(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
nonZero(0) → false
nonZero(s(x)) → true
p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))
id_inc(x) → x
id_inc(x) → s(x)
random(x) → rand(x, 0)
rand(x, y) → if(nonZero(x), x, y)
if(false, x, y) → y
if(true, x, y) → rand(p(x), id_inc(y))
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
nonZero(0') → false
nonZero(s(x)) → true
p(s(0')) → 0'
p(s(s(x))) → s(p(s(x)))
id_inc(x) → x
id_inc(x) → s(x)
random(x) → rand(x, 0')
rand(x, y) → if(nonZero(x), x, y)
if(false, x, y) → y
if(true, x, y) → rand(p(x), id_inc(y))
S is empty.
Rewrite Strategy: INNERMOST
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
Innermost TRS:
Rules:
nonZero(0') → false
nonZero(s(x)) → true
p(s(0')) → 0'
p(s(s(x))) → s(p(s(x)))
id_inc(x) → x
id_inc(x) → s(x)
random(x) → rand(x, 0')
rand(x, y) → if(nonZero(x), x, y)
if(false, x, y) → y
if(true, x, y) → rand(p(x), id_inc(y))
Types:
nonZero :: 0':s → false:true
0' :: 0':s
false :: false:true
s :: 0':s → 0':s
true :: false:true
p :: 0':s → 0':s
id_inc :: 0':s → 0':s
random :: 0':s → 0':s
rand :: 0':s → 0':s → 0':s
if :: false:true → 0':s → 0':s → 0':s
hole_false:true1_0 :: false:true
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
p,
randThey will be analysed ascendingly in the following order:
p < rand
(6) Obligation:
Innermost TRS:
Rules:
nonZero(
0') →
falsenonZero(
s(
x)) →
truep(
s(
0')) →
0'p(
s(
s(
x))) →
s(
p(
s(
x)))
id_inc(
x) →
xid_inc(
x) →
s(
x)
random(
x) →
rand(
x,
0')
rand(
x,
y) →
if(
nonZero(
x),
x,
y)
if(
false,
x,
y) →
yif(
true,
x,
y) →
rand(
p(
x),
id_inc(
y))
Types:
nonZero :: 0':s → false:true
0' :: 0':s
false :: false:true
s :: 0':s → 0':s
true :: false:true
p :: 0':s → 0':s
id_inc :: 0':s → 0':s
random :: 0':s → 0':s
rand :: 0':s → 0':s → 0':s
if :: false:true → 0':s → 0':s → 0':s
hole_false:true1_0 :: false:true
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
p, rand
They will be analysed ascendingly in the following order:
p < rand
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
p(
gen_0':s3_0(
+(
1,
n5_0))) →
gen_0':s3_0(
n5_0), rt ∈ Ω(1 + n5
0)
Induction Base:
p(gen_0':s3_0(+(1, 0))) →RΩ(1)
0'
Induction Step:
p(gen_0':s3_0(+(1, +(n5_0, 1)))) →RΩ(1)
s(p(s(gen_0':s3_0(n5_0)))) →IH
s(gen_0':s3_0(c6_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
Innermost TRS:
Rules:
nonZero(
0') →
falsenonZero(
s(
x)) →
truep(
s(
0')) →
0'p(
s(
s(
x))) →
s(
p(
s(
x)))
id_inc(
x) →
xid_inc(
x) →
s(
x)
random(
x) →
rand(
x,
0')
rand(
x,
y) →
if(
nonZero(
x),
x,
y)
if(
false,
x,
y) →
yif(
true,
x,
y) →
rand(
p(
x),
id_inc(
y))
Types:
nonZero :: 0':s → false:true
0' :: 0':s
false :: false:true
s :: 0':s → 0':s
true :: false:true
p :: 0':s → 0':s
id_inc :: 0':s → 0':s
random :: 0':s → 0':s
rand :: 0':s → 0':s → 0':s
if :: false:true → 0':s → 0':s → 0':s
hole_false:true1_0 :: false:true
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s
Lemmas:
p(gen_0':s3_0(+(1, n5_0))) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
rand
(10) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
rand(
gen_0':s3_0(
n230_0),
gen_0':s3_0(
b)) →
gen_0':s3_0(
b), rt ∈ Ω(1 + n230
0 + n230
02)
Induction Base:
rand(gen_0':s3_0(0), gen_0':s3_0(b)) →RΩ(1)
if(nonZero(gen_0':s3_0(0)), gen_0':s3_0(0), gen_0':s3_0(b)) →RΩ(1)
if(false, gen_0':s3_0(0), gen_0':s3_0(b)) →RΩ(1)
gen_0':s3_0(b)
Induction Step:
rand(gen_0':s3_0(+(n230_0, 1)), gen_0':s3_0(b)) →RΩ(1)
if(nonZero(gen_0':s3_0(+(n230_0, 1))), gen_0':s3_0(+(n230_0, 1)), gen_0':s3_0(b)) →RΩ(1)
if(true, gen_0':s3_0(+(1, n230_0)), gen_0':s3_0(b)) →RΩ(1)
rand(p(gen_0':s3_0(+(1, n230_0))), id_inc(gen_0':s3_0(b))) →LΩ(1 + n2300)
rand(gen_0':s3_0(n230_0), id_inc(gen_0':s3_0(b))) →RΩ(1)
rand(gen_0':s3_0(n230_0), gen_0':s3_0(b)) →IH
gen_0':s3_0(b)
We have rt ∈ Ω(n2) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n2).
(11) Complex Obligation (BEST)
(12) Obligation:
Innermost TRS:
Rules:
nonZero(
0') →
falsenonZero(
s(
x)) →
truep(
s(
0')) →
0'p(
s(
s(
x))) →
s(
p(
s(
x)))
id_inc(
x) →
xid_inc(
x) →
s(
x)
random(
x) →
rand(
x,
0')
rand(
x,
y) →
if(
nonZero(
x),
x,
y)
if(
false,
x,
y) →
yif(
true,
x,
y) →
rand(
p(
x),
id_inc(
y))
Types:
nonZero :: 0':s → false:true
0' :: 0':s
false :: false:true
s :: 0':s → 0':s
true :: false:true
p :: 0':s → 0':s
id_inc :: 0':s → 0':s
random :: 0':s → 0':s
rand :: 0':s → 0':s → 0':s
if :: false:true → 0':s → 0':s → 0':s
hole_false:true1_0 :: false:true
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s
Lemmas:
p(gen_0':s3_0(+(1, n5_0))) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
rand(gen_0':s3_0(n230_0), gen_0':s3_0(b)) → gen_0':s3_0(b), rt ∈ Ω(1 + n2300 + n23002)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(13) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n2) was proven with the following lemma:
rand(gen_0':s3_0(n230_0), gen_0':s3_0(b)) → gen_0':s3_0(b), rt ∈ Ω(1 + n2300 + n23002)
(14) BOUNDS(n^2, INF)
(15) Obligation:
Innermost TRS:
Rules:
nonZero(
0') →
falsenonZero(
s(
x)) →
truep(
s(
0')) →
0'p(
s(
s(
x))) →
s(
p(
s(
x)))
id_inc(
x) →
xid_inc(
x) →
s(
x)
random(
x) →
rand(
x,
0')
rand(
x,
y) →
if(
nonZero(
x),
x,
y)
if(
false,
x,
y) →
yif(
true,
x,
y) →
rand(
p(
x),
id_inc(
y))
Types:
nonZero :: 0':s → false:true
0' :: 0':s
false :: false:true
s :: 0':s → 0':s
true :: false:true
p :: 0':s → 0':s
id_inc :: 0':s → 0':s
random :: 0':s → 0':s
rand :: 0':s → 0':s → 0':s
if :: false:true → 0':s → 0':s → 0':s
hole_false:true1_0 :: false:true
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s
Lemmas:
p(gen_0':s3_0(+(1, n5_0))) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
rand(gen_0':s3_0(n230_0), gen_0':s3_0(b)) → gen_0':s3_0(b), rt ∈ Ω(1 + n2300 + n23002)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(16) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n2) was proven with the following lemma:
rand(gen_0':s3_0(n230_0), gen_0':s3_0(b)) → gen_0':s3_0(b), rt ∈ Ω(1 + n2300 + n23002)
(17) BOUNDS(n^2, INF)
(18) Obligation:
Innermost TRS:
Rules:
nonZero(
0') →
falsenonZero(
s(
x)) →
truep(
s(
0')) →
0'p(
s(
s(
x))) →
s(
p(
s(
x)))
id_inc(
x) →
xid_inc(
x) →
s(
x)
random(
x) →
rand(
x,
0')
rand(
x,
y) →
if(
nonZero(
x),
x,
y)
if(
false,
x,
y) →
yif(
true,
x,
y) →
rand(
p(
x),
id_inc(
y))
Types:
nonZero :: 0':s → false:true
0' :: 0':s
false :: false:true
s :: 0':s → 0':s
true :: false:true
p :: 0':s → 0':s
id_inc :: 0':s → 0':s
random :: 0':s → 0':s
rand :: 0':s → 0':s → 0':s
if :: false:true → 0':s → 0':s → 0':s
hole_false:true1_0 :: false:true
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s
Lemmas:
p(gen_0':s3_0(+(1, n5_0))) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(19) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
p(gen_0':s3_0(+(1, n5_0))) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
(20) BOUNDS(n^1, INF)