0))))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), true), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(false, s(z0), 0) → c2(COND1(and(false, true), s(z0), 0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(COND1(x1, x2, x3)) = x1 + x2
POL(COND2(x1, x2, x3)) = [1]
POL(EQ(x1, x2)) = 0
POL(GR(x1, x2)) = 0
POL(and(x1, x2)) = x1
POL(c(x1)) = x1
POL(c1(x1)) = x1
POL(c11(x1)) = x1
POL(c2(x1)) = x1
POL(c2(x1, x2)) = x1 + x2
POL(c5(x1)) = x1
POL(eq(x1, x2)) = [1]
POL(false) = 0
POL(gr(x1, x2)) = 0
POL(p(x1)) = 0
POL(s(x1)) = 0
POL(true) = [1]
(54) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
eq(0, 0) → true
eq(s(z0), 0) → false
eq(0, s(z0)) → false
eq(s(z0), s(z1)) → eq(z0, z1)
Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), gr(s(z0), 0)), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(false, 0, x1) → c2(COND1(and(eq(0, x1), false), 0, x1))
COND2(false, 0, 0) → c2(COND1(and(true, gr(0, 0)), 0, 0))
COND2(false, s(z0), 0) → c2(COND1(and(false, gr(s(z0), 0)), s(z0), 0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, gr(0, 0)), 0, s(z0)))
COND2(true, 0, 0) → c1(COND2(gr(0, 0), 0, 0))
COND2(true, s(z0), 0) → c1(COND2(gr(0, 0), z0, 0))
COND2(true, x0, 0) → c1(COND2(false, p(x0), 0))
COND2(true, 0, s(x1)) → c1(COND2(gr(s(x1), 0), 0, x1))
COND2(true, s(z0), s(x1)) → c1(COND2(gr(s(x1), 0), z0, x1))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
COND2(true, 0, 0) → c1(COND2(false, 0, p(0)))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, p(s(z0))))
COND2(true, s(x0), 0) → c1(COND2(false, x0, p(0)))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, p(s(z0))))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), true), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(false, s(z0), 0) → c2(COND1(and(false, true), s(z0), 0))
S tuples:
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), gr(s(z0), 0)), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(true, 0, 0) → c1(COND2(gr(0, 0), 0, 0))
COND2(true, x0, 0) → c1(COND2(false, p(x0), 0))
COND2(true, 0, 0) → c1(COND2(false, 0, p(0)))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, p(s(z0))))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), true), s(z0), s(z1)), EQ(s(z0), s(z1)))
K tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND2(true, s(z0), x1) → c1(COND2(gr(x1, 0), z0, p(x1)))
COND2(true, x0, s(z0)) → c1(COND2(gr(s(z0), 0), p(x0), z0))
COND2(false, 0, x1) → c2(COND1(and(eq(0, x1), false), 0, x1))
COND2(false, 0, 0) → c2(COND1(and(true, gr(0, 0)), 0, 0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, gr(0, 0)), 0, s(z0)))
COND2(false, s(z0), 0) → c2(COND1(and(false, gr(s(z0), 0)), s(z0), 0))
COND2(true, s(z0), 0) → c1(COND2(gr(0, 0), z0, 0))
COND2(true, 0, s(x1)) → c1(COND2(gr(s(x1), 0), 0, x1))
COND2(true, s(x0), 0) → c1(COND2(false, x0, p(0)))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, p(s(z0))))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
COND2(false, s(z0), 0) → c2(COND1(and(false, true), s(z0), 0))
Defined Rule Symbols:
gr, p, and, eq
Defined Pair Symbols:
GR, EQ, COND1, COND2
Compound Symbols:
c5, c11, c, c2, c2, c1
(55) CdtKnowledgeProof (BOTH BOUNDS(ID, ID) transformation)
The following tuples could be moved from S to K by knowledge propagation:
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND2(false, 0, x1) → c2(COND1(and(eq(0, x1), false), 0, x1))
COND2(false, 0, 0) → c2(COND1(and(true, gr(0, 0)), 0, 0))
COND2(false, s(z0), 0) → c2(COND1(and(false, gr(s(z0), 0)), s(z0), 0))
COND2(false, s(z0), 0) → c2(COND1(and(false, true), s(z0), 0))
(56) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
eq(0, 0) → true
eq(s(z0), 0) → false
eq(0, s(z0)) → false
eq(s(z0), s(z1)) → eq(z0, z1)
Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), gr(s(z0), 0)), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(false, 0, x1) → c2(COND1(and(eq(0, x1), false), 0, x1))
COND2(false, 0, 0) → c2(COND1(and(true, gr(0, 0)), 0, 0))
COND2(false, s(z0), 0) → c2(COND1(and(false, gr(s(z0), 0)), s(z0), 0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, gr(0, 0)), 0, s(z0)))
COND2(true, 0, 0) → c1(COND2(gr(0, 0), 0, 0))
COND2(true, s(z0), 0) → c1(COND2(gr(0, 0), z0, 0))
COND2(true, x0, 0) → c1(COND2(false, p(x0), 0))
COND2(true, 0, s(x1)) → c1(COND2(gr(s(x1), 0), 0, x1))
COND2(true, s(z0), s(x1)) → c1(COND2(gr(s(x1), 0), z0, x1))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
COND2(true, 0, 0) → c1(COND2(false, 0, p(0)))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, p(s(z0))))
COND2(true, s(x0), 0) → c1(COND2(false, x0, p(0)))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, p(s(z0))))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), true), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(false, s(z0), 0) → c2(COND1(and(false, true), s(z0), 0))
S tuples:
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), gr(s(z0), 0)), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(true, 0, 0) → c1(COND2(gr(0, 0), 0, 0))
COND2(true, x0, 0) → c1(COND2(false, p(x0), 0))
COND2(true, 0, 0) → c1(COND2(false, 0, p(0)))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, p(s(z0))))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), true), s(z0), s(z1)), EQ(s(z0), s(z1)))
K tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND2(true, s(z0), x1) → c1(COND2(gr(x1, 0), z0, p(x1)))
COND2(true, x0, s(z0)) → c1(COND2(gr(s(z0), 0), p(x0), z0))
COND2(false, 0, x1) → c2(COND1(and(eq(0, x1), false), 0, x1))
COND2(false, 0, 0) → c2(COND1(and(true, gr(0, 0)), 0, 0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, gr(0, 0)), 0, s(z0)))
COND2(false, s(z0), 0) → c2(COND1(and(false, gr(s(z0), 0)), s(z0), 0))
COND2(true, s(z0), 0) → c1(COND2(gr(0, 0), z0, 0))
COND2(true, 0, s(x1)) → c1(COND2(gr(s(x1), 0), 0, x1))
COND2(true, s(x0), 0) → c1(COND2(false, x0, p(0)))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, p(s(z0))))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
COND2(false, s(z0), 0) → c2(COND1(and(false, true), s(z0), 0))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
Defined Rule Symbols:
gr, p, and, eq
Defined Pair Symbols:
GR, EQ, COND1, COND2
Compound Symbols:
c5, c11, c, c2, c2, c1
(57) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND2(
false,
s(
z0),
s(
z1)) →
c2(
COND1(
and(
eq(
z0,
z1),
gr(
s(
z0),
0)),
s(
z0),
s(
z1)),
EQ(
s(
z0),
s(
z1))) by
COND2(false, s(z0), s(x1)) → c2(COND1(and(eq(z0, x1), true), s(z0), s(x1)), EQ(s(z0), s(x1)))
COND2(false, s(0), s(0)) → c2(COND1(and(true, gr(s(0), 0)), s(0), s(0)), EQ(s(0), s(0)))
COND2(false, s(s(z0)), s(0)) → c2(COND1(and(false, gr(s(s(z0)), 0)), s(s(z0)), s(0)), EQ(s(s(z0)), s(0)))
COND2(false, s(0), s(s(z0))) → c2(COND1(and(false, gr(s(0), 0)), s(0), s(s(z0))), EQ(s(0), s(s(z0))))
COND2(false, s(s(z0)), s(s(z1))) → c2(COND1(and(eq(z0, z1), gr(s(s(z0)), 0)), s(s(z0)), s(s(z1))), EQ(s(s(z0)), s(s(z1))))
(58) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
eq(0, 0) → true
eq(s(z0), 0) → false
eq(0, s(z0)) → false
eq(s(z0), s(z1)) → eq(z0, z1)
Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(false, 0, x1) → c2(COND1(and(eq(0, x1), false), 0, x1))
COND2(false, 0, 0) → c2(COND1(and(true, gr(0, 0)), 0, 0))
COND2(false, s(z0), 0) → c2(COND1(and(false, gr(s(z0), 0)), s(z0), 0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, gr(0, 0)), 0, s(z0)))
COND2(true, 0, 0) → c1(COND2(gr(0, 0), 0, 0))
COND2(true, s(z0), 0) → c1(COND2(gr(0, 0), z0, 0))
COND2(true, x0, 0) → c1(COND2(false, p(x0), 0))
COND2(true, 0, s(x1)) → c1(COND2(gr(s(x1), 0), 0, x1))
COND2(true, s(z0), s(x1)) → c1(COND2(gr(s(x1), 0), z0, x1))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
COND2(true, 0, 0) → c1(COND2(false, 0, p(0)))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, p(s(z0))))
COND2(true, s(x0), 0) → c1(COND2(false, x0, p(0)))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, p(s(z0))))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), true), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(false, s(z0), 0) → c2(COND1(and(false, true), s(z0), 0))
COND2(false, s(0), s(0)) → c2(COND1(and(true, gr(s(0), 0)), s(0), s(0)), EQ(s(0), s(0)))
COND2(false, s(s(z0)), s(0)) → c2(COND1(and(false, gr(s(s(z0)), 0)), s(s(z0)), s(0)), EQ(s(s(z0)), s(0)))
COND2(false, s(0), s(s(z0))) → c2(COND1(and(false, gr(s(0), 0)), s(0), s(s(z0))), EQ(s(0), s(s(z0))))
COND2(false, s(s(z0)), s(s(z1))) → c2(COND1(and(eq(z0, z1), gr(s(s(z0)), 0)), s(s(z0)), s(s(z1))), EQ(s(s(z0)), s(s(z1))))
S tuples:
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, 0, 0) → c1(COND2(gr(0, 0), 0, 0))
COND2(true, x0, 0) → c1(COND2(false, p(x0), 0))
COND2(true, 0, 0) → c1(COND2(false, 0, p(0)))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, p(s(z0))))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), true), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(false, s(0), s(0)) → c2(COND1(and(true, gr(s(0), 0)), s(0), s(0)), EQ(s(0), s(0)))
COND2(false, s(s(z0)), s(0)) → c2(COND1(and(false, gr(s(s(z0)), 0)), s(s(z0)), s(0)), EQ(s(s(z0)), s(0)))
COND2(false, s(0), s(s(z0))) → c2(COND1(and(false, gr(s(0), 0)), s(0), s(s(z0))), EQ(s(0), s(s(z0))))
COND2(false, s(s(z0)), s(s(z1))) → c2(COND1(and(eq(z0, z1), gr(s(s(z0)), 0)), s(s(z0)), s(s(z1))), EQ(s(s(z0)), s(s(z1))))
K tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND2(true, s(z0), x1) → c1(COND2(gr(x1, 0), z0, p(x1)))
COND2(true, x0, s(z0)) → c1(COND2(gr(s(z0), 0), p(x0), z0))
COND2(false, 0, x1) → c2(COND1(and(eq(0, x1), false), 0, x1))
COND2(false, 0, 0) → c2(COND1(and(true, gr(0, 0)), 0, 0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, gr(0, 0)), 0, s(z0)))
COND2(false, s(z0), 0) → c2(COND1(and(false, gr(s(z0), 0)), s(z0), 0))
COND2(true, s(z0), 0) → c1(COND2(gr(0, 0), z0, 0))
COND2(true, 0, s(x1)) → c1(COND2(gr(s(x1), 0), 0, x1))
COND2(true, s(x0), 0) → c1(COND2(false, x0, p(0)))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, p(s(z0))))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
COND2(false, s(z0), 0) → c2(COND1(and(false, true), s(z0), 0))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
Defined Rule Symbols:
gr, p, and, eq
Defined Pair Symbols:
GR, EQ, COND1, COND2
Compound Symbols:
c5, c11, c, c2, c1, c2
(59) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
COND2(false, s(s(z0)), s(0)) → c2(COND1(and(false, gr(s(s(z0)), 0)), s(s(z0)), s(0)), EQ(s(s(z0)), s(0)))
COND2(false, s(0), s(s(z0))) → c2(COND1(and(false, gr(s(0), 0)), s(0), s(s(z0))), EQ(s(0), s(s(z0))))
We considered the (Usable) Rules:
eq(0, s(z0)) → false
eq(s(z0), 0) → false
eq(s(z0), s(z1)) → eq(z0, z1)
eq(0, 0) → true
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
And the Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(false, 0, x1) → c2(COND1(and(eq(0, x1), false), 0, x1))
COND2(false, 0, 0) → c2(COND1(and(true, gr(0, 0)), 0, 0))
COND2(false, s(z0), 0) → c2(COND1(and(false, gr(s(z0), 0)), s(z0), 0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, gr(0, 0)), 0, s(z0)))
COND2(true, 0, 0) → c1(COND2(gr(0, 0), 0, 0))
COND2(true, s(z0), 0) → c1(COND2(gr(0, 0), z0, 0))
COND2(true, x0, 0) → c1(COND2(false, p(x0), 0))
COND2(true, 0, s(x1)) → c1(COND2(gr(s(x1), 0), 0, x1))
COND2(true, s(z0), s(x1)) → c1(COND2(gr(s(x1), 0), z0, x1))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
COND2(true, 0, 0) → c1(COND2(false, 0, p(0)))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, p(s(z0))))
COND2(true, s(x0), 0) → c1(COND2(false, x0, p(0)))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, p(s(z0))))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), true), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(false, s(z0), 0) → c2(COND1(and(false, true), s(z0), 0))
COND2(false, s(0), s(0)) → c2(COND1(and(true, gr(s(0), 0)), s(0), s(0)), EQ(s(0), s(0)))
COND2(false, s(s(z0)), s(0)) → c2(COND1(and(false, gr(s(s(z0)), 0)), s(s(z0)), s(0)), EQ(s(s(z0)), s(0)))
COND2(false, s(0), s(s(z0))) → c2(COND1(and(false, gr(s(0), 0)), s(0), s(s(z0))), EQ(s(0), s(s(z0))))
COND2(false, s(s(z0)), s(s(z1))) → c2(COND1(and(eq(z0, z1), gr(s(s(z0)), 0)), s(s(z0)), s(s(z1))), EQ(s(s(z0)), s(s(z1))))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(COND1(x1, x2, x3)) = [2] + [2]x1
POL(COND2(x1, x2, x3)) = [4]
POL(EQ(x1, x2)) = 0
POL(GR(x1, x2)) = 0
POL(and(x1, x2)) = x1
POL(c(x1)) = x1
POL(c1(x1)) = x1
POL(c11(x1)) = x1
POL(c2(x1)) = x1
POL(c2(x1, x2)) = x1 + x2
POL(c5(x1)) = x1
POL(eq(x1, x2)) = [1]
POL(false) = 0
POL(gr(x1, x2)) = 0
POL(p(x1)) = [2]
POL(s(x1)) = 0
POL(true) = [1]
(60) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
eq(0, 0) → true
eq(s(z0), 0) → false
eq(0, s(z0)) → false
eq(s(z0), s(z1)) → eq(z0, z1)
Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(false, 0, x1) → c2(COND1(and(eq(0, x1), false), 0, x1))
COND2(false, 0, 0) → c2(COND1(and(true, gr(0, 0)), 0, 0))
COND2(false, s(z0), 0) → c2(COND1(and(false, gr(s(z0), 0)), s(z0), 0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, gr(0, 0)), 0, s(z0)))
COND2(true, 0, 0) → c1(COND2(gr(0, 0), 0, 0))
COND2(true, s(z0), 0) → c1(COND2(gr(0, 0), z0, 0))
COND2(true, x0, 0) → c1(COND2(false, p(x0), 0))
COND2(true, 0, s(x1)) → c1(COND2(gr(s(x1), 0), 0, x1))
COND2(true, s(z0), s(x1)) → c1(COND2(gr(s(x1), 0), z0, x1))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
COND2(true, 0, 0) → c1(COND2(false, 0, p(0)))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, p(s(z0))))
COND2(true, s(x0), 0) → c1(COND2(false, x0, p(0)))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, p(s(z0))))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), true), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(false, s(z0), 0) → c2(COND1(and(false, true), s(z0), 0))
COND2(false, s(0), s(0)) → c2(COND1(and(true, gr(s(0), 0)), s(0), s(0)), EQ(s(0), s(0)))
COND2(false, s(s(z0)), s(0)) → c2(COND1(and(false, gr(s(s(z0)), 0)), s(s(z0)), s(0)), EQ(s(s(z0)), s(0)))
COND2(false, s(0), s(s(z0))) → c2(COND1(and(false, gr(s(0), 0)), s(0), s(s(z0))), EQ(s(0), s(s(z0))))
COND2(false, s(s(z0)), s(s(z1))) → c2(COND1(and(eq(z0, z1), gr(s(s(z0)), 0)), s(s(z0)), s(s(z1))), EQ(s(s(z0)), s(s(z1))))
S tuples:
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, 0, 0) → c1(COND2(gr(0, 0), 0, 0))
COND2(true, x0, 0) → c1(COND2(false, p(x0), 0))
COND2(true, 0, 0) → c1(COND2(false, 0, p(0)))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, p(s(z0))))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), true), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(false, s(0), s(0)) → c2(COND1(and(true, gr(s(0), 0)), s(0), s(0)), EQ(s(0), s(0)))
COND2(false, s(s(z0)), s(s(z1))) → c2(COND1(and(eq(z0, z1), gr(s(s(z0)), 0)), s(s(z0)), s(s(z1))), EQ(s(s(z0)), s(s(z1))))
K tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND2(true, s(z0), x1) → c1(COND2(gr(x1, 0), z0, p(x1)))
COND2(true, x0, s(z0)) → c1(COND2(gr(s(z0), 0), p(x0), z0))
COND2(false, 0, x1) → c2(COND1(and(eq(0, x1), false), 0, x1))
COND2(false, 0, 0) → c2(COND1(and(true, gr(0, 0)), 0, 0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, gr(0, 0)), 0, s(z0)))
COND2(false, s(z0), 0) → c2(COND1(and(false, gr(s(z0), 0)), s(z0), 0))
COND2(true, s(z0), 0) → c1(COND2(gr(0, 0), z0, 0))
COND2(true, 0, s(x1)) → c1(COND2(gr(s(x1), 0), 0, x1))
COND2(true, s(x0), 0) → c1(COND2(false, x0, p(0)))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, p(s(z0))))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
COND2(false, s(z0), 0) → c2(COND1(and(false, true), s(z0), 0))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND2(false, s(s(z0)), s(0)) → c2(COND1(and(false, gr(s(s(z0)), 0)), s(s(z0)), s(0)), EQ(s(s(z0)), s(0)))
COND2(false, s(0), s(s(z0))) → c2(COND1(and(false, gr(s(0), 0)), s(0), s(s(z0))), EQ(s(0), s(s(z0))))
Defined Rule Symbols:
gr, p, and, eq
Defined Pair Symbols:
GR, EQ, COND1, COND2
Compound Symbols:
c5, c11, c, c2, c1, c2
(61) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND2(
false,
0,
x1) →
c2(
COND1(
and(
eq(
0,
x1),
false),
0,
x1)) by
COND2(false, 0, x0) → c2(COND1(false, 0, x0))
COND2(false, 0, 0) → c2(COND1(and(true, false), 0, 0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, false), 0, s(z0)))
(62) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
eq(0, 0) → true
eq(s(z0), 0) → false
eq(0, s(z0)) → false
eq(s(z0), s(z1)) → eq(z0, z1)
Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(false, 0, 0) → c2(COND1(and(true, gr(0, 0)), 0, 0))
COND2(false, s(z0), 0) → c2(COND1(and(false, gr(s(z0), 0)), s(z0), 0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, gr(0, 0)), 0, s(z0)))
COND2(true, 0, 0) → c1(COND2(gr(0, 0), 0, 0))
COND2(true, s(z0), 0) → c1(COND2(gr(0, 0), z0, 0))
COND2(true, x0, 0) → c1(COND2(false, p(x0), 0))
COND2(true, 0, s(x1)) → c1(COND2(gr(s(x1), 0), 0, x1))
COND2(true, s(z0), s(x1)) → c1(COND2(gr(s(x1), 0), z0, x1))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
COND2(true, 0, 0) → c1(COND2(false, 0, p(0)))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, p(s(z0))))
COND2(true, s(x0), 0) → c1(COND2(false, x0, p(0)))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, p(s(z0))))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), true), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(false, s(z0), 0) → c2(COND1(and(false, true), s(z0), 0))
COND2(false, s(0), s(0)) → c2(COND1(and(true, gr(s(0), 0)), s(0), s(0)), EQ(s(0), s(0)))
COND2(false, s(s(z0)), s(0)) → c2(COND1(and(false, gr(s(s(z0)), 0)), s(s(z0)), s(0)), EQ(s(s(z0)), s(0)))
COND2(false, s(0), s(s(z0))) → c2(COND1(and(false, gr(s(0), 0)), s(0), s(s(z0))), EQ(s(0), s(s(z0))))
COND2(false, s(s(z0)), s(s(z1))) → c2(COND1(and(eq(z0, z1), gr(s(s(z0)), 0)), s(s(z0)), s(s(z1))), EQ(s(s(z0)), s(s(z1))))
COND2(false, 0, x0) → c2(COND1(false, 0, x0))
COND2(false, 0, 0) → c2(COND1(and(true, false), 0, 0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, false), 0, s(z0)))
S tuples:
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, 0, 0) → c1(COND2(gr(0, 0), 0, 0))
COND2(true, x0, 0) → c1(COND2(false, p(x0), 0))
COND2(true, 0, 0) → c1(COND2(false, 0, p(0)))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, p(s(z0))))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), true), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(false, s(0), s(0)) → c2(COND1(and(true, gr(s(0), 0)), s(0), s(0)), EQ(s(0), s(0)))
COND2(false, s(s(z0)), s(s(z1))) → c2(COND1(and(eq(z0, z1), gr(s(s(z0)), 0)), s(s(z0)), s(s(z1))), EQ(s(s(z0)), s(s(z1))))
K tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND2(true, s(z0), x1) → c1(COND2(gr(x1, 0), z0, p(x1)))
COND2(true, x0, s(z0)) → c1(COND2(gr(s(z0), 0), p(x0), z0))
COND2(false, 0, x1) → c2(COND1(and(eq(0, x1), false), 0, x1))
COND2(false, 0, 0) → c2(COND1(and(true, gr(0, 0)), 0, 0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, gr(0, 0)), 0, s(z0)))
COND2(false, s(z0), 0) → c2(COND1(and(false, gr(s(z0), 0)), s(z0), 0))
COND2(true, s(z0), 0) → c1(COND2(gr(0, 0), z0, 0))
COND2(true, 0, s(x1)) → c1(COND2(gr(s(x1), 0), 0, x1))
COND2(true, s(x0), 0) → c1(COND2(false, x0, p(0)))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, p(s(z0))))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
COND2(false, s(z0), 0) → c2(COND1(and(false, true), s(z0), 0))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND2(false, s(s(z0)), s(0)) → c2(COND1(and(false, gr(s(s(z0)), 0)), s(s(z0)), s(0)), EQ(s(s(z0)), s(0)))
COND2(false, s(0), s(s(z0))) → c2(COND1(and(false, gr(s(0), 0)), s(0), s(s(z0))), EQ(s(0), s(s(z0))))
Defined Rule Symbols:
gr, p, and, eq
Defined Pair Symbols:
GR, EQ, COND1, COND2
Compound Symbols:
c5, c11, c, c2, c1, c2
(63) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
COND2(false, 0, x0) → c2(COND1(false, 0, x0))
(64) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
eq(0, 0) → true
eq(s(z0), 0) → false
eq(0, s(z0)) → false
eq(s(z0), s(z1)) → eq(z0, z1)
Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(false, 0, 0) → c2(COND1(and(true, gr(0, 0)), 0, 0))
COND2(false, s(z0), 0) → c2(COND1(and(false, gr(s(z0), 0)), s(z0), 0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, gr(0, 0)), 0, s(z0)))
COND2(true, 0, 0) → c1(COND2(gr(0, 0), 0, 0))
COND2(true, s(z0), 0) → c1(COND2(gr(0, 0), z0, 0))
COND2(true, x0, 0) → c1(COND2(false, p(x0), 0))
COND2(true, 0, s(x1)) → c1(COND2(gr(s(x1), 0), 0, x1))
COND2(true, s(z0), s(x1)) → c1(COND2(gr(s(x1), 0), z0, x1))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
COND2(true, 0, 0) → c1(COND2(false, 0, p(0)))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, p(s(z0))))
COND2(true, s(x0), 0) → c1(COND2(false, x0, p(0)))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, p(s(z0))))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), true), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(false, s(z0), 0) → c2(COND1(and(false, true), s(z0), 0))
COND2(false, s(0), s(0)) → c2(COND1(and(true, gr(s(0), 0)), s(0), s(0)), EQ(s(0), s(0)))
COND2(false, s(s(z0)), s(0)) → c2(COND1(and(false, gr(s(s(z0)), 0)), s(s(z0)), s(0)), EQ(s(s(z0)), s(0)))
COND2(false, s(0), s(s(z0))) → c2(COND1(and(false, gr(s(0), 0)), s(0), s(s(z0))), EQ(s(0), s(s(z0))))
COND2(false, s(s(z0)), s(s(z1))) → c2(COND1(and(eq(z0, z1), gr(s(s(z0)), 0)), s(s(z0)), s(s(z1))), EQ(s(s(z0)), s(s(z1))))
COND2(false, 0, 0) → c2(COND1(and(true, false), 0, 0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, false), 0, s(z0)))
S tuples:
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, 0, 0) → c1(COND2(gr(0, 0), 0, 0))
COND2(true, x0, 0) → c1(COND2(false, p(x0), 0))
COND2(true, 0, 0) → c1(COND2(false, 0, p(0)))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, p(s(z0))))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), true), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(false, s(0), s(0)) → c2(COND1(and(true, gr(s(0), 0)), s(0), s(0)), EQ(s(0), s(0)))
COND2(false, s(s(z0)), s(s(z1))) → c2(COND1(and(eq(z0, z1), gr(s(s(z0)), 0)), s(s(z0)), s(s(z1))), EQ(s(s(z0)), s(s(z1))))
K tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND2(false, 0, 0) → c2(COND1(and(true, gr(0, 0)), 0, 0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, gr(0, 0)), 0, s(z0)))
COND2(false, s(z0), 0) → c2(COND1(and(false, gr(s(z0), 0)), s(z0), 0))
COND2(true, s(z0), 0) → c1(COND2(gr(0, 0), z0, 0))
COND2(true, 0, s(x1)) → c1(COND2(gr(s(x1), 0), 0, x1))
COND2(true, s(x0), 0) → c1(COND2(false, x0, p(0)))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, p(s(z0))))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
COND2(false, s(z0), 0) → c2(COND1(and(false, true), s(z0), 0))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND2(false, s(s(z0)), s(0)) → c2(COND1(and(false, gr(s(s(z0)), 0)), s(s(z0)), s(0)), EQ(s(s(z0)), s(0)))
COND2(false, s(0), s(s(z0))) → c2(COND1(and(false, gr(s(0), 0)), s(0), s(s(z0))), EQ(s(0), s(s(z0))))
Defined Rule Symbols:
gr, p, and, eq
Defined Pair Symbols:
GR, EQ, COND1, COND2
Compound Symbols:
c5, c11, c, c2, c1, c2
(65) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND2(
false,
0,
0) →
c2(
COND1(
and(
true,
gr(
0,
0)),
0,
0)) by
COND2(false, 0, 0) → c2(COND1(and(true, false), 0, 0))
(66) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
eq(0, 0) → true
eq(s(z0), 0) → false
eq(0, s(z0)) → false
eq(s(z0), s(z1)) → eq(z0, z1)
Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(false, s(z0), 0) → c2(COND1(and(false, gr(s(z0), 0)), s(z0), 0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, gr(0, 0)), 0, s(z0)))
COND2(true, 0, 0) → c1(COND2(gr(0, 0), 0, 0))
COND2(true, s(z0), 0) → c1(COND2(gr(0, 0), z0, 0))
COND2(true, x0, 0) → c1(COND2(false, p(x0), 0))
COND2(true, 0, s(x1)) → c1(COND2(gr(s(x1), 0), 0, x1))
COND2(true, s(z0), s(x1)) → c1(COND2(gr(s(x1), 0), z0, x1))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
COND2(true, 0, 0) → c1(COND2(false, 0, p(0)))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, p(s(z0))))
COND2(true, s(x0), 0) → c1(COND2(false, x0, p(0)))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, p(s(z0))))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), true), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(false, s(z0), 0) → c2(COND1(and(false, true), s(z0), 0))
COND2(false, s(0), s(0)) → c2(COND1(and(true, gr(s(0), 0)), s(0), s(0)), EQ(s(0), s(0)))
COND2(false, s(s(z0)), s(0)) → c2(COND1(and(false, gr(s(s(z0)), 0)), s(s(z0)), s(0)), EQ(s(s(z0)), s(0)))
COND2(false, s(0), s(s(z0))) → c2(COND1(and(false, gr(s(0), 0)), s(0), s(s(z0))), EQ(s(0), s(s(z0))))
COND2(false, s(s(z0)), s(s(z1))) → c2(COND1(and(eq(z0, z1), gr(s(s(z0)), 0)), s(s(z0)), s(s(z1))), EQ(s(s(z0)), s(s(z1))))
COND2(false, 0, 0) → c2(COND1(and(true, false), 0, 0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, false), 0, s(z0)))
S tuples:
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, 0, 0) → c1(COND2(gr(0, 0), 0, 0))
COND2(true, x0, 0) → c1(COND2(false, p(x0), 0))
COND2(true, 0, 0) → c1(COND2(false, 0, p(0)))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, p(s(z0))))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), true), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(false, s(0), s(0)) → c2(COND1(and(true, gr(s(0), 0)), s(0), s(0)), EQ(s(0), s(0)))
COND2(false, s(s(z0)), s(s(z1))) → c2(COND1(and(eq(z0, z1), gr(s(s(z0)), 0)), s(s(z0)), s(s(z1))), EQ(s(s(z0)), s(s(z1))))
K tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND2(false, 0, 0) → c2(COND1(and(true, gr(0, 0)), 0, 0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, gr(0, 0)), 0, s(z0)))
COND2(false, s(z0), 0) → c2(COND1(and(false, gr(s(z0), 0)), s(z0), 0))
COND2(true, s(z0), 0) → c1(COND2(gr(0, 0), z0, 0))
COND2(true, 0, s(x1)) → c1(COND2(gr(s(x1), 0), 0, x1))
COND2(true, s(x0), 0) → c1(COND2(false, x0, p(0)))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, p(s(z0))))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
COND2(false, s(z0), 0) → c2(COND1(and(false, true), s(z0), 0))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND2(false, s(s(z0)), s(0)) → c2(COND1(and(false, gr(s(s(z0)), 0)), s(s(z0)), s(0)), EQ(s(s(z0)), s(0)))
COND2(false, s(0), s(s(z0))) → c2(COND1(and(false, gr(s(0), 0)), s(0), s(s(z0))), EQ(s(0), s(s(z0))))
Defined Rule Symbols:
gr, p, and, eq
Defined Pair Symbols:
GR, EQ, COND1, COND2
Compound Symbols:
c5, c11, c, c2, c1, c2
(67) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND2(
false,
s(
z0),
0) →
c2(
COND1(
and(
false,
gr(
s(
z0),
0)),
s(
z0),
0)) by
COND2(false, s(x0), 0) → c2(COND1(false, s(x0), 0))
COND2(false, s(z0), 0) → c2(COND1(and(false, true), s(z0), 0))
(68) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
eq(0, 0) → true
eq(s(z0), 0) → false
eq(0, s(z0)) → false
eq(s(z0), s(z1)) → eq(z0, z1)
Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(false, 0, s(z0)) → c2(COND1(and(false, gr(0, 0)), 0, s(z0)))
COND2(true, 0, 0) → c1(COND2(gr(0, 0), 0, 0))
COND2(true, s(z0), 0) → c1(COND2(gr(0, 0), z0, 0))
COND2(true, x0, 0) → c1(COND2(false, p(x0), 0))
COND2(true, 0, s(x1)) → c1(COND2(gr(s(x1), 0), 0, x1))
COND2(true, s(z0), s(x1)) → c1(COND2(gr(s(x1), 0), z0, x1))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
COND2(true, 0, 0) → c1(COND2(false, 0, p(0)))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, p(s(z0))))
COND2(true, s(x0), 0) → c1(COND2(false, x0, p(0)))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, p(s(z0))))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), true), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(false, s(z0), 0) → c2(COND1(and(false, true), s(z0), 0))
COND2(false, s(0), s(0)) → c2(COND1(and(true, gr(s(0), 0)), s(0), s(0)), EQ(s(0), s(0)))
COND2(false, s(s(z0)), s(0)) → c2(COND1(and(false, gr(s(s(z0)), 0)), s(s(z0)), s(0)), EQ(s(s(z0)), s(0)))
COND2(false, s(0), s(s(z0))) → c2(COND1(and(false, gr(s(0), 0)), s(0), s(s(z0))), EQ(s(0), s(s(z0))))
COND2(false, s(s(z0)), s(s(z1))) → c2(COND1(and(eq(z0, z1), gr(s(s(z0)), 0)), s(s(z0)), s(s(z1))), EQ(s(s(z0)), s(s(z1))))
COND2(false, 0, 0) → c2(COND1(and(true, false), 0, 0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, false), 0, s(z0)))
COND2(false, s(x0), 0) → c2(COND1(false, s(x0), 0))
S tuples:
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, 0, 0) → c1(COND2(gr(0, 0), 0, 0))
COND2(true, x0, 0) → c1(COND2(false, p(x0), 0))
COND2(true, 0, 0) → c1(COND2(false, 0, p(0)))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, p(s(z0))))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), true), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(false, s(0), s(0)) → c2(COND1(and(true, gr(s(0), 0)), s(0), s(0)), EQ(s(0), s(0)))
COND2(false, s(s(z0)), s(s(z1))) → c2(COND1(and(eq(z0, z1), gr(s(s(z0)), 0)), s(s(z0)), s(s(z1))), EQ(s(s(z0)), s(s(z1))))
K tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND2(false, 0, 0) → c2(COND1(and(true, gr(0, 0)), 0, 0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, gr(0, 0)), 0, s(z0)))
COND2(false, s(z0), 0) → c2(COND1(and(false, gr(s(z0), 0)), s(z0), 0))
COND2(true, s(z0), 0) → c1(COND2(gr(0, 0), z0, 0))
COND2(true, 0, s(x1)) → c1(COND2(gr(s(x1), 0), 0, x1))
COND2(true, s(x0), 0) → c1(COND2(false, x0, p(0)))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, p(s(z0))))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
COND2(false, s(z0), 0) → c2(COND1(and(false, true), s(z0), 0))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND2(false, s(s(z0)), s(0)) → c2(COND1(and(false, gr(s(s(z0)), 0)), s(s(z0)), s(0)), EQ(s(s(z0)), s(0)))
COND2(false, s(0), s(s(z0))) → c2(COND1(and(false, gr(s(0), 0)), s(0), s(s(z0))), EQ(s(0), s(s(z0))))
Defined Rule Symbols:
gr, p, and, eq
Defined Pair Symbols:
GR, EQ, COND1, COND2
Compound Symbols:
c5, c11, c, c2, c1, c2
(69) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
COND2(false, s(x0), 0) → c2(COND1(false, s(x0), 0))
(70) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
eq(0, 0) → true
eq(s(z0), 0) → false
eq(0, s(z0)) → false
eq(s(z0), s(z1)) → eq(z0, z1)
Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(false, 0, s(z0)) → c2(COND1(and(false, gr(0, 0)), 0, s(z0)))
COND2(true, 0, 0) → c1(COND2(gr(0, 0), 0, 0))
COND2(true, s(z0), 0) → c1(COND2(gr(0, 0), z0, 0))
COND2(true, x0, 0) → c1(COND2(false, p(x0), 0))
COND2(true, 0, s(x1)) → c1(COND2(gr(s(x1), 0), 0, x1))
COND2(true, s(z0), s(x1)) → c1(COND2(gr(s(x1), 0), z0, x1))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
COND2(true, 0, 0) → c1(COND2(false, 0, p(0)))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, p(s(z0))))
COND2(true, s(x0), 0) → c1(COND2(false, x0, p(0)))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, p(s(z0))))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), true), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(false, s(z0), 0) → c2(COND1(and(false, true), s(z0), 0))
COND2(false, s(0), s(0)) → c2(COND1(and(true, gr(s(0), 0)), s(0), s(0)), EQ(s(0), s(0)))
COND2(false, s(s(z0)), s(0)) → c2(COND1(and(false, gr(s(s(z0)), 0)), s(s(z0)), s(0)), EQ(s(s(z0)), s(0)))
COND2(false, s(0), s(s(z0))) → c2(COND1(and(false, gr(s(0), 0)), s(0), s(s(z0))), EQ(s(0), s(s(z0))))
COND2(false, s(s(z0)), s(s(z1))) → c2(COND1(and(eq(z0, z1), gr(s(s(z0)), 0)), s(s(z0)), s(s(z1))), EQ(s(s(z0)), s(s(z1))))
COND2(false, 0, 0) → c2(COND1(and(true, false), 0, 0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, false), 0, s(z0)))
S tuples:
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, 0, 0) → c1(COND2(gr(0, 0), 0, 0))
COND2(true, x0, 0) → c1(COND2(false, p(x0), 0))
COND2(true, 0, 0) → c1(COND2(false, 0, p(0)))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, p(s(z0))))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), true), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(false, s(0), s(0)) → c2(COND1(and(true, gr(s(0), 0)), s(0), s(0)), EQ(s(0), s(0)))
COND2(false, s(s(z0)), s(s(z1))) → c2(COND1(and(eq(z0, z1), gr(s(s(z0)), 0)), s(s(z0)), s(s(z1))), EQ(s(s(z0)), s(s(z1))))
K tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND2(false, 0, s(z0)) → c2(COND1(and(false, gr(0, 0)), 0, s(z0)))
COND2(true, s(z0), 0) → c1(COND2(gr(0, 0), z0, 0))
COND2(true, 0, s(x1)) → c1(COND2(gr(s(x1), 0), 0, x1))
COND2(true, s(x0), 0) → c1(COND2(false, x0, p(0)))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, p(s(z0))))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
COND2(false, s(z0), 0) → c2(COND1(and(false, true), s(z0), 0))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND2(false, s(s(z0)), s(0)) → c2(COND1(and(false, gr(s(s(z0)), 0)), s(s(z0)), s(0)), EQ(s(s(z0)), s(0)))
COND2(false, s(0), s(s(z0))) → c2(COND1(and(false, gr(s(0), 0)), s(0), s(s(z0))), EQ(s(0), s(s(z0))))
Defined Rule Symbols:
gr, p, and, eq
Defined Pair Symbols:
GR, EQ, COND1, COND2
Compound Symbols:
c5, c11, c, c2, c1, c2
(71) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND2(
false,
0,
s(
z0)) →
c2(
COND1(
and(
false,
gr(
0,
0)),
0,
s(
z0))) by
COND2(false, 0, s(x0)) → c2(COND1(false, 0, s(x0)))
COND2(false, 0, s(x0)) → c2(COND1(and(false, false), 0, s(x0)))
(72) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
eq(0, 0) → true
eq(s(z0), 0) → false
eq(0, s(z0)) → false
eq(s(z0), s(z1)) → eq(z0, z1)
Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, 0, 0) → c1(COND2(gr(0, 0), 0, 0))
COND2(true, s(z0), 0) → c1(COND2(gr(0, 0), z0, 0))
COND2(true, x0, 0) → c1(COND2(false, p(x0), 0))
COND2(true, 0, s(x1)) → c1(COND2(gr(s(x1), 0), 0, x1))
COND2(true, s(z0), s(x1)) → c1(COND2(gr(s(x1), 0), z0, x1))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
COND2(true, 0, 0) → c1(COND2(false, 0, p(0)))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, p(s(z0))))
COND2(true, s(x0), 0) → c1(COND2(false, x0, p(0)))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, p(s(z0))))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), true), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(false, s(z0), 0) → c2(COND1(and(false, true), s(z0), 0))
COND2(false, s(0), s(0)) → c2(COND1(and(true, gr(s(0), 0)), s(0), s(0)), EQ(s(0), s(0)))
COND2(false, s(s(z0)), s(0)) → c2(COND1(and(false, gr(s(s(z0)), 0)), s(s(z0)), s(0)), EQ(s(s(z0)), s(0)))
COND2(false, s(0), s(s(z0))) → c2(COND1(and(false, gr(s(0), 0)), s(0), s(s(z0))), EQ(s(0), s(s(z0))))
COND2(false, s(s(z0)), s(s(z1))) → c2(COND1(and(eq(z0, z1), gr(s(s(z0)), 0)), s(s(z0)), s(s(z1))), EQ(s(s(z0)), s(s(z1))))
COND2(false, 0, 0) → c2(COND1(and(true, false), 0, 0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, false), 0, s(z0)))
COND2(false, 0, s(x0)) → c2(COND1(false, 0, s(x0)))
S tuples:
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, 0, 0) → c1(COND2(gr(0, 0), 0, 0))
COND2(true, x0, 0) → c1(COND2(false, p(x0), 0))
COND2(true, 0, 0) → c1(COND2(false, 0, p(0)))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, p(s(z0))))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), true), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(false, s(0), s(0)) → c2(COND1(and(true, gr(s(0), 0)), s(0), s(0)), EQ(s(0), s(0)))
COND2(false, s(s(z0)), s(s(z1))) → c2(COND1(and(eq(z0, z1), gr(s(s(z0)), 0)), s(s(z0)), s(s(z1))), EQ(s(s(z0)), s(s(z1))))
K tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND2(false, 0, s(z0)) → c2(COND1(and(false, gr(0, 0)), 0, s(z0)))
COND2(true, s(z0), 0) → c1(COND2(gr(0, 0), z0, 0))
COND2(true, 0, s(x1)) → c1(COND2(gr(s(x1), 0), 0, x1))
COND2(true, s(x0), 0) → c1(COND2(false, x0, p(0)))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, p(s(z0))))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
COND2(false, s(z0), 0) → c2(COND1(and(false, true), s(z0), 0))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND2(false, s(s(z0)), s(0)) → c2(COND1(and(false, gr(s(s(z0)), 0)), s(s(z0)), s(0)), EQ(s(s(z0)), s(0)))
COND2(false, s(0), s(s(z0))) → c2(COND1(and(false, gr(s(0), 0)), s(0), s(s(z0))), EQ(s(0), s(s(z0))))
Defined Rule Symbols:
gr, p, and, eq
Defined Pair Symbols:
GR, EQ, COND1, COND2
Compound Symbols:
c5, c11, c, c1, c2, c2
(73) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
COND2(false, 0, s(x0)) → c2(COND1(false, 0, s(x0)))
(74) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
eq(0, 0) → true
eq(s(z0), 0) → false
eq(0, s(z0)) → false
eq(s(z0), s(z1)) → eq(z0, z1)
Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, 0, 0) → c1(COND2(gr(0, 0), 0, 0))
COND2(true, s(z0), 0) → c1(COND2(gr(0, 0), z0, 0))
COND2(true, x0, 0) → c1(COND2(false, p(x0), 0))
COND2(true, 0, s(x1)) → c1(COND2(gr(s(x1), 0), 0, x1))
COND2(true, s(z0), s(x1)) → c1(COND2(gr(s(x1), 0), z0, x1))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
COND2(true, 0, 0) → c1(COND2(false, 0, p(0)))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, p(s(z0))))
COND2(true, s(x0), 0) → c1(COND2(false, x0, p(0)))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, p(s(z0))))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), true), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(false, s(z0), 0) → c2(COND1(and(false, true), s(z0), 0))
COND2(false, s(0), s(0)) → c2(COND1(and(true, gr(s(0), 0)), s(0), s(0)), EQ(s(0), s(0)))
COND2(false, s(s(z0)), s(0)) → c2(COND1(and(false, gr(s(s(z0)), 0)), s(s(z0)), s(0)), EQ(s(s(z0)), s(0)))
COND2(false, s(0), s(s(z0))) → c2(COND1(and(false, gr(s(0), 0)), s(0), s(s(z0))), EQ(s(0), s(s(z0))))
COND2(false, s(s(z0)), s(s(z1))) → c2(COND1(and(eq(z0, z1), gr(s(s(z0)), 0)), s(s(z0)), s(s(z1))), EQ(s(s(z0)), s(s(z1))))
COND2(false, 0, 0) → c2(COND1(and(true, false), 0, 0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, false), 0, s(z0)))
S tuples:
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, 0, 0) → c1(COND2(gr(0, 0), 0, 0))
COND2(true, x0, 0) → c1(COND2(false, p(x0), 0))
COND2(true, 0, 0) → c1(COND2(false, 0, p(0)))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, p(s(z0))))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), true), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(false, s(0), s(0)) → c2(COND1(and(true, gr(s(0), 0)), s(0), s(0)), EQ(s(0), s(0)))
COND2(false, s(s(z0)), s(s(z1))) → c2(COND1(and(eq(z0, z1), gr(s(s(z0)), 0)), s(s(z0)), s(s(z1))), EQ(s(s(z0)), s(s(z1))))
K tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND2(true, s(z0), 0) → c1(COND2(gr(0, 0), z0, 0))
COND2(true, 0, s(x1)) → c1(COND2(gr(s(x1), 0), 0, x1))
COND2(true, s(x0), 0) → c1(COND2(false, x0, p(0)))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, p(s(z0))))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
COND2(false, s(z0), 0) → c2(COND1(and(false, true), s(z0), 0))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND2(false, s(s(z0)), s(0)) → c2(COND1(and(false, gr(s(s(z0)), 0)), s(s(z0)), s(0)), EQ(s(s(z0)), s(0)))
COND2(false, s(0), s(s(z0))) → c2(COND1(and(false, gr(s(0), 0)), s(0), s(s(z0))), EQ(s(0), s(s(z0))))
Defined Rule Symbols:
gr, p, and, eq
Defined Pair Symbols:
GR, EQ, COND1, COND2
Compound Symbols:
c5, c11, c, c1, c2, c2
(75) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND2(
true,
0,
0) →
c1(
COND2(
gr(
0,
0),
0,
0)) by
COND2(true, 0, 0) → c1(COND2(false, 0, 0))
(76) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
eq(0, 0) → true
eq(s(z0), 0) → false
eq(0, s(z0)) → false
eq(s(z0), s(z1)) → eq(z0, z1)
Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, 0, 0) → c1(COND2(gr(0, 0), 0, 0))
COND2(true, s(z0), 0) → c1(COND2(gr(0, 0), z0, 0))
COND2(true, x0, 0) → c1(COND2(false, p(x0), 0))
COND2(true, 0, s(x1)) → c1(COND2(gr(s(x1), 0), 0, x1))
COND2(true, s(z0), s(x1)) → c1(COND2(gr(s(x1), 0), z0, x1))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
COND2(true, 0, 0) → c1(COND2(false, 0, p(0)))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, p(s(z0))))
COND2(true, s(x0), 0) → c1(COND2(false, x0, p(0)))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, p(s(z0))))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), true), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(false, s(z0), 0) → c2(COND1(and(false, true), s(z0), 0))
COND2(false, s(0), s(0)) → c2(COND1(and(true, gr(s(0), 0)), s(0), s(0)), EQ(s(0), s(0)))
COND2(false, s(s(z0)), s(0)) → c2(COND1(and(false, gr(s(s(z0)), 0)), s(s(z0)), s(0)), EQ(s(s(z0)), s(0)))
COND2(false, s(0), s(s(z0))) → c2(COND1(and(false, gr(s(0), 0)), s(0), s(s(z0))), EQ(s(0), s(s(z0))))
COND2(false, s(s(z0)), s(s(z1))) → c2(COND1(and(eq(z0, z1), gr(s(s(z0)), 0)), s(s(z0)), s(s(z1))), EQ(s(s(z0)), s(s(z1))))
COND2(false, 0, 0) → c2(COND1(and(true, false), 0, 0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, false), 0, s(z0)))
COND2(true, 0, 0) → c1(COND2(false, 0, 0))
S tuples:
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, x0, 0) → c1(COND2(false, p(x0), 0))
COND2(true, 0, 0) → c1(COND2(false, 0, p(0)))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, p(s(z0))))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), true), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(false, s(0), s(0)) → c2(COND1(and(true, gr(s(0), 0)), s(0), s(0)), EQ(s(0), s(0)))
COND2(false, s(s(z0)), s(s(z1))) → c2(COND1(and(eq(z0, z1), gr(s(s(z0)), 0)), s(s(z0)), s(s(z1))), EQ(s(s(z0)), s(s(z1))))
COND2(true, 0, 0) → c1(COND2(false, 0, 0))
K tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND2(true, s(z0), 0) → c1(COND2(gr(0, 0), z0, 0))
COND2(true, 0, s(x1)) → c1(COND2(gr(s(x1), 0), 0, x1))
COND2(true, s(x0), 0) → c1(COND2(false, x0, p(0)))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, p(s(z0))))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
COND2(false, s(z0), 0) → c2(COND1(and(false, true), s(z0), 0))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND2(false, s(s(z0)), s(0)) → c2(COND1(and(false, gr(s(s(z0)), 0)), s(s(z0)), s(0)), EQ(s(s(z0)), s(0)))
COND2(false, s(0), s(s(z0))) → c2(COND1(and(false, gr(s(0), 0)), s(0), s(s(z0))), EQ(s(0), s(s(z0))))
Defined Rule Symbols:
gr, p, and, eq
Defined Pair Symbols:
GR, EQ, COND1, COND2
Compound Symbols:
c5, c11, c, c1, c2, c2
(77) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND2(
true,
s(
z0),
0) →
c1(
COND2(
gr(
0,
0),
z0,
0)) by
COND2(true, s(x0), 0) → c1(COND2(false, x0, 0))
(78) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
eq(0, 0) → true
eq(s(z0), 0) → false
eq(0, s(z0)) → false
eq(s(z0), s(z1)) → eq(z0, z1)
Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, 0, 0) → c1(COND2(gr(0, 0), 0, 0))
COND2(true, s(z0), 0) → c1(COND2(gr(0, 0), z0, 0))
COND2(true, x0, 0) → c1(COND2(false, p(x0), 0))
COND2(true, 0, s(x1)) → c1(COND2(gr(s(x1), 0), 0, x1))
COND2(true, s(z0), s(x1)) → c1(COND2(gr(s(x1), 0), z0, x1))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
COND2(true, 0, 0) → c1(COND2(false, 0, p(0)))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, p(s(z0))))
COND2(true, s(x0), 0) → c1(COND2(false, x0, p(0)))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, p(s(z0))))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), true), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(false, s(z0), 0) → c2(COND1(and(false, true), s(z0), 0))
COND2(false, s(0), s(0)) → c2(COND1(and(true, gr(s(0), 0)), s(0), s(0)), EQ(s(0), s(0)))
COND2(false, s(s(z0)), s(0)) → c2(COND1(and(false, gr(s(s(z0)), 0)), s(s(z0)), s(0)), EQ(s(s(z0)), s(0)))
COND2(false, s(0), s(s(z0))) → c2(COND1(and(false, gr(s(0), 0)), s(0), s(s(z0))), EQ(s(0), s(s(z0))))
COND2(false, s(s(z0)), s(s(z1))) → c2(COND1(and(eq(z0, z1), gr(s(s(z0)), 0)), s(s(z0)), s(s(z1))), EQ(s(s(z0)), s(s(z1))))
COND2(false, 0, 0) → c2(COND1(and(true, false), 0, 0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, false), 0, s(z0)))
COND2(true, 0, 0) → c1(COND2(false, 0, 0))
COND2(true, s(x0), 0) → c1(COND2(false, x0, 0))
S tuples:
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, x0, 0) → c1(COND2(false, p(x0), 0))
COND2(true, 0, 0) → c1(COND2(false, 0, p(0)))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, p(s(z0))))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), true), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(false, s(0), s(0)) → c2(COND1(and(true, gr(s(0), 0)), s(0), s(0)), EQ(s(0), s(0)))
COND2(false, s(s(z0)), s(s(z1))) → c2(COND1(and(eq(z0, z1), gr(s(s(z0)), 0)), s(s(z0)), s(s(z1))), EQ(s(s(z0)), s(s(z1))))
COND2(true, 0, 0) → c1(COND2(false, 0, 0))
K tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND2(true, s(z0), 0) → c1(COND2(gr(0, 0), z0, 0))
COND2(true, 0, s(x1)) → c1(COND2(gr(s(x1), 0), 0, x1))
COND2(true, s(x0), 0) → c1(COND2(false, x0, p(0)))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, p(s(z0))))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
COND2(false, s(z0), 0) → c2(COND1(and(false, true), s(z0), 0))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND2(false, s(s(z0)), s(0)) → c2(COND1(and(false, gr(s(s(z0)), 0)), s(s(z0)), s(0)), EQ(s(s(z0)), s(0)))
COND2(false, s(0), s(s(z0))) → c2(COND1(and(false, gr(s(0), 0)), s(0), s(s(z0))), EQ(s(0), s(s(z0))))
Defined Rule Symbols:
gr, p, and, eq
Defined Pair Symbols:
GR, EQ, COND1, COND2
Compound Symbols:
c5, c11, c, c1, c2, c2
(79) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND2(
true,
0,
0) →
c1(
COND2(
gr(
0,
0),
0,
0)) by
COND2(true, 0, 0) → c1(COND2(false, 0, 0))
(80) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
eq(0, 0) → true
eq(s(z0), 0) → false
eq(0, s(z0)) → false
eq(s(z0), s(z1)) → eq(z0, z1)
Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, s(z0), 0) → c1(COND2(gr(0, 0), z0, 0))
COND2(true, x0, 0) → c1(COND2(false, p(x0), 0))
COND2(true, 0, s(x1)) → c1(COND2(gr(s(x1), 0), 0, x1))
COND2(true, s(z0), s(x1)) → c1(COND2(gr(s(x1), 0), z0, x1))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
COND2(true, 0, 0) → c1(COND2(false, 0, p(0)))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, p(s(z0))))
COND2(true, s(x0), 0) → c1(COND2(false, x0, p(0)))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, p(s(z0))))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), true), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(false, s(z0), 0) → c2(COND1(and(false, true), s(z0), 0))
COND2(false, s(0), s(0)) → c2(COND1(and(true, gr(s(0), 0)), s(0), s(0)), EQ(s(0), s(0)))
COND2(false, s(s(z0)), s(0)) → c2(COND1(and(false, gr(s(s(z0)), 0)), s(s(z0)), s(0)), EQ(s(s(z0)), s(0)))
COND2(false, s(0), s(s(z0))) → c2(COND1(and(false, gr(s(0), 0)), s(0), s(s(z0))), EQ(s(0), s(s(z0))))
COND2(false, s(s(z0)), s(s(z1))) → c2(COND1(and(eq(z0, z1), gr(s(s(z0)), 0)), s(s(z0)), s(s(z1))), EQ(s(s(z0)), s(s(z1))))
COND2(false, 0, 0) → c2(COND1(and(true, false), 0, 0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, false), 0, s(z0)))
COND2(true, 0, 0) → c1(COND2(false, 0, 0))
COND2(true, s(x0), 0) → c1(COND2(false, x0, 0))
S tuples:
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, x0, 0) → c1(COND2(false, p(x0), 0))
COND2(true, 0, 0) → c1(COND2(false, 0, p(0)))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, p(s(z0))))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), true), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(false, s(0), s(0)) → c2(COND1(and(true, gr(s(0), 0)), s(0), s(0)), EQ(s(0), s(0)))
COND2(false, s(s(z0)), s(s(z1))) → c2(COND1(and(eq(z0, z1), gr(s(s(z0)), 0)), s(s(z0)), s(s(z1))), EQ(s(s(z0)), s(s(z1))))
COND2(true, 0, 0) → c1(COND2(false, 0, 0))
K tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND2(true, s(z0), 0) → c1(COND2(gr(0, 0), z0, 0))
COND2(true, 0, s(x1)) → c1(COND2(gr(s(x1), 0), 0, x1))
COND2(true, s(x0), 0) → c1(COND2(false, x0, p(0)))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, p(s(z0))))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
COND2(false, s(z0), 0) → c2(COND1(and(false, true), s(z0), 0))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND2(false, s(s(z0)), s(0)) → c2(COND1(and(false, gr(s(s(z0)), 0)), s(s(z0)), s(0)), EQ(s(s(z0)), s(0)))
COND2(false, s(0), s(s(z0))) → c2(COND1(and(false, gr(s(0), 0)), s(0), s(s(z0))), EQ(s(0), s(s(z0))))
Defined Rule Symbols:
gr, p, and, eq
Defined Pair Symbols:
GR, EQ, COND1, COND2
Compound Symbols:
c5, c11, c, c1, c2, c2
(81) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND2(
true,
0,
0) →
c1(
COND2(
false,
0,
p(
0))) by
COND2(true, 0, 0) → c1(COND2(false, 0, 0))
(82) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
eq(0, 0) → true
eq(s(z0), 0) → false
eq(0, s(z0)) → false
eq(s(z0), s(z1)) → eq(z0, z1)
Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, s(z0), 0) → c1(COND2(gr(0, 0), z0, 0))
COND2(true, x0, 0) → c1(COND2(false, p(x0), 0))
COND2(true, 0, s(x1)) → c1(COND2(gr(s(x1), 0), 0, x1))
COND2(true, s(z0), s(x1)) → c1(COND2(gr(s(x1), 0), z0, x1))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
COND2(true, 0, 0) → c1(COND2(false, 0, p(0)))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, p(s(z0))))
COND2(true, s(x0), 0) → c1(COND2(false, x0, p(0)))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, p(s(z0))))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), true), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(false, s(z0), 0) → c2(COND1(and(false, true), s(z0), 0))
COND2(false, s(0), s(0)) → c2(COND1(and(true, gr(s(0), 0)), s(0), s(0)), EQ(s(0), s(0)))
COND2(false, s(s(z0)), s(0)) → c2(COND1(and(false, gr(s(s(z0)), 0)), s(s(z0)), s(0)), EQ(s(s(z0)), s(0)))
COND2(false, s(0), s(s(z0))) → c2(COND1(and(false, gr(s(0), 0)), s(0), s(s(z0))), EQ(s(0), s(s(z0))))
COND2(false, s(s(z0)), s(s(z1))) → c2(COND1(and(eq(z0, z1), gr(s(s(z0)), 0)), s(s(z0)), s(s(z1))), EQ(s(s(z0)), s(s(z1))))
COND2(false, 0, 0) → c2(COND1(and(true, false), 0, 0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, false), 0, s(z0)))
COND2(true, 0, 0) → c1(COND2(false, 0, 0))
COND2(true, s(x0), 0) → c1(COND2(false, x0, 0))
S tuples:
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, x0, 0) → c1(COND2(false, p(x0), 0))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, p(s(z0))))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), true), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(false, s(0), s(0)) → c2(COND1(and(true, gr(s(0), 0)), s(0), s(0)), EQ(s(0), s(0)))
COND2(false, s(s(z0)), s(s(z1))) → c2(COND1(and(eq(z0, z1), gr(s(s(z0)), 0)), s(s(z0)), s(s(z1))), EQ(s(s(z0)), s(s(z1))))
COND2(true, 0, 0) → c1(COND2(false, 0, 0))
K tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND2(true, s(z0), 0) → c1(COND2(gr(0, 0), z0, 0))
COND2(true, 0, s(x1)) → c1(COND2(gr(s(x1), 0), 0, x1))
COND2(true, s(x0), 0) → c1(COND2(false, x0, p(0)))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, p(s(z0))))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
COND2(false, s(z0), 0) → c2(COND1(and(false, true), s(z0), 0))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND2(false, s(s(z0)), s(0)) → c2(COND1(and(false, gr(s(s(z0)), 0)), s(s(z0)), s(0)), EQ(s(s(z0)), s(0)))
COND2(false, s(0), s(s(z0))) → c2(COND1(and(false, gr(s(0), 0)), s(0), s(s(z0))), EQ(s(0), s(s(z0))))
Defined Rule Symbols:
gr, p, and, eq
Defined Pair Symbols:
GR, EQ, COND1, COND2
Compound Symbols:
c5, c11, c, c1, c2, c2
(83) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND2(
true,
s(
x0),
0) →
c1(
COND2(
gr(
0,
0),
x0,
0)) by
COND2(true, s(x0), 0) → c1(COND2(false, x0, 0))
(84) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
p(0) → 0
p(s(z0)) → z0
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
eq(0, 0) → true
eq(s(z0), 0) → false
eq(0, s(z0)) → false
eq(s(z0), s(z1)) → eq(z0, z1)
Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, x0, 0) → c1(COND2(false, p(x0), 0))
COND2(true, 0, s(x1)) → c1(COND2(gr(s(x1), 0), 0, x1))
COND2(true, s(z0), s(x1)) → c1(COND2(gr(s(x1), 0), z0, x1))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
COND2(true, 0, 0) → c1(COND2(false, 0, p(0)))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, p(s(z0))))
COND2(true, s(x0), 0) → c1(COND2(false, x0, p(0)))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, p(s(z0))))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), true), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(false, s(z0), 0) → c2(COND1(and(false, true), s(z0), 0))
COND2(false, s(0), s(0)) → c2(COND1(and(true, gr(s(0), 0)), s(0), s(0)), EQ(s(0), s(0)))
COND2(false, s(s(z0)), s(0)) → c2(COND1(and(false, gr(s(s(z0)), 0)), s(s(z0)), s(0)), EQ(s(s(z0)), s(0)))
COND2(false, s(0), s(s(z0))) → c2(COND1(and(false, gr(s(0), 0)), s(0), s(s(z0))), EQ(s(0), s(s(z0))))
COND2(false, s(s(z0)), s(s(z1))) → c2(COND1(and(eq(z0, z1), gr(s(s(z0)), 0)), s(s(z0)), s(s(z1))), EQ(s(s(z0)), s(s(z1))))
COND2(false, 0, 0) → c2(COND1(and(true, false), 0, 0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, false), 0, s(z0)))
COND2(true, 0, 0) → c1(COND2(false, 0, 0))
COND2(true, s(x0), 0) → c1(COND2(false, x0, 0))
S tuples:
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, x0, 0) → c1(COND2(false, p(x0), 0))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, p(s(z0))))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), true), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(false, s(0), s(0)) → c2(COND1(and(true, gr(s(0), 0)), s(0), s(0)), EQ(s(0), s(0)))
COND2(false, s(s(z0)), s(s(z1))) → c2(COND1(and(eq(z0, z1), gr(s(s(z0)), 0)), s(s(z0)), s(s(z1))), EQ(s(s(z0)), s(s(z1))))
COND2(true, 0, 0) → c1(COND2(false, 0, 0))
K tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND2(true, s(z0), 0) → c1(COND2(gr(0, 0), z0, 0))
COND2(true, 0, s(x1)) → c1(COND2(gr(s(x1), 0), 0, x1))
COND2(true, s(x0), 0) → c1(COND2(false, x0, p(0)))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, p(s(z0))))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
COND2(false, s(z0), 0) → c2(COND1(and(false, true), s(z0), 0))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND2(false, s(s(z0)), s(0)) → c2(COND1(and(false, gr(s(s(z0)), 0)), s(s(z0)), s(0)), EQ(s(s(z0)), s(0)))
COND2(false, s(0), s(s(z0))) → c2(COND1(and(false, gr(s(0), 0)), s(0), s(s(z0))), EQ(s(0), s(s(z0))))
Defined Rule Symbols:
gr, p, and, eq
Defined Pair Symbols:
GR, EQ, COND1, COND2
Compound Symbols:
c5, c11, c, c1, c2, c2
(85) CdtUsableRulesProof (EQUIVALENT transformation)
The following rules are not usable and were removed:
gr(0, z0) → false
(86) Obligation:
Complexity Dependency Tuples Problem
Rules:
p(0) → 0
p(s(z0)) → z0
gr(s(z0), 0) → true
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
eq(0, 0) → true
eq(s(z0), 0) → false
eq(0, s(z0)) → false
eq(s(z0), s(z1)) → eq(z0, z1)
Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, x0, 0) → c1(COND2(false, p(x0), 0))
COND2(true, 0, s(x1)) → c1(COND2(gr(s(x1), 0), 0, x1))
COND2(true, s(z0), s(x1)) → c1(COND2(gr(s(x1), 0), z0, x1))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
COND2(true, 0, 0) → c1(COND2(false, 0, p(0)))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, p(s(z0))))
COND2(true, s(x0), 0) → c1(COND2(false, x0, p(0)))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, p(s(z0))))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), true), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(false, s(z0), 0) → c2(COND1(and(false, true), s(z0), 0))
COND2(false, s(0), s(0)) → c2(COND1(and(true, gr(s(0), 0)), s(0), s(0)), EQ(s(0), s(0)))
COND2(false, s(s(z0)), s(0)) → c2(COND1(and(false, gr(s(s(z0)), 0)), s(s(z0)), s(0)), EQ(s(s(z0)), s(0)))
COND2(false, s(0), s(s(z0))) → c2(COND1(and(false, gr(s(0), 0)), s(0), s(s(z0))), EQ(s(0), s(s(z0))))
COND2(false, s(s(z0)), s(s(z1))) → c2(COND1(and(eq(z0, z1), gr(s(s(z0)), 0)), s(s(z0)), s(s(z1))), EQ(s(s(z0)), s(s(z1))))
COND2(false, 0, 0) → c2(COND1(and(true, false), 0, 0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, false), 0, s(z0)))
COND2(true, 0, 0) → c1(COND2(false, 0, 0))
COND2(true, s(x0), 0) → c1(COND2(false, x0, 0))
S tuples:
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, x0, 0) → c1(COND2(false, p(x0), 0))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, p(s(z0))))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), true), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(false, s(0), s(0)) → c2(COND1(and(true, gr(s(0), 0)), s(0), s(0)), EQ(s(0), s(0)))
COND2(false, s(s(z0)), s(s(z1))) → c2(COND1(and(eq(z0, z1), gr(s(s(z0)), 0)), s(s(z0)), s(s(z1))), EQ(s(s(z0)), s(s(z1))))
COND2(true, 0, 0) → c1(COND2(false, 0, 0))
K tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND2(true, s(z0), 0) → c1(COND2(gr(0, 0), z0, 0))
COND2(true, 0, s(x1)) → c1(COND2(gr(s(x1), 0), 0, x1))
COND2(true, s(x0), 0) → c1(COND2(false, x0, p(0)))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, p(s(z0))))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
COND2(false, s(z0), 0) → c2(COND1(and(false, true), s(z0), 0))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND2(false, s(s(z0)), s(0)) → c2(COND1(and(false, gr(s(s(z0)), 0)), s(s(z0)), s(0)), EQ(s(s(z0)), s(0)))
COND2(false, s(0), s(s(z0))) → c2(COND1(and(false, gr(s(0), 0)), s(0), s(s(z0))), EQ(s(0), s(s(z0))))
Defined Rule Symbols:
p, gr, and, eq
Defined Pair Symbols:
GR, EQ, COND1, COND2
Compound Symbols:
c5, c11, c, c1, c2, c2
(87) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND2(
true,
x0,
0) →
c1(
COND2(
false,
p(
x0),
0)) by
COND2(true, 0, 0) → c1(COND2(false, 0, 0))
COND2(true, s(z0), 0) → c1(COND2(false, z0, 0))
(88) Obligation:
Complexity Dependency Tuples Problem
Rules:
p(0) → 0
p(s(z0)) → z0
gr(s(z0), 0) → true
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
eq(0, 0) → true
eq(s(z0), 0) → false
eq(0, s(z0)) → false
eq(s(z0), s(z1)) → eq(z0, z1)
Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, 0, s(x1)) → c1(COND2(gr(s(x1), 0), 0, x1))
COND2(true, s(z0), s(x1)) → c1(COND2(gr(s(x1), 0), z0, x1))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
COND2(true, 0, 0) → c1(COND2(false, 0, p(0)))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, p(s(z0))))
COND2(true, s(x0), 0) → c1(COND2(false, x0, p(0)))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, p(s(z0))))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), true), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(false, s(z0), 0) → c2(COND1(and(false, true), s(z0), 0))
COND2(false, s(0), s(0)) → c2(COND1(and(true, gr(s(0), 0)), s(0), s(0)), EQ(s(0), s(0)))
COND2(false, s(s(z0)), s(0)) → c2(COND1(and(false, gr(s(s(z0)), 0)), s(s(z0)), s(0)), EQ(s(s(z0)), s(0)))
COND2(false, s(0), s(s(z0))) → c2(COND1(and(false, gr(s(0), 0)), s(0), s(s(z0))), EQ(s(0), s(s(z0))))
COND2(false, s(s(z0)), s(s(z1))) → c2(COND1(and(eq(z0, z1), gr(s(s(z0)), 0)), s(s(z0)), s(s(z1))), EQ(s(s(z0)), s(s(z1))))
COND2(false, 0, 0) → c2(COND1(and(true, false), 0, 0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, false), 0, s(z0)))
COND2(true, 0, 0) → c1(COND2(false, 0, 0))
COND2(true, s(x0), 0) → c1(COND2(false, x0, 0))
S tuples:
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, p(s(z0))))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), true), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(false, s(0), s(0)) → c2(COND1(and(true, gr(s(0), 0)), s(0), s(0)), EQ(s(0), s(0)))
COND2(false, s(s(z0)), s(s(z1))) → c2(COND1(and(eq(z0, z1), gr(s(s(z0)), 0)), s(s(z0)), s(s(z1))), EQ(s(s(z0)), s(s(z1))))
COND2(true, 0, 0) → c1(COND2(false, 0, 0))
COND2(true, s(z0), 0) → c1(COND2(false, z0, 0))
K tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND2(true, s(z0), 0) → c1(COND2(gr(0, 0), z0, 0))
COND2(true, 0, s(x1)) → c1(COND2(gr(s(x1), 0), 0, x1))
COND2(true, s(x0), 0) → c1(COND2(false, x0, p(0)))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, p(s(z0))))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
COND2(false, s(z0), 0) → c2(COND1(and(false, true), s(z0), 0))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND2(false, s(s(z0)), s(0)) → c2(COND1(and(false, gr(s(s(z0)), 0)), s(s(z0)), s(0)), EQ(s(s(z0)), s(0)))
COND2(false, s(0), s(s(z0))) → c2(COND1(and(false, gr(s(0), 0)), s(0), s(s(z0))), EQ(s(0), s(s(z0))))
Defined Rule Symbols:
p, gr, and, eq
Defined Pair Symbols:
GR, EQ, COND1, COND2
Compound Symbols:
c5, c11, c, c1, c2, c2
(89) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
COND2(true, s(x0), 0) → c1(COND2(false, x0, 0))
We considered the (Usable) Rules:
p(0) → 0
p(s(z0)) → z0
And the Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, 0, s(x1)) → c1(COND2(gr(s(x1), 0), 0, x1))
COND2(true, s(z0), s(x1)) → c1(COND2(gr(s(x1), 0), z0, x1))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
COND2(true, 0, 0) → c1(COND2(false, 0, p(0)))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, p(s(z0))))
COND2(true, s(x0), 0) → c1(COND2(false, x0, p(0)))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, p(s(z0))))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), true), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(false, s(z0), 0) → c2(COND1(and(false, true), s(z0), 0))
COND2(false, s(0), s(0)) → c2(COND1(and(true, gr(s(0), 0)), s(0), s(0)), EQ(s(0), s(0)))
COND2(false, s(s(z0)), s(0)) → c2(COND1(and(false, gr(s(s(z0)), 0)), s(s(z0)), s(0)), EQ(s(s(z0)), s(0)))
COND2(false, s(0), s(s(z0))) → c2(COND1(and(false, gr(s(0), 0)), s(0), s(s(z0))), EQ(s(0), s(s(z0))))
COND2(false, s(s(z0)), s(s(z1))) → c2(COND1(and(eq(z0, z1), gr(s(s(z0)), 0)), s(s(z0)), s(s(z1))), EQ(s(s(z0)), s(s(z1))))
COND2(false, 0, 0) → c2(COND1(and(true, false), 0, 0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, false), 0, s(z0)))
COND2(true, 0, 0) → c1(COND2(false, 0, 0))
COND2(true, s(x0), 0) → c1(COND2(false, x0, 0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(COND1(x1, x2, x3)) = x2
POL(COND2(x1, x2, x3)) = x2
POL(EQ(x1, x2)) = 0
POL(GR(x1, x2)) = [3]x2
POL(and(x1, x2)) = 0
POL(c(x1)) = x1
POL(c1(x1)) = x1
POL(c11(x1)) = x1
POL(c2(x1)) = x1
POL(c2(x1, x2)) = x1 + x2
POL(c5(x1)) = x1
POL(eq(x1, x2)) = [2]x1 + [3]x2
POL(false) = 0
POL(gr(x1, x2)) = 0
POL(p(x1)) = x1
POL(s(x1)) = [1] + x1
POL(true) = 0
(90) Obligation:
Complexity Dependency Tuples Problem
Rules:
p(0) → 0
p(s(z0)) → z0
gr(s(z0), 0) → true
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
eq(0, 0) → true
eq(s(z0), 0) → false
eq(0, s(z0)) → false
eq(s(z0), s(z1)) → eq(z0, z1)
Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, 0, s(x1)) → c1(COND2(gr(s(x1), 0), 0, x1))
COND2(true, s(z0), s(x1)) → c1(COND2(gr(s(x1), 0), z0, x1))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
COND2(true, 0, 0) → c1(COND2(false, 0, p(0)))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, p(s(z0))))
COND2(true, s(x0), 0) → c1(COND2(false, x0, p(0)))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, p(s(z0))))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), true), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(false, s(z0), 0) → c2(COND1(and(false, true), s(z0), 0))
COND2(false, s(0), s(0)) → c2(COND1(and(true, gr(s(0), 0)), s(0), s(0)), EQ(s(0), s(0)))
COND2(false, s(s(z0)), s(0)) → c2(COND1(and(false, gr(s(s(z0)), 0)), s(s(z0)), s(0)), EQ(s(s(z0)), s(0)))
COND2(false, s(0), s(s(z0))) → c2(COND1(and(false, gr(s(0), 0)), s(0), s(s(z0))), EQ(s(0), s(s(z0))))
COND2(false, s(s(z0)), s(s(z1))) → c2(COND1(and(eq(z0, z1), gr(s(s(z0)), 0)), s(s(z0)), s(s(z1))), EQ(s(s(z0)), s(s(z1))))
COND2(false, 0, 0) → c2(COND1(and(true, false), 0, 0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, false), 0, s(z0)))
COND2(true, 0, 0) → c1(COND2(false, 0, 0))
COND2(true, s(x0), 0) → c1(COND2(false, x0, 0))
S tuples:
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, p(s(z0))))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), true), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(false, s(0), s(0)) → c2(COND1(and(true, gr(s(0), 0)), s(0), s(0)), EQ(s(0), s(0)))
COND2(false, s(s(z0)), s(s(z1))) → c2(COND1(and(eq(z0, z1), gr(s(s(z0)), 0)), s(s(z0)), s(s(z1))), EQ(s(s(z0)), s(s(z1))))
COND2(true, 0, 0) → c1(COND2(false, 0, 0))
K tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND2(true, s(z0), 0) → c1(COND2(gr(0, 0), z0, 0))
COND2(true, 0, s(x1)) → c1(COND2(gr(s(x1), 0), 0, x1))
COND2(true, s(x0), 0) → c1(COND2(false, x0, p(0)))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, p(s(z0))))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
COND2(false, s(z0), 0) → c2(COND1(and(false, true), s(z0), 0))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND2(false, s(s(z0)), s(0)) → c2(COND1(and(false, gr(s(s(z0)), 0)), s(s(z0)), s(0)), EQ(s(s(z0)), s(0)))
COND2(false, s(0), s(s(z0))) → c2(COND1(and(false, gr(s(0), 0)), s(0), s(s(z0))), EQ(s(0), s(s(z0))))
COND2(true, s(x0), 0) → c1(COND2(false, x0, 0))
Defined Rule Symbols:
p, gr, and, eq
Defined Pair Symbols:
GR, EQ, COND1, COND2
Compound Symbols:
c5, c11, c, c1, c2, c2
(91) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND2(
true,
0,
s(
x1)) →
c1(
COND2(
gr(
s(
x1),
0),
0,
x1)) by
COND2(true, 0, s(z0)) → c1(COND2(true, 0, z0))
(92) Obligation:
Complexity Dependency Tuples Problem
Rules:
p(0) → 0
p(s(z0)) → z0
gr(s(z0), 0) → true
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
eq(0, 0) → true
eq(s(z0), 0) → false
eq(0, s(z0)) → false
eq(s(z0), s(z1)) → eq(z0, z1)
Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, s(z0), s(x1)) → c1(COND2(gr(s(x1), 0), z0, x1))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
COND2(true, 0, 0) → c1(COND2(false, 0, p(0)))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, p(s(z0))))
COND2(true, s(x0), 0) → c1(COND2(false, x0, p(0)))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, p(s(z0))))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), true), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(false, s(z0), 0) → c2(COND1(and(false, true), s(z0), 0))
COND2(false, s(0), s(0)) → c2(COND1(and(true, gr(s(0), 0)), s(0), s(0)), EQ(s(0), s(0)))
COND2(false, s(s(z0)), s(0)) → c2(COND1(and(false, gr(s(s(z0)), 0)), s(s(z0)), s(0)), EQ(s(s(z0)), s(0)))
COND2(false, s(0), s(s(z0))) → c2(COND1(and(false, gr(s(0), 0)), s(0), s(s(z0))), EQ(s(0), s(s(z0))))
COND2(false, s(s(z0)), s(s(z1))) → c2(COND1(and(eq(z0, z1), gr(s(s(z0)), 0)), s(s(z0)), s(s(z1))), EQ(s(s(z0)), s(s(z1))))
COND2(false, 0, 0) → c2(COND1(and(true, false), 0, 0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, false), 0, s(z0)))
COND2(true, 0, 0) → c1(COND2(false, 0, 0))
COND2(true, s(x0), 0) → c1(COND2(false, x0, 0))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, z0))
S tuples:
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, p(s(z0))))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), true), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(false, s(0), s(0)) → c2(COND1(and(true, gr(s(0), 0)), s(0), s(0)), EQ(s(0), s(0)))
COND2(false, s(s(z0)), s(s(z1))) → c2(COND1(and(eq(z0, z1), gr(s(s(z0)), 0)), s(s(z0)), s(s(z1))), EQ(s(s(z0)), s(s(z1))))
COND2(true, 0, 0) → c1(COND2(false, 0, 0))
K tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND2(true, s(z0), 0) → c1(COND2(gr(0, 0), z0, 0))
COND2(true, 0, s(x1)) → c1(COND2(gr(s(x1), 0), 0, x1))
COND2(true, s(x0), 0) → c1(COND2(false, x0, p(0)))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, p(s(z0))))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
COND2(false, s(z0), 0) → c2(COND1(and(false, true), s(z0), 0))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND2(false, s(s(z0)), s(0)) → c2(COND1(and(false, gr(s(s(z0)), 0)), s(s(z0)), s(0)), EQ(s(s(z0)), s(0)))
COND2(false, s(0), s(s(z0))) → c2(COND1(and(false, gr(s(0), 0)), s(0), s(s(z0))), EQ(s(0), s(s(z0))))
COND2(true, s(x0), 0) → c1(COND2(false, x0, 0))
Defined Rule Symbols:
p, gr, and, eq
Defined Pair Symbols:
GR, EQ, COND1, COND2
Compound Symbols:
c5, c11, c, c1, c2, c2
(93) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND2(
true,
s(
z0),
s(
x1)) →
c1(
COND2(
gr(
s(
x1),
0),
z0,
x1)) by
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, z0))
(94) Obligation:
Complexity Dependency Tuples Problem
Rules:
p(0) → 0
p(s(z0)) → z0
gr(s(z0), 0) → true
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
eq(0, 0) → true
eq(s(z0), 0) → false
eq(0, s(z0)) → false
eq(s(z0), s(z1)) → eq(z0, z1)
Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
COND2(true, 0, 0) → c1(COND2(false, 0, p(0)))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, p(s(z0))))
COND2(true, s(x0), 0) → c1(COND2(false, x0, p(0)))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, p(s(z0))))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), true), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(false, s(z0), 0) → c2(COND1(and(false, true), s(z0), 0))
COND2(false, s(0), s(0)) → c2(COND1(and(true, gr(s(0), 0)), s(0), s(0)), EQ(s(0), s(0)))
COND2(false, s(s(z0)), s(0)) → c2(COND1(and(false, gr(s(s(z0)), 0)), s(s(z0)), s(0)), EQ(s(s(z0)), s(0)))
COND2(false, s(0), s(s(z0))) → c2(COND1(and(false, gr(s(0), 0)), s(0), s(s(z0))), EQ(s(0), s(s(z0))))
COND2(false, s(s(z0)), s(s(z1))) → c2(COND1(and(eq(z0, z1), gr(s(s(z0)), 0)), s(s(z0)), s(s(z1))), EQ(s(s(z0)), s(s(z1))))
COND2(false, 0, 0) → c2(COND1(and(true, false), 0, 0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, false), 0, s(z0)))
COND2(true, 0, 0) → c1(COND2(false, 0, 0))
COND2(true, s(x0), 0) → c1(COND2(false, x0, 0))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, z0))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, z0))
S tuples:
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, p(s(z0))))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), true), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(false, s(0), s(0)) → c2(COND1(and(true, gr(s(0), 0)), s(0), s(0)), EQ(s(0), s(0)))
COND2(false, s(s(z0)), s(s(z1))) → c2(COND1(and(eq(z0, z1), gr(s(s(z0)), 0)), s(s(z0)), s(s(z1))), EQ(s(s(z0)), s(s(z1))))
COND2(true, 0, 0) → c1(COND2(false, 0, 0))
K tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND2(true, s(z0), 0) → c1(COND2(gr(0, 0), z0, 0))
COND2(true, 0, s(x1)) → c1(COND2(gr(s(x1), 0), 0, x1))
COND2(true, s(x0), 0) → c1(COND2(false, x0, p(0)))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, p(s(z0))))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
COND2(false, s(z0), 0) → c2(COND1(and(false, true), s(z0), 0))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND2(false, s(s(z0)), s(0)) → c2(COND1(and(false, gr(s(s(z0)), 0)), s(s(z0)), s(0)), EQ(s(s(z0)), s(0)))
COND2(false, s(0), s(s(z0))) → c2(COND1(and(false, gr(s(0), 0)), s(0), s(s(z0))), EQ(s(0), s(s(z0))))
COND2(true, s(x0), 0) → c1(COND2(false, x0, 0))
Defined Rule Symbols:
p, gr, and, eq
Defined Pair Symbols:
GR, EQ, COND1, COND2
Compound Symbols:
c5, c11, c, c1, c2, c2
(95) CdtKnowledgeProof (BOTH BOUNDS(ID, ID) transformation)
The following tuples could be moved from S to K by knowledge propagation:
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), true), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(false, s(0), s(0)) → c2(COND1(and(true, gr(s(0), 0)), s(0), s(0)), EQ(s(0), s(0)))
COND2(false, s(s(z0)), s(s(z1))) → c2(COND1(and(eq(z0, z1), gr(s(s(z0)), 0)), s(s(z0)), s(s(z1))), EQ(s(s(z0)), s(s(z1))))
(96) Obligation:
Complexity Dependency Tuples Problem
Rules:
p(0) → 0
p(s(z0)) → z0
gr(s(z0), 0) → true
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
eq(0, 0) → true
eq(s(z0), 0) → false
eq(0, s(z0)) → false
eq(s(z0), s(z1)) → eq(z0, z1)
Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
COND2(true, 0, 0) → c1(COND2(false, 0, p(0)))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, p(s(z0))))
COND2(true, s(x0), 0) → c1(COND2(false, x0, p(0)))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, p(s(z0))))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), true), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(false, s(z0), 0) → c2(COND1(and(false, true), s(z0), 0))
COND2(false, s(0), s(0)) → c2(COND1(and(true, gr(s(0), 0)), s(0), s(0)), EQ(s(0), s(0)))
COND2(false, s(s(z0)), s(0)) → c2(COND1(and(false, gr(s(s(z0)), 0)), s(s(z0)), s(0)), EQ(s(s(z0)), s(0)))
COND2(false, s(0), s(s(z0))) → c2(COND1(and(false, gr(s(0), 0)), s(0), s(s(z0))), EQ(s(0), s(s(z0))))
COND2(false, s(s(z0)), s(s(z1))) → c2(COND1(and(eq(z0, z1), gr(s(s(z0)), 0)), s(s(z0)), s(s(z1))), EQ(s(s(z0)), s(s(z1))))
COND2(false, 0, 0) → c2(COND1(and(true, false), 0, 0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, false), 0, s(z0)))
COND2(true, 0, 0) → c1(COND2(false, 0, 0))
COND2(true, s(x0), 0) → c1(COND2(false, x0, 0))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, z0))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, z0))
S tuples:
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, p(s(z0))))
COND2(true, 0, 0) → c1(COND2(false, 0, 0))
K tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND2(true, s(z0), 0) → c1(COND2(gr(0, 0), z0, 0))
COND2(true, 0, s(x1)) → c1(COND2(gr(s(x1), 0), 0, x1))
COND2(true, s(x0), 0) → c1(COND2(false, x0, p(0)))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, p(s(z0))))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
COND2(false, s(z0), 0) → c2(COND1(and(false, true), s(z0), 0))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND2(false, s(s(z0)), s(0)) → c2(COND1(and(false, gr(s(s(z0)), 0)), s(s(z0)), s(0)), EQ(s(s(z0)), s(0)))
COND2(false, s(0), s(s(z0))) → c2(COND1(and(false, gr(s(0), 0)), s(0), s(s(z0))), EQ(s(0), s(s(z0))))
COND2(true, s(x0), 0) → c1(COND2(false, x0, 0))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), true), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(false, s(0), s(0)) → c2(COND1(and(true, gr(s(0), 0)), s(0), s(0)), EQ(s(0), s(0)))
COND2(false, s(s(z0)), s(s(z1))) → c2(COND1(and(eq(z0, z1), gr(s(s(z0)), 0)), s(s(z0)), s(s(z1))), EQ(s(s(z0)), s(s(z1))))
Defined Rule Symbols:
p, gr, and, eq
Defined Pair Symbols:
GR, EQ, COND1, COND2
Compound Symbols:
c5, c11, c, c1, c2, c2
(97) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND2(
true,
0,
0) →
c1(
COND2(
false,
0,
p(
0))) by
COND2(true, 0, 0) → c1(COND2(false, 0, 0))
(98) Obligation:
Complexity Dependency Tuples Problem
Rules:
p(0) → 0
p(s(z0)) → z0
gr(s(z0), 0) → true
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
eq(0, 0) → true
eq(s(z0), 0) → false
eq(0, s(z0)) → false
eq(s(z0), s(z1)) → eq(z0, z1)
Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, p(s(z0))))
COND2(true, s(x0), 0) → c1(COND2(false, x0, p(0)))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, p(s(z0))))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), true), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(false, s(z0), 0) → c2(COND1(and(false, true), s(z0), 0))
COND2(false, s(0), s(0)) → c2(COND1(and(true, gr(s(0), 0)), s(0), s(0)), EQ(s(0), s(0)))
COND2(false, s(s(z0)), s(0)) → c2(COND1(and(false, gr(s(s(z0)), 0)), s(s(z0)), s(0)), EQ(s(s(z0)), s(0)))
COND2(false, s(0), s(s(z0))) → c2(COND1(and(false, gr(s(0), 0)), s(0), s(s(z0))), EQ(s(0), s(s(z0))))
COND2(false, s(s(z0)), s(s(z1))) → c2(COND1(and(eq(z0, z1), gr(s(s(z0)), 0)), s(s(z0)), s(s(z1))), EQ(s(s(z0)), s(s(z1))))
COND2(false, 0, 0) → c2(COND1(and(true, false), 0, 0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, false), 0, s(z0)))
COND2(true, 0, 0) → c1(COND2(false, 0, 0))
COND2(true, s(x0), 0) → c1(COND2(false, x0, 0))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, z0))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, z0))
S tuples:
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, p(s(z0))))
COND2(true, 0, 0) → c1(COND2(false, 0, 0))
K tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND2(true, s(z0), 0) → c1(COND2(gr(0, 0), z0, 0))
COND2(true, 0, s(x1)) → c1(COND2(gr(s(x1), 0), 0, x1))
COND2(true, s(x0), 0) → c1(COND2(false, x0, p(0)))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, p(s(z0))))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
COND2(false, s(z0), 0) → c2(COND1(and(false, true), s(z0), 0))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND2(false, s(s(z0)), s(0)) → c2(COND1(and(false, gr(s(s(z0)), 0)), s(s(z0)), s(0)), EQ(s(s(z0)), s(0)))
COND2(false, s(0), s(s(z0))) → c2(COND1(and(false, gr(s(0), 0)), s(0), s(s(z0))), EQ(s(0), s(s(z0))))
COND2(true, s(x0), 0) → c1(COND2(false, x0, 0))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), true), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(false, s(0), s(0)) → c2(COND1(and(true, gr(s(0), 0)), s(0), s(0)), EQ(s(0), s(0)))
COND2(false, s(s(z0)), s(s(z1))) → c2(COND1(and(eq(z0, z1), gr(s(s(z0)), 0)), s(s(z0)), s(s(z1))), EQ(s(s(z0)), s(s(z1))))
Defined Rule Symbols:
p, gr, and, eq
Defined Pair Symbols:
GR, EQ, COND1, COND2
Compound Symbols:
c5, c11, c, c1, c2, c2
(99) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND2(
true,
0,
s(
z0)) →
c1(
COND2(
true,
0,
p(
s(
z0)))) by
COND2(true, 0, s(z0)) → c1(COND2(true, 0, z0))
(100) Obligation:
Complexity Dependency Tuples Problem
Rules:
p(0) → 0
p(s(z0)) → z0
gr(s(z0), 0) → true
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
eq(0, 0) → true
eq(s(z0), 0) → false
eq(0, s(z0)) → false
eq(s(z0), s(z1)) → eq(z0, z1)
Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
COND2(true, s(x0), 0) → c1(COND2(false, x0, p(0)))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, p(s(z0))))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), true), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(false, s(z0), 0) → c2(COND1(and(false, true), s(z0), 0))
COND2(false, s(0), s(0)) → c2(COND1(and(true, gr(s(0), 0)), s(0), s(0)), EQ(s(0), s(0)))
COND2(false, s(s(z0)), s(0)) → c2(COND1(and(false, gr(s(s(z0)), 0)), s(s(z0)), s(0)), EQ(s(s(z0)), s(0)))
COND2(false, s(0), s(s(z0))) → c2(COND1(and(false, gr(s(0), 0)), s(0), s(s(z0))), EQ(s(0), s(s(z0))))
COND2(false, s(s(z0)), s(s(z1))) → c2(COND1(and(eq(z0, z1), gr(s(s(z0)), 0)), s(s(z0)), s(s(z1))), EQ(s(s(z0)), s(s(z1))))
COND2(false, 0, 0) → c2(COND1(and(true, false), 0, 0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, false), 0, s(z0)))
COND2(true, 0, 0) → c1(COND2(false, 0, 0))
COND2(true, s(x0), 0) → c1(COND2(false, x0, 0))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, z0))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, z0))
S tuples:
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, 0, 0) → c1(COND2(false, 0, 0))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, z0))
K tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND2(true, s(z0), 0) → c1(COND2(gr(0, 0), z0, 0))
COND2(true, 0, s(x1)) → c1(COND2(gr(s(x1), 0), 0, x1))
COND2(true, s(x0), 0) → c1(COND2(false, x0, p(0)))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, p(s(z0))))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
COND2(false, s(z0), 0) → c2(COND1(and(false, true), s(z0), 0))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND2(false, s(s(z0)), s(0)) → c2(COND1(and(false, gr(s(s(z0)), 0)), s(s(z0)), s(0)), EQ(s(s(z0)), s(0)))
COND2(false, s(0), s(s(z0))) → c2(COND1(and(false, gr(s(0), 0)), s(0), s(s(z0))), EQ(s(0), s(s(z0))))
COND2(true, s(x0), 0) → c1(COND2(false, x0, 0))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), true), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(false, s(0), s(0)) → c2(COND1(and(true, gr(s(0), 0)), s(0), s(0)), EQ(s(0), s(0)))
COND2(false, s(s(z0)), s(s(z1))) → c2(COND1(and(eq(z0, z1), gr(s(s(z0)), 0)), s(s(z0)), s(s(z1))), EQ(s(s(z0)), s(s(z1))))
Defined Rule Symbols:
p, gr, and, eq
Defined Pair Symbols:
GR, EQ, COND1, COND2
Compound Symbols:
c5, c11, c, c1, c2, c2
(101) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
COND2(true, 0, s(z0)) → c1(COND2(true, 0, z0))
We considered the (Usable) Rules:
p(0) → 0
p(s(z0)) → z0
And the Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
COND2(true, s(x0), 0) → c1(COND2(false, x0, p(0)))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, p(s(z0))))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), true), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(false, s(z0), 0) → c2(COND1(and(false, true), s(z0), 0))
COND2(false, s(0), s(0)) → c2(COND1(and(true, gr(s(0), 0)), s(0), s(0)), EQ(s(0), s(0)))
COND2(false, s(s(z0)), s(0)) → c2(COND1(and(false, gr(s(s(z0)), 0)), s(s(z0)), s(0)), EQ(s(s(z0)), s(0)))
COND2(false, s(0), s(s(z0))) → c2(COND1(and(false, gr(s(0), 0)), s(0), s(s(z0))), EQ(s(0), s(s(z0))))
COND2(false, s(s(z0)), s(s(z1))) → c2(COND1(and(eq(z0, z1), gr(s(s(z0)), 0)), s(s(z0)), s(s(z1))), EQ(s(s(z0)), s(s(z1))))
COND2(false, 0, 0) → c2(COND1(and(true, false), 0, 0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, false), 0, s(z0)))
COND2(true, 0, 0) → c1(COND2(false, 0, 0))
COND2(true, s(x0), 0) → c1(COND2(false, x0, 0))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, z0))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(COND1(x1, x2, x3)) = x3
POL(COND2(x1, x2, x3)) = [2]x1 + x3
POL(EQ(x1, x2)) = 0
POL(GR(x1, x2)) = [3]x1 + [4]x2
POL(and(x1, x2)) = 0
POL(c(x1)) = x1
POL(c1(x1)) = x1
POL(c11(x1)) = x1
POL(c2(x1)) = x1
POL(c2(x1, x2)) = x1 + x2
POL(c5(x1)) = x1
POL(eq(x1, x2)) = [2] + [4]x1 + [2]x2
POL(false) = 0
POL(gr(x1, x2)) = [2] + [2]x1 + [5]x2
POL(p(x1)) = x1
POL(s(x1)) = [1] + x1
POL(true) = 0
(102) Obligation:
Complexity Dependency Tuples Problem
Rules:
p(0) → 0
p(s(z0)) → z0
gr(s(z0), 0) → true
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
eq(0, 0) → true
eq(s(z0), 0) → false
eq(0, s(z0)) → false
eq(s(z0), s(z1)) → eq(z0, z1)
Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
COND2(true, s(x0), 0) → c1(COND2(false, x0, p(0)))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, p(s(z0))))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), true), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(false, s(z0), 0) → c2(COND1(and(false, true), s(z0), 0))
COND2(false, s(0), s(0)) → c2(COND1(and(true, gr(s(0), 0)), s(0), s(0)), EQ(s(0), s(0)))
COND2(false, s(s(z0)), s(0)) → c2(COND1(and(false, gr(s(s(z0)), 0)), s(s(z0)), s(0)), EQ(s(s(z0)), s(0)))
COND2(false, s(0), s(s(z0))) → c2(COND1(and(false, gr(s(0), 0)), s(0), s(s(z0))), EQ(s(0), s(s(z0))))
COND2(false, s(s(z0)), s(s(z1))) → c2(COND1(and(eq(z0, z1), gr(s(s(z0)), 0)), s(s(z0)), s(s(z1))), EQ(s(s(z0)), s(s(z1))))
COND2(false, 0, 0) → c2(COND1(and(true, false), 0, 0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, false), 0, s(z0)))
COND2(true, 0, 0) → c1(COND2(false, 0, 0))
COND2(true, s(x0), 0) → c1(COND2(false, x0, 0))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, z0))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, z0))
S tuples:
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, 0, 0) → c1(COND2(false, 0, 0))
K tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND2(true, s(z0), 0) → c1(COND2(gr(0, 0), z0, 0))
COND2(true, 0, s(x1)) → c1(COND2(gr(s(x1), 0), 0, x1))
COND2(true, s(x0), 0) → c1(COND2(false, x0, p(0)))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, p(s(z0))))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
COND2(false, s(z0), 0) → c2(COND1(and(false, true), s(z0), 0))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND2(false, s(s(z0)), s(0)) → c2(COND1(and(false, gr(s(s(z0)), 0)), s(s(z0)), s(0)), EQ(s(s(z0)), s(0)))
COND2(false, s(0), s(s(z0))) → c2(COND1(and(false, gr(s(0), 0)), s(0), s(s(z0))), EQ(s(0), s(s(z0))))
COND2(true, s(x0), 0) → c1(COND2(false, x0, 0))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), true), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(false, s(0), s(0)) → c2(COND1(and(true, gr(s(0), 0)), s(0), s(0)), EQ(s(0), s(0)))
COND2(false, s(s(z0)), s(s(z1))) → c2(COND1(and(eq(z0, z1), gr(s(s(z0)), 0)), s(s(z0)), s(s(z1))), EQ(s(s(z0)), s(s(z1))))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, z0))
Defined Rule Symbols:
p, gr, and, eq
Defined Pair Symbols:
GR, EQ, COND1, COND2
Compound Symbols:
c5, c11, c, c1, c2, c2
(103) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND2(
true,
s(
x0),
0) →
c1(
COND2(
false,
x0,
p(
0))) by
COND2(true, s(x0), 0) → c1(COND2(false, x0, 0))
(104) Obligation:
Complexity Dependency Tuples Problem
Rules:
p(0) → 0
p(s(z0)) → z0
gr(s(z0), 0) → true
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
eq(0, 0) → true
eq(s(z0), 0) → false
eq(0, s(z0)) → false
eq(s(z0), s(z1)) → eq(z0, z1)
Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, p(s(z0))))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), true), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(false, s(z0), 0) → c2(COND1(and(false, true), s(z0), 0))
COND2(false, s(0), s(0)) → c2(COND1(and(true, gr(s(0), 0)), s(0), s(0)), EQ(s(0), s(0)))
COND2(false, s(s(z0)), s(0)) → c2(COND1(and(false, gr(s(s(z0)), 0)), s(s(z0)), s(0)), EQ(s(s(z0)), s(0)))
COND2(false, s(0), s(s(z0))) → c2(COND1(and(false, gr(s(0), 0)), s(0), s(s(z0))), EQ(s(0), s(s(z0))))
COND2(false, s(s(z0)), s(s(z1))) → c2(COND1(and(eq(z0, z1), gr(s(s(z0)), 0)), s(s(z0)), s(s(z1))), EQ(s(s(z0)), s(s(z1))))
COND2(false, 0, 0) → c2(COND1(and(true, false), 0, 0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, false), 0, s(z0)))
COND2(true, 0, 0) → c1(COND2(false, 0, 0))
COND2(true, s(x0), 0) → c1(COND2(false, x0, 0))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, z0))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, z0))
S tuples:
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, 0, 0) → c1(COND2(false, 0, 0))
K tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND2(true, s(z0), 0) → c1(COND2(gr(0, 0), z0, 0))
COND2(true, 0, s(x1)) → c1(COND2(gr(s(x1), 0), 0, x1))
COND2(true, s(x0), 0) → c1(COND2(false, x0, p(0)))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, p(s(z0))))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
COND2(false, s(z0), 0) → c2(COND1(and(false, true), s(z0), 0))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND2(false, s(s(z0)), s(0)) → c2(COND1(and(false, gr(s(s(z0)), 0)), s(s(z0)), s(0)), EQ(s(s(z0)), s(0)))
COND2(false, s(0), s(s(z0))) → c2(COND1(and(false, gr(s(0), 0)), s(0), s(s(z0))), EQ(s(0), s(s(z0))))
COND2(true, s(x0), 0) → c1(COND2(false, x0, 0))
COND2(false, s(z0), s(z1)) → c2(COND1(and(eq(z0, z1), true), s(z0), s(z1)), EQ(s(z0), s(z1)))
COND2(false, s(0), s(0)) → c2(COND1(and(true, gr(s(0), 0)), s(0), s(0)), EQ(s(0), s(0)))
COND2(false, s(s(z0)), s(s(z1))) → c2(COND1(and(eq(z0, z1), gr(s(s(z0)), 0)), s(s(z0)), s(s(z1))), EQ(s(s(z0)), s(s(z1))))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, z0))
Defined Rule Symbols:
p, gr, and, eq
Defined Pair Symbols:
GR, EQ, COND1, COND2
Compound Symbols:
c5, c11, c, c1, c2, c2
(105) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID) transformation)
Split RHS of tuples not part of any SCC
(106) Obligation:
Complexity Dependency Tuples Problem
Rules:
p(0) → 0
p(s(z0)) → z0
gr(s(z0), 0) → true
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
eq(0, 0) → true
eq(s(z0), 0) → false
eq(0, s(z0)) → false
eq(s(z0), s(z1)) → eq(z0, z1)
Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, p(s(z0))))
COND2(false, s(z0), 0) → c2(COND1(and(false, true), s(z0), 0))
COND2(false, 0, 0) → c2(COND1(and(true, false), 0, 0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, false), 0, s(z0)))
COND2(true, 0, 0) → c1(COND2(false, 0, 0))
COND2(true, s(x0), 0) → c1(COND2(false, x0, 0))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, z0))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, z0))
COND2(false, s(z0), s(z1)) → c3(COND1(and(eq(z0, z1), true), s(z0), s(z1)))
COND2(false, s(z0), s(z1)) → c3(EQ(s(z0), s(z1)))
COND2(false, s(0), s(0)) → c3(COND1(and(true, gr(s(0), 0)), s(0), s(0)))
COND2(false, s(0), s(0)) → c3(EQ(s(0), s(0)))
COND2(false, s(s(z0)), s(0)) → c3(COND1(and(false, gr(s(s(z0)), 0)), s(s(z0)), s(0)))
COND2(false, s(s(z0)), s(0)) → c3(EQ(s(s(z0)), s(0)))
COND2(false, s(0), s(s(z0))) → c3(COND1(and(false, gr(s(0), 0)), s(0), s(s(z0))))
COND2(false, s(0), s(s(z0))) → c3(EQ(s(0), s(s(z0))))
COND2(false, s(s(z0)), s(s(z1))) → c3(COND1(and(eq(z0, z1), gr(s(s(z0)), 0)), s(s(z0)), s(s(z1))))
COND2(false, s(s(z0)), s(s(z1))) → c3(EQ(s(s(z0)), s(s(z1))))
S tuples:
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, 0, 0) → c1(COND2(false, 0, 0))
K tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND2(true, s(z0), 0) → c1(COND2(gr(0, 0), z0, 0))
COND2(true, 0, s(x1)) → c1(COND2(gr(s(x1), 0), 0, x1))
COND2(true, s(x0), 0) → c1(COND2(false, x0, p(0)))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, p(s(z0))))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
COND2(false, s(z0), 0) → c2(COND1(and(false, true), s(z0), 0))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND2(true, s(x0), 0) → c1(COND2(false, x0, 0))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, z0))
COND2(false, s(z0), s(z1)) → c3(COND1(and(eq(z0, z1), true), s(z0), s(z1)))
COND2(false, s(z0), s(z1)) → c3(EQ(s(z0), s(z1)))
COND2(false, s(0), s(0)) → c3(COND1(and(true, gr(s(0), 0)), s(0), s(0)))
COND2(false, s(0), s(0)) → c3(EQ(s(0), s(0)))
COND2(false, s(s(z0)), s(0)) → c3(COND1(and(false, gr(s(s(z0)), 0)), s(s(z0)), s(0)))
COND2(false, s(s(z0)), s(0)) → c3(EQ(s(s(z0)), s(0)))
COND2(false, s(0), s(s(z0))) → c3(COND1(and(false, gr(s(0), 0)), s(0), s(s(z0))))
COND2(false, s(0), s(s(z0))) → c3(EQ(s(0), s(s(z0))))
COND2(false, s(s(z0)), s(s(z1))) → c3(COND1(and(eq(z0, z1), gr(s(s(z0)), 0)), s(s(z0)), s(s(z1))))
COND2(false, s(s(z0)), s(s(z1))) → c3(EQ(s(s(z0)), s(s(z1))))
Defined Rule Symbols:
p, gr, and, eq
Defined Pair Symbols:
GR, EQ, COND1, COND2
Compound Symbols:
c5, c11, c, c1, c2, c3
(107) CdtLeafRemovalProof (ComplexityIfPolyImplication transformation)
Removed 5 leading nodes:
COND2(false, s(z0), s(z1)) → c3(EQ(s(z0), s(z1)))
COND2(false, s(0), s(0)) → c3(EQ(s(0), s(0)))
COND2(false, s(s(z0)), s(0)) → c3(EQ(s(s(z0)), s(0)))
COND2(false, s(0), s(s(z0))) → c3(EQ(s(0), s(s(z0))))
COND2(false, s(s(z0)), s(s(z1))) → c3(EQ(s(s(z0)), s(s(z1))))
(108) Obligation:
Complexity Dependency Tuples Problem
Rules:
p(0) → 0
p(s(z0)) → z0
gr(s(z0), 0) → true
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
eq(0, 0) → true
eq(s(z0), 0) → false
eq(0, s(z0)) → false
eq(s(z0), s(z1)) → eq(z0, z1)
Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, p(s(z0))))
COND2(false, s(z0), 0) → c2(COND1(and(false, true), s(z0), 0))
COND2(false, 0, 0) → c2(COND1(and(true, false), 0, 0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, false), 0, s(z0)))
COND2(true, 0, 0) → c1(COND2(false, 0, 0))
COND2(true, s(x0), 0) → c1(COND2(false, x0, 0))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, z0))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, z0))
COND2(false, s(z0), s(z1)) → c3(COND1(and(eq(z0, z1), true), s(z0), s(z1)))
COND2(false, s(0), s(0)) → c3(COND1(and(true, gr(s(0), 0)), s(0), s(0)))
COND2(false, s(s(z0)), s(0)) → c3(COND1(and(false, gr(s(s(z0)), 0)), s(s(z0)), s(0)))
COND2(false, s(0), s(s(z0))) → c3(COND1(and(false, gr(s(0), 0)), s(0), s(s(z0))))
COND2(false, s(s(z0)), s(s(z1))) → c3(COND1(and(eq(z0, z1), gr(s(s(z0)), 0)), s(s(z0)), s(s(z1))))
S tuples:
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, 0, 0) → c1(COND2(false, 0, 0))
K tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, p(s(z0))))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
COND2(false, s(z0), 0) → c2(COND1(and(false, true), s(z0), 0))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND2(true, s(x0), 0) → c1(COND2(false, x0, 0))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, z0))
COND2(false, s(z0), s(z1)) → c3(COND1(and(eq(z0, z1), true), s(z0), s(z1)))
COND2(false, s(0), s(0)) → c3(COND1(and(true, gr(s(0), 0)), s(0), s(0)))
COND2(false, s(s(z0)), s(0)) → c3(COND1(and(false, gr(s(s(z0)), 0)), s(s(z0)), s(0)))
COND2(false, s(0), s(s(z0))) → c3(COND1(and(false, gr(s(0), 0)), s(0), s(s(z0))))
COND2(false, s(s(z0)), s(s(z1))) → c3(COND1(and(eq(z0, z1), gr(s(s(z0)), 0)), s(s(z0)), s(s(z1))))
Defined Rule Symbols:
p, gr, and, eq
Defined Pair Symbols:
GR, EQ, COND1, COND2
Compound Symbols:
c5, c11, c, c1, c2, c3
(109) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
We considered the (Usable) Rules:none
And the Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, p(s(z0))))
COND2(false, s(z0), 0) → c2(COND1(and(false, true), s(z0), 0))
COND2(false, 0, 0) → c2(COND1(and(true, false), 0, 0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, false), 0, s(z0)))
COND2(true, 0, 0) → c1(COND2(false, 0, 0))
COND2(true, s(x0), 0) → c1(COND2(false, x0, 0))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, z0))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, z0))
COND2(false, s(z0), s(z1)) → c3(COND1(and(eq(z0, z1), true), s(z0), s(z1)))
COND2(false, s(0), s(0)) → c3(COND1(and(true, gr(s(0), 0)), s(0), s(0)))
COND2(false, s(s(z0)), s(0)) → c3(COND1(and(false, gr(s(s(z0)), 0)), s(s(z0)), s(0)))
COND2(false, s(0), s(s(z0))) → c3(COND1(and(false, gr(s(0), 0)), s(0), s(s(z0))))
COND2(false, s(s(z0)), s(s(z1))) → c3(COND1(and(eq(z0, z1), gr(s(s(z0)), 0)), s(s(z0)), s(s(z1))))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(COND1(x1, x2, x3)) = 0
POL(COND2(x1, x2, x3)) = 0
POL(EQ(x1, x2)) = x2
POL(GR(x1, x2)) = [4]x1 + [2]x2
POL(and(x1, x2)) = 0
POL(c(x1)) = x1
POL(c1(x1)) = x1
POL(c11(x1)) = x1
POL(c2(x1)) = x1
POL(c3(x1)) = x1
POL(c5(x1)) = x1
POL(eq(x1, x2)) = [4] + x1
POL(false) = 0
POL(gr(x1, x2)) = [3] + [2]x1 + [4]x2
POL(p(x1)) = [3]
POL(s(x1)) = [4] + x1
POL(true) = 0
(110) Obligation:
Complexity Dependency Tuples Problem
Rules:
p(0) → 0
p(s(z0)) → z0
gr(s(z0), 0) → true
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
eq(0, 0) → true
eq(s(z0), 0) → false
eq(0, s(z0)) → false
eq(s(z0), s(z1)) → eq(z0, z1)
Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, p(s(z0))))
COND2(false, s(z0), 0) → c2(COND1(and(false, true), s(z0), 0))
COND2(false, 0, 0) → c2(COND1(and(true, false), 0, 0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, false), 0, s(z0)))
COND2(true, 0, 0) → c1(COND2(false, 0, 0))
COND2(true, s(x0), 0) → c1(COND2(false, x0, 0))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, z0))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, z0))
COND2(false, s(z0), s(z1)) → c3(COND1(and(eq(z0, z1), true), s(z0), s(z1)))
COND2(false, s(0), s(0)) → c3(COND1(and(true, gr(s(0), 0)), s(0), s(0)))
COND2(false, s(s(z0)), s(0)) → c3(COND1(and(false, gr(s(s(z0)), 0)), s(s(z0)), s(0)))
COND2(false, s(0), s(s(z0))) → c3(COND1(and(false, gr(s(0), 0)), s(0), s(s(z0))))
COND2(false, s(s(z0)), s(s(z1))) → c3(COND1(and(eq(z0, z1), gr(s(s(z0)), 0)), s(s(z0)), s(s(z1))))
S tuples:
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, 0, 0) → c1(COND2(false, 0, 0))
K tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, p(s(z0))))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
COND2(false, s(z0), 0) → c2(COND1(and(false, true), s(z0), 0))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND2(true, s(x0), 0) → c1(COND2(false, x0, 0))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, z0))
COND2(false, s(z0), s(z1)) → c3(COND1(and(eq(z0, z1), true), s(z0), s(z1)))
COND2(false, s(0), s(0)) → c3(COND1(and(true, gr(s(0), 0)), s(0), s(0)))
COND2(false, s(s(z0)), s(0)) → c3(COND1(and(false, gr(s(s(z0)), 0)), s(s(z0)), s(0)))
COND2(false, s(0), s(s(z0))) → c3(COND1(and(false, gr(s(0), 0)), s(0), s(s(z0))))
COND2(false, s(s(z0)), s(s(z1))) → c3(COND1(and(eq(z0, z1), gr(s(s(z0)), 0)), s(s(z0)), s(s(z1))))
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
Defined Rule Symbols:
p, gr, and, eq
Defined Pair Symbols:
GR, EQ, COND1, COND2
Compound Symbols:
c5, c11, c, c1, c2, c3
(111) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND2(
true,
s(
x0),
s(
z0)) →
c1(
COND2(
true,
x0,
p(
s(
z0)))) by
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, z0))
(112) Obligation:
Complexity Dependency Tuples Problem
Rules:
p(0) → 0
p(s(z0)) → z0
gr(s(z0), 0) → true
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
eq(0, 0) → true
eq(s(z0), 0) → false
eq(0, s(z0)) → false
eq(s(z0), s(z1)) → eq(z0, z1)
Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
COND2(false, s(z0), 0) → c2(COND1(and(false, true), s(z0), 0))
COND2(false, 0, 0) → c2(COND1(and(true, false), 0, 0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, false), 0, s(z0)))
COND2(true, 0, 0) → c1(COND2(false, 0, 0))
COND2(true, s(x0), 0) → c1(COND2(false, x0, 0))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, z0))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, z0))
COND2(false, s(z0), s(z1)) → c3(COND1(and(eq(z0, z1), true), s(z0), s(z1)))
COND2(false, s(0), s(0)) → c3(COND1(and(true, gr(s(0), 0)), s(0), s(0)))
COND2(false, s(s(z0)), s(0)) → c3(COND1(and(false, gr(s(s(z0)), 0)), s(s(z0)), s(0)))
COND2(false, s(0), s(s(z0))) → c3(COND1(and(false, gr(s(0), 0)), s(0), s(s(z0))))
COND2(false, s(s(z0)), s(s(z1))) → c3(COND1(and(eq(z0, z1), gr(s(s(z0)), 0)), s(s(z0)), s(s(z1))))
S tuples:
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, 0, 0) → c1(COND2(false, 0, 0))
K tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, p(s(z0))))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
COND2(false, s(z0), 0) → c2(COND1(and(false, true), s(z0), 0))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND2(true, s(x0), 0) → c1(COND2(false, x0, 0))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, z0))
COND2(false, s(z0), s(z1)) → c3(COND1(and(eq(z0, z1), true), s(z0), s(z1)))
COND2(false, s(0), s(0)) → c3(COND1(and(true, gr(s(0), 0)), s(0), s(0)))
COND2(false, s(s(z0)), s(0)) → c3(COND1(and(false, gr(s(s(z0)), 0)), s(s(z0)), s(0)))
COND2(false, s(0), s(s(z0))) → c3(COND1(and(false, gr(s(0), 0)), s(0), s(s(z0))))
COND2(false, s(s(z0)), s(s(z1))) → c3(COND1(and(eq(z0, z1), gr(s(s(z0)), 0)), s(s(z0)), s(s(z1))))
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
Defined Rule Symbols:
p, gr, and, eq
Defined Pair Symbols:
GR, EQ, COND1, COND2
Compound Symbols:
c5, c11, c, c1, c2, c3
(113) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND2(
false,
s(
z0),
0) →
c2(
COND1(
and(
false,
true),
s(
z0),
0)) by
COND2(false, s(x0), 0) → c2(COND1(false, s(x0), 0))
(114) Obligation:
Complexity Dependency Tuples Problem
Rules:
p(0) → 0
p(s(z0)) → z0
gr(s(z0), 0) → true
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
eq(0, 0) → true
eq(s(z0), 0) → false
eq(0, s(z0)) → false
eq(s(z0), s(z1)) → eq(z0, z1)
Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
COND2(false, 0, 0) → c2(COND1(and(true, false), 0, 0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, false), 0, s(z0)))
COND2(true, 0, 0) → c1(COND2(false, 0, 0))
COND2(true, s(x0), 0) → c1(COND2(false, x0, 0))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, z0))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, z0))
COND2(false, s(z0), s(z1)) → c3(COND1(and(eq(z0, z1), true), s(z0), s(z1)))
COND2(false, s(0), s(0)) → c3(COND1(and(true, gr(s(0), 0)), s(0), s(0)))
COND2(false, s(s(z0)), s(0)) → c3(COND1(and(false, gr(s(s(z0)), 0)), s(s(z0)), s(0)))
COND2(false, s(0), s(s(z0))) → c3(COND1(and(false, gr(s(0), 0)), s(0), s(s(z0))))
COND2(false, s(s(z0)), s(s(z1))) → c3(COND1(and(eq(z0, z1), gr(s(s(z0)), 0)), s(s(z0)), s(s(z1))))
COND2(false, s(x0), 0) → c2(COND1(false, s(x0), 0))
S tuples:
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, 0, 0) → c1(COND2(false, 0, 0))
K tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, p(s(z0))))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
COND2(false, s(z0), 0) → c2(COND1(and(false, true), s(z0), 0))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND2(true, s(x0), 0) → c1(COND2(false, x0, 0))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, z0))
COND2(false, s(z0), s(z1)) → c3(COND1(and(eq(z0, z1), true), s(z0), s(z1)))
COND2(false, s(0), s(0)) → c3(COND1(and(true, gr(s(0), 0)), s(0), s(0)))
COND2(false, s(s(z0)), s(0)) → c3(COND1(and(false, gr(s(s(z0)), 0)), s(s(z0)), s(0)))
COND2(false, s(0), s(s(z0))) → c3(COND1(and(false, gr(s(0), 0)), s(0), s(s(z0))))
COND2(false, s(s(z0)), s(s(z1))) → c3(COND1(and(eq(z0, z1), gr(s(s(z0)), 0)), s(s(z0)), s(s(z1))))
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
Defined Rule Symbols:
p, gr, and, eq
Defined Pair Symbols:
GR, EQ, COND1, COND2
Compound Symbols:
c5, c11, c, c1, c2, c3
(115) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
COND2(false, s(x0), 0) → c2(COND1(false, s(x0), 0))
(116) Obligation:
Complexity Dependency Tuples Problem
Rules:
p(0) → 0
p(s(z0)) → z0
gr(s(z0), 0) → true
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
eq(0, 0) → true
eq(s(z0), 0) → false
eq(0, s(z0)) → false
eq(s(z0), s(z1)) → eq(z0, z1)
Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
COND2(false, 0, 0) → c2(COND1(and(true, false), 0, 0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, false), 0, s(z0)))
COND2(true, 0, 0) → c1(COND2(false, 0, 0))
COND2(true, s(x0), 0) → c1(COND2(false, x0, 0))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, z0))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, z0))
COND2(false, s(z0), s(z1)) → c3(COND1(and(eq(z0, z1), true), s(z0), s(z1)))
COND2(false, s(0), s(0)) → c3(COND1(and(true, gr(s(0), 0)), s(0), s(0)))
COND2(false, s(s(z0)), s(0)) → c3(COND1(and(false, gr(s(s(z0)), 0)), s(s(z0)), s(0)))
COND2(false, s(0), s(s(z0))) → c3(COND1(and(false, gr(s(0), 0)), s(0), s(s(z0))))
COND2(false, s(s(z0)), s(s(z1))) → c3(COND1(and(eq(z0, z1), gr(s(s(z0)), 0)), s(s(z0)), s(s(z1))))
S tuples:
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, 0, 0) → c1(COND2(false, 0, 0))
K tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND2(true, s(x0), 0) → c1(COND2(false, x0, 0))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, z0))
COND2(false, s(z0), s(z1)) → c3(COND1(and(eq(z0, z1), true), s(z0), s(z1)))
COND2(false, s(0), s(0)) → c3(COND1(and(true, gr(s(0), 0)), s(0), s(0)))
COND2(false, s(s(z0)), s(0)) → c3(COND1(and(false, gr(s(s(z0)), 0)), s(s(z0)), s(0)))
COND2(false, s(0), s(s(z0))) → c3(COND1(and(false, gr(s(0), 0)), s(0), s(s(z0))))
COND2(false, s(s(z0)), s(s(z1))) → c3(COND1(and(eq(z0, z1), gr(s(s(z0)), 0)), s(s(z0)), s(s(z1))))
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
Defined Rule Symbols:
p, gr, and, eq
Defined Pair Symbols:
GR, EQ, COND1, COND2
Compound Symbols:
c5, c11, c, c1, c2, c3
(117) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND2(
false,
0,
0) →
c2(
COND1(
and(
true,
false),
0,
0)) by
COND2(false, 0, 0) → c2(COND1(false, 0, 0))
(118) Obligation:
Complexity Dependency Tuples Problem
Rules:
p(0) → 0
p(s(z0)) → z0
gr(s(z0), 0) → true
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
eq(0, 0) → true
eq(s(z0), 0) → false
eq(0, s(z0)) → false
eq(s(z0), s(z1)) → eq(z0, z1)
Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, false), 0, s(z0)))
COND2(true, 0, 0) → c1(COND2(false, 0, 0))
COND2(true, s(x0), 0) → c1(COND2(false, x0, 0))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, z0))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, z0))
COND2(false, s(z0), s(z1)) → c3(COND1(and(eq(z0, z1), true), s(z0), s(z1)))
COND2(false, s(0), s(0)) → c3(COND1(and(true, gr(s(0), 0)), s(0), s(0)))
COND2(false, s(s(z0)), s(0)) → c3(COND1(and(false, gr(s(s(z0)), 0)), s(s(z0)), s(0)))
COND2(false, s(0), s(s(z0))) → c3(COND1(and(false, gr(s(0), 0)), s(0), s(s(z0))))
COND2(false, s(s(z0)), s(s(z1))) → c3(COND1(and(eq(z0, z1), gr(s(s(z0)), 0)), s(s(z0)), s(s(z1))))
COND2(false, 0, 0) → c2(COND1(false, 0, 0))
S tuples:
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, 0, 0) → c1(COND2(false, 0, 0))
K tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND2(true, s(x0), 0) → c1(COND2(false, x0, 0))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, z0))
COND2(false, s(z0), s(z1)) → c3(COND1(and(eq(z0, z1), true), s(z0), s(z1)))
COND2(false, s(0), s(0)) → c3(COND1(and(true, gr(s(0), 0)), s(0), s(0)))
COND2(false, s(s(z0)), s(0)) → c3(COND1(and(false, gr(s(s(z0)), 0)), s(s(z0)), s(0)))
COND2(false, s(0), s(s(z0))) → c3(COND1(and(false, gr(s(0), 0)), s(0), s(s(z0))))
COND2(false, s(s(z0)), s(s(z1))) → c3(COND1(and(eq(z0, z1), gr(s(s(z0)), 0)), s(s(z0)), s(s(z1))))
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
Defined Rule Symbols:
p, gr, and, eq
Defined Pair Symbols:
GR, EQ, COND1, COND2
Compound Symbols:
c5, c11, c, c1, c2, c3
(119) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 3 trailing nodes:
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND2(true, s(z0), 0) → c1(COND2(false, z0, 0))
COND2(false, 0, 0) → c2(COND1(false, 0, 0))
(120) Obligation:
Complexity Dependency Tuples Problem
Rules:
p(0) → 0
p(s(z0)) → z0
gr(s(z0), 0) → true
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
eq(0, 0) → true
eq(s(z0), 0) → false
eq(0, s(z0)) → false
eq(s(z0), s(z1)) → eq(z0, z1)
Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, false), 0, s(z0)))
COND2(true, 0, 0) → c1(COND2(false, 0, 0))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, z0))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, z0))
COND2(false, s(z0), s(z1)) → c3(COND1(and(eq(z0, z1), true), s(z0), s(z1)))
COND2(false, s(0), s(0)) → c3(COND1(and(true, gr(s(0), 0)), s(0), s(0)))
COND2(false, s(s(z0)), s(0)) → c3(COND1(and(false, gr(s(s(z0)), 0)), s(s(z0)), s(0)))
COND2(false, s(0), s(s(z0))) → c3(COND1(and(false, gr(s(0), 0)), s(0), s(s(z0))))
COND2(false, s(s(z0)), s(s(z1))) → c3(COND1(and(eq(z0, z1), gr(s(s(z0)), 0)), s(s(z0)), s(s(z1))))
S tuples:
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, 0, 0) → c1(COND2(false, 0, 0))
K tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, z0))
COND2(false, s(z0), s(z1)) → c3(COND1(and(eq(z0, z1), true), s(z0), s(z1)))
COND2(false, s(0), s(0)) → c3(COND1(and(true, gr(s(0), 0)), s(0), s(0)))
COND2(false, s(s(z0)), s(0)) → c3(COND1(and(false, gr(s(s(z0)), 0)), s(s(z0)), s(0)))
COND2(false, s(0), s(s(z0))) → c3(COND1(and(false, gr(s(0), 0)), s(0), s(s(z0))))
COND2(false, s(s(z0)), s(s(z1))) → c3(COND1(and(eq(z0, z1), gr(s(s(z0)), 0)), s(s(z0)), s(s(z1))))
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
Defined Rule Symbols:
p, gr, and, eq
Defined Pair Symbols:
GR, EQ, COND1, COND2
Compound Symbols:
c5, c11, c, c1, c2, c3
(121) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 3 trailing tuple parts
(122) Obligation:
Complexity Dependency Tuples Problem
Rules:
p(0) → 0
p(s(z0)) → z0
gr(s(z0), 0) → true
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
eq(0, 0) → true
eq(s(z0), 0) → false
eq(0, s(z0)) → false
eq(s(z0), s(z1)) → eq(z0, z1)
Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, false), 0, s(z0)))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, z0))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, z0))
COND2(false, s(z0), s(z1)) → c3(COND1(and(eq(z0, z1), true), s(z0), s(z1)))
COND2(false, s(0), s(0)) → c3(COND1(and(true, gr(s(0), 0)), s(0), s(0)))
COND2(false, s(s(z0)), s(0)) → c3(COND1(and(false, gr(s(s(z0)), 0)), s(s(z0)), s(0)))
COND2(false, s(0), s(s(z0))) → c3(COND1(and(false, gr(s(0), 0)), s(0), s(s(z0))))
COND2(false, s(s(z0)), s(s(z1))) → c3(COND1(and(eq(z0, z1), gr(s(s(z0)), 0)), s(s(z0)), s(s(z1))))
COND2(true, 0, 0) → c1
S tuples:
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, 0, 0) → c1
K tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, z0))
COND2(false, s(z0), s(z1)) → c3(COND1(and(eq(z0, z1), true), s(z0), s(z1)))
COND2(false, s(0), s(0)) → c3(COND1(and(true, gr(s(0), 0)), s(0), s(0)))
COND2(false, s(s(z0)), s(0)) → c3(COND1(and(false, gr(s(s(z0)), 0)), s(s(z0)), s(0)))
COND2(false, s(0), s(s(z0))) → c3(COND1(and(false, gr(s(0), 0)), s(0), s(s(z0))))
COND2(false, s(s(z0)), s(s(z1))) → c3(COND1(and(eq(z0, z1), gr(s(s(z0)), 0)), s(s(z0)), s(s(z1))))
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
Defined Rule Symbols:
p, gr, and, eq
Defined Pair Symbols:
GR, EQ, COND1, COND2
Compound Symbols:
c5, c11, c, c1, c2, c3, c1
(123) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, 0, 0) → c1
We considered the (Usable) Rules:none
And the Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, false), 0, s(z0)))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, z0))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, z0))
COND2(false, s(z0), s(z1)) → c3(COND1(and(eq(z0, z1), true), s(z0), s(z1)))
COND2(false, s(0), s(0)) → c3(COND1(and(true, gr(s(0), 0)), s(0), s(0)))
COND2(false, s(s(z0)), s(0)) → c3(COND1(and(false, gr(s(s(z0)), 0)), s(s(z0)), s(0)))
COND2(false, s(0), s(s(z0))) → c3(COND1(and(false, gr(s(0), 0)), s(0), s(s(z0))))
COND2(false, s(s(z0)), s(s(z1))) → c3(COND1(and(eq(z0, z1), gr(s(s(z0)), 0)), s(s(z0)), s(s(z1))))
COND2(true, 0, 0) → c1
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(COND1(x1, x2, x3)) = [2]x3
POL(COND2(x1, x2, x3)) = [1] + [3]x1
POL(EQ(x1, x2)) = 0
POL(GR(x1, x2)) = 0
POL(and(x1, x2)) = [4] + [2]x2
POL(c(x1)) = x1
POL(c1) = 0
POL(c1(x1)) = x1
POL(c11(x1)) = x1
POL(c2(x1)) = x1
POL(c3(x1)) = x1
POL(c5(x1)) = x1
POL(eq(x1, x2)) = [3] + [2]x1 + [3]x2
POL(false) = [4]
POL(gr(x1, x2)) = [3] + [3]x1 + [4]x2
POL(p(x1)) = [2] + [3]x1
POL(s(x1)) = [4]
POL(true) = [2]
(124) Obligation:
Complexity Dependency Tuples Problem
Rules:
p(0) → 0
p(s(z0)) → z0
gr(s(z0), 0) → true
and(true, true) → true
and(false, z0) → false
and(z0, false) → false
eq(0, 0) → true
eq(s(z0), 0) → false
eq(0, s(z0)) → false
eq(s(z0), s(z1)) → eq(z0, z1)
Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
COND2(false, 0, s(z0)) → c2(COND1(and(false, false), 0, s(z0)))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, z0))
COND2(true, s(x0), s(z0)) → c1(COND2(true, x0, z0))
COND2(false, s(z0), s(z1)) → c3(COND1(and(eq(z0, z1), true), s(z0), s(z1)))
COND2(false, s(0), s(0)) → c3(COND1(and(true, gr(s(0), 0)), s(0), s(0)))
COND2(false, s(s(z0)), s(0)) → c3(COND1(and(false, gr(s(s(z0)), 0)), s(s(z0)), s(0)))
COND2(false, s(0), s(s(z0))) → c3(COND1(and(false, gr(s(0), 0)), s(0), s(s(z0))))
COND2(false, s(s(z0)), s(s(z1))) → c3(COND1(and(eq(z0, z1), gr(s(s(z0)), 0)), s(s(z0)), s(s(z1))))
COND2(true, 0, 0) → c1
S tuples:none
K tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND2(true, x0, s(z0)) → c1(COND2(true, p(x0), z0))
COND2(true, 0, s(z0)) → c1(COND2(true, 0, z0))
COND2(false, s(z0), s(z1)) → c3(COND1(and(eq(z0, z1), true), s(z0), s(z1)))
COND2(false, s(0), s(0)) → c3(COND1(and(true, gr(s(0), 0)), s(0), s(0)))
COND2(false, s(s(z0)), s(0)) → c3(COND1(and(false, gr(s(s(z0)), 0)), s(s(z0)), s(0)))
COND2(false, s(0), s(s(z0))) → c3(COND1(and(false, gr(s(0), 0)), s(0), s(s(z0))))
COND2(false, s(s(z0)), s(s(z1))) → c3(COND1(and(eq(z0, z1), gr(s(s(z0)), 0)), s(s(z0)), s(s(z1))))
EQ(s(z0), s(z1)) → c11(EQ(z0, z1))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, 0, 0) → c1
Defined Rule Symbols:
p, gr, and, eq
Defined Pair Symbols:
GR, EQ, COND1, COND2
Compound Symbols:
c5, c11, c, c1, c2, c3, c1
(125) SIsEmptyProof (BOTH BOUNDS(ID, ID) transformation)
The set S is empty
(126) BOUNDS(1, 1)