(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
length(nil) → 0
length(cons(x, l)) → s(length(l))
lt(x, 0) → false
lt(0, s(y)) → true
lt(s(x), s(y)) → lt(x, y)
head(cons(x, l)) → x
head(nil) → undefined
tail(nil) → nil
tail(cons(x, l)) → l
reverse(l) → rev(0, l, nil, l)
rev(x, l, accu, orig) → if(lt(x, length(orig)), x, l, accu, orig)
if(true, x, l, accu, orig) → rev(s(x), tail(l), cons(head(l), accu), orig)
if(false, x, l, accu, orig) → accu
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
length(nil) → 0'
length(cons(x, l)) → s(length(l))
lt(x, 0') → false
lt(0', s(y)) → true
lt(s(x), s(y)) → lt(x, y)
head(cons(x, l)) → x
head(nil) → undefined
tail(nil) → nil
tail(cons(x, l)) → l
reverse(l) → rev(0', l, nil, l)
rev(x, l, accu, orig) → if(lt(x, length(orig)), x, l, accu, orig)
if(true, x, l, accu, orig) → rev(s(x), tail(l), cons(head(l), accu), orig)
if(false, x, l, accu, orig) → accu
S is empty.
Rewrite Strategy: INNERMOST
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
Innermost TRS:
Rules:
length(nil) → 0'
length(cons(x, l)) → s(length(l))
lt(x, 0') → false
lt(0', s(y)) → true
lt(s(x), s(y)) → lt(x, y)
head(cons(x, l)) → x
head(nil) → undefined
tail(nil) → nil
tail(cons(x, l)) → l
reverse(l) → rev(0', l, nil, l)
rev(x, l, accu, orig) → if(lt(x, length(orig)), x, l, accu, orig)
if(true, x, l, accu, orig) → rev(s(x), tail(l), cons(head(l), accu), orig)
if(false, x, l, accu, orig) → accu
Types:
length :: nil:cons → 0':s
nil :: nil:cons
0' :: 0':s
cons :: undefined → nil:cons → nil:cons
s :: 0':s → 0':s
lt :: 0':s → 0':s → false:true
false :: false:true
true :: false:true
head :: nil:cons → undefined
undefined :: undefined
tail :: nil:cons → nil:cons
reverse :: nil:cons → nil:cons
rev :: 0':s → nil:cons → nil:cons → nil:cons → nil:cons
if :: false:true → 0':s → nil:cons → nil:cons → nil:cons → nil:cons
hole_0':s1_0 :: 0':s
hole_nil:cons2_0 :: nil:cons
hole_undefined3_0 :: undefined
hole_false:true4_0 :: false:true
gen_0':s5_0 :: Nat → 0':s
gen_nil:cons6_0 :: Nat → nil:cons
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
length,
lt,
revThey will be analysed ascendingly in the following order:
length < rev
lt < rev
(6) Obligation:
Innermost TRS:
Rules:
length(
nil) →
0'length(
cons(
x,
l)) →
s(
length(
l))
lt(
x,
0') →
falselt(
0',
s(
y)) →
truelt(
s(
x),
s(
y)) →
lt(
x,
y)
head(
cons(
x,
l)) →
xhead(
nil) →
undefinedtail(
nil) →
niltail(
cons(
x,
l)) →
lreverse(
l) →
rev(
0',
l,
nil,
l)
rev(
x,
l,
accu,
orig) →
if(
lt(
x,
length(
orig)),
x,
l,
accu,
orig)
if(
true,
x,
l,
accu,
orig) →
rev(
s(
x),
tail(
l),
cons(
head(
l),
accu),
orig)
if(
false,
x,
l,
accu,
orig) →
accuTypes:
length :: nil:cons → 0':s
nil :: nil:cons
0' :: 0':s
cons :: undefined → nil:cons → nil:cons
s :: 0':s → 0':s
lt :: 0':s → 0':s → false:true
false :: false:true
true :: false:true
head :: nil:cons → undefined
undefined :: undefined
tail :: nil:cons → nil:cons
reverse :: nil:cons → nil:cons
rev :: 0':s → nil:cons → nil:cons → nil:cons → nil:cons
if :: false:true → 0':s → nil:cons → nil:cons → nil:cons → nil:cons
hole_0':s1_0 :: 0':s
hole_nil:cons2_0 :: nil:cons
hole_undefined3_0 :: undefined
hole_false:true4_0 :: false:true
gen_0':s5_0 :: Nat → 0':s
gen_nil:cons6_0 :: Nat → nil:cons
Generator Equations:
gen_0':s5_0(0) ⇔ 0'
gen_0':s5_0(+(x, 1)) ⇔ s(gen_0':s5_0(x))
gen_nil:cons6_0(0) ⇔ nil
gen_nil:cons6_0(+(x, 1)) ⇔ cons(undefined, gen_nil:cons6_0(x))
The following defined symbols remain to be analysed:
length, lt, rev
They will be analysed ascendingly in the following order:
length < rev
lt < rev
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
length(
gen_nil:cons6_0(
n8_0)) →
gen_0':s5_0(
n8_0), rt ∈ Ω(1 + n8
0)
Induction Base:
length(gen_nil:cons6_0(0)) →RΩ(1)
0'
Induction Step:
length(gen_nil:cons6_0(+(n8_0, 1))) →RΩ(1)
s(length(gen_nil:cons6_0(n8_0))) →IH
s(gen_0':s5_0(c9_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
Innermost TRS:
Rules:
length(
nil) →
0'length(
cons(
x,
l)) →
s(
length(
l))
lt(
x,
0') →
falselt(
0',
s(
y)) →
truelt(
s(
x),
s(
y)) →
lt(
x,
y)
head(
cons(
x,
l)) →
xhead(
nil) →
undefinedtail(
nil) →
niltail(
cons(
x,
l)) →
lreverse(
l) →
rev(
0',
l,
nil,
l)
rev(
x,
l,
accu,
orig) →
if(
lt(
x,
length(
orig)),
x,
l,
accu,
orig)
if(
true,
x,
l,
accu,
orig) →
rev(
s(
x),
tail(
l),
cons(
head(
l),
accu),
orig)
if(
false,
x,
l,
accu,
orig) →
accuTypes:
length :: nil:cons → 0':s
nil :: nil:cons
0' :: 0':s
cons :: undefined → nil:cons → nil:cons
s :: 0':s → 0':s
lt :: 0':s → 0':s → false:true
false :: false:true
true :: false:true
head :: nil:cons → undefined
undefined :: undefined
tail :: nil:cons → nil:cons
reverse :: nil:cons → nil:cons
rev :: 0':s → nil:cons → nil:cons → nil:cons → nil:cons
if :: false:true → 0':s → nil:cons → nil:cons → nil:cons → nil:cons
hole_0':s1_0 :: 0':s
hole_nil:cons2_0 :: nil:cons
hole_undefined3_0 :: undefined
hole_false:true4_0 :: false:true
gen_0':s5_0 :: Nat → 0':s
gen_nil:cons6_0 :: Nat → nil:cons
Lemmas:
length(gen_nil:cons6_0(n8_0)) → gen_0':s5_0(n8_0), rt ∈ Ω(1 + n80)
Generator Equations:
gen_0':s5_0(0) ⇔ 0'
gen_0':s5_0(+(x, 1)) ⇔ s(gen_0':s5_0(x))
gen_nil:cons6_0(0) ⇔ nil
gen_nil:cons6_0(+(x, 1)) ⇔ cons(undefined, gen_nil:cons6_0(x))
The following defined symbols remain to be analysed:
lt, rev
They will be analysed ascendingly in the following order:
lt < rev
(10) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
lt(
gen_0':s5_0(
n252_0),
gen_0':s5_0(
n252_0)) →
false, rt ∈ Ω(1 + n252
0)
Induction Base:
lt(gen_0':s5_0(0), gen_0':s5_0(0)) →RΩ(1)
false
Induction Step:
lt(gen_0':s5_0(+(n252_0, 1)), gen_0':s5_0(+(n252_0, 1))) →RΩ(1)
lt(gen_0':s5_0(n252_0), gen_0':s5_0(n252_0)) →IH
false
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(11) Complex Obligation (BEST)
(12) Obligation:
Innermost TRS:
Rules:
length(
nil) →
0'length(
cons(
x,
l)) →
s(
length(
l))
lt(
x,
0') →
falselt(
0',
s(
y)) →
truelt(
s(
x),
s(
y)) →
lt(
x,
y)
head(
cons(
x,
l)) →
xhead(
nil) →
undefinedtail(
nil) →
niltail(
cons(
x,
l)) →
lreverse(
l) →
rev(
0',
l,
nil,
l)
rev(
x,
l,
accu,
orig) →
if(
lt(
x,
length(
orig)),
x,
l,
accu,
orig)
if(
true,
x,
l,
accu,
orig) →
rev(
s(
x),
tail(
l),
cons(
head(
l),
accu),
orig)
if(
false,
x,
l,
accu,
orig) →
accuTypes:
length :: nil:cons → 0':s
nil :: nil:cons
0' :: 0':s
cons :: undefined → nil:cons → nil:cons
s :: 0':s → 0':s
lt :: 0':s → 0':s → false:true
false :: false:true
true :: false:true
head :: nil:cons → undefined
undefined :: undefined
tail :: nil:cons → nil:cons
reverse :: nil:cons → nil:cons
rev :: 0':s → nil:cons → nil:cons → nil:cons → nil:cons
if :: false:true → 0':s → nil:cons → nil:cons → nil:cons → nil:cons
hole_0':s1_0 :: 0':s
hole_nil:cons2_0 :: nil:cons
hole_undefined3_0 :: undefined
hole_false:true4_0 :: false:true
gen_0':s5_0 :: Nat → 0':s
gen_nil:cons6_0 :: Nat → nil:cons
Lemmas:
length(gen_nil:cons6_0(n8_0)) → gen_0':s5_0(n8_0), rt ∈ Ω(1 + n80)
lt(gen_0':s5_0(n252_0), gen_0':s5_0(n252_0)) → false, rt ∈ Ω(1 + n2520)
Generator Equations:
gen_0':s5_0(0) ⇔ 0'
gen_0':s5_0(+(x, 1)) ⇔ s(gen_0':s5_0(x))
gen_nil:cons6_0(0) ⇔ nil
gen_nil:cons6_0(+(x, 1)) ⇔ cons(undefined, gen_nil:cons6_0(x))
The following defined symbols remain to be analysed:
rev
(13) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol rev.
(14) Obligation:
Innermost TRS:
Rules:
length(
nil) →
0'length(
cons(
x,
l)) →
s(
length(
l))
lt(
x,
0') →
falselt(
0',
s(
y)) →
truelt(
s(
x),
s(
y)) →
lt(
x,
y)
head(
cons(
x,
l)) →
xhead(
nil) →
undefinedtail(
nil) →
niltail(
cons(
x,
l)) →
lreverse(
l) →
rev(
0',
l,
nil,
l)
rev(
x,
l,
accu,
orig) →
if(
lt(
x,
length(
orig)),
x,
l,
accu,
orig)
if(
true,
x,
l,
accu,
orig) →
rev(
s(
x),
tail(
l),
cons(
head(
l),
accu),
orig)
if(
false,
x,
l,
accu,
orig) →
accuTypes:
length :: nil:cons → 0':s
nil :: nil:cons
0' :: 0':s
cons :: undefined → nil:cons → nil:cons
s :: 0':s → 0':s
lt :: 0':s → 0':s → false:true
false :: false:true
true :: false:true
head :: nil:cons → undefined
undefined :: undefined
tail :: nil:cons → nil:cons
reverse :: nil:cons → nil:cons
rev :: 0':s → nil:cons → nil:cons → nil:cons → nil:cons
if :: false:true → 0':s → nil:cons → nil:cons → nil:cons → nil:cons
hole_0':s1_0 :: 0':s
hole_nil:cons2_0 :: nil:cons
hole_undefined3_0 :: undefined
hole_false:true4_0 :: false:true
gen_0':s5_0 :: Nat → 0':s
gen_nil:cons6_0 :: Nat → nil:cons
Lemmas:
length(gen_nil:cons6_0(n8_0)) → gen_0':s5_0(n8_0), rt ∈ Ω(1 + n80)
lt(gen_0':s5_0(n252_0), gen_0':s5_0(n252_0)) → false, rt ∈ Ω(1 + n2520)
Generator Equations:
gen_0':s5_0(0) ⇔ 0'
gen_0':s5_0(+(x, 1)) ⇔ s(gen_0':s5_0(x))
gen_nil:cons6_0(0) ⇔ nil
gen_nil:cons6_0(+(x, 1)) ⇔ cons(undefined, gen_nil:cons6_0(x))
No more defined symbols left to analyse.
(15) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
length(gen_nil:cons6_0(n8_0)) → gen_0':s5_0(n8_0), rt ∈ Ω(1 + n80)
(16) BOUNDS(n^1, INF)
(17) Obligation:
Innermost TRS:
Rules:
length(
nil) →
0'length(
cons(
x,
l)) →
s(
length(
l))
lt(
x,
0') →
falselt(
0',
s(
y)) →
truelt(
s(
x),
s(
y)) →
lt(
x,
y)
head(
cons(
x,
l)) →
xhead(
nil) →
undefinedtail(
nil) →
niltail(
cons(
x,
l)) →
lreverse(
l) →
rev(
0',
l,
nil,
l)
rev(
x,
l,
accu,
orig) →
if(
lt(
x,
length(
orig)),
x,
l,
accu,
orig)
if(
true,
x,
l,
accu,
orig) →
rev(
s(
x),
tail(
l),
cons(
head(
l),
accu),
orig)
if(
false,
x,
l,
accu,
orig) →
accuTypes:
length :: nil:cons → 0':s
nil :: nil:cons
0' :: 0':s
cons :: undefined → nil:cons → nil:cons
s :: 0':s → 0':s
lt :: 0':s → 0':s → false:true
false :: false:true
true :: false:true
head :: nil:cons → undefined
undefined :: undefined
tail :: nil:cons → nil:cons
reverse :: nil:cons → nil:cons
rev :: 0':s → nil:cons → nil:cons → nil:cons → nil:cons
if :: false:true → 0':s → nil:cons → nil:cons → nil:cons → nil:cons
hole_0':s1_0 :: 0':s
hole_nil:cons2_0 :: nil:cons
hole_undefined3_0 :: undefined
hole_false:true4_0 :: false:true
gen_0':s5_0 :: Nat → 0':s
gen_nil:cons6_0 :: Nat → nil:cons
Lemmas:
length(gen_nil:cons6_0(n8_0)) → gen_0':s5_0(n8_0), rt ∈ Ω(1 + n80)
lt(gen_0':s5_0(n252_0), gen_0':s5_0(n252_0)) → false, rt ∈ Ω(1 + n2520)
Generator Equations:
gen_0':s5_0(0) ⇔ 0'
gen_0':s5_0(+(x, 1)) ⇔ s(gen_0':s5_0(x))
gen_nil:cons6_0(0) ⇔ nil
gen_nil:cons6_0(+(x, 1)) ⇔ cons(undefined, gen_nil:cons6_0(x))
No more defined symbols left to analyse.
(18) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
length(gen_nil:cons6_0(n8_0)) → gen_0':s5_0(n8_0), rt ∈ Ω(1 + n80)
(19) BOUNDS(n^1, INF)
(20) Obligation:
Innermost TRS:
Rules:
length(
nil) →
0'length(
cons(
x,
l)) →
s(
length(
l))
lt(
x,
0') →
falselt(
0',
s(
y)) →
truelt(
s(
x),
s(
y)) →
lt(
x,
y)
head(
cons(
x,
l)) →
xhead(
nil) →
undefinedtail(
nil) →
niltail(
cons(
x,
l)) →
lreverse(
l) →
rev(
0',
l,
nil,
l)
rev(
x,
l,
accu,
orig) →
if(
lt(
x,
length(
orig)),
x,
l,
accu,
orig)
if(
true,
x,
l,
accu,
orig) →
rev(
s(
x),
tail(
l),
cons(
head(
l),
accu),
orig)
if(
false,
x,
l,
accu,
orig) →
accuTypes:
length :: nil:cons → 0':s
nil :: nil:cons
0' :: 0':s
cons :: undefined → nil:cons → nil:cons
s :: 0':s → 0':s
lt :: 0':s → 0':s → false:true
false :: false:true
true :: false:true
head :: nil:cons → undefined
undefined :: undefined
tail :: nil:cons → nil:cons
reverse :: nil:cons → nil:cons
rev :: 0':s → nil:cons → nil:cons → nil:cons → nil:cons
if :: false:true → 0':s → nil:cons → nil:cons → nil:cons → nil:cons
hole_0':s1_0 :: 0':s
hole_nil:cons2_0 :: nil:cons
hole_undefined3_0 :: undefined
hole_false:true4_0 :: false:true
gen_0':s5_0 :: Nat → 0':s
gen_nil:cons6_0 :: Nat → nil:cons
Lemmas:
length(gen_nil:cons6_0(n8_0)) → gen_0':s5_0(n8_0), rt ∈ Ω(1 + n80)
Generator Equations:
gen_0':s5_0(0) ⇔ 0'
gen_0':s5_0(+(x, 1)) ⇔ s(gen_0':s5_0(x))
gen_nil:cons6_0(0) ⇔ nil
gen_nil:cons6_0(+(x, 1)) ⇔ cons(undefined, gen_nil:cons6_0(x))
No more defined symbols left to analyse.
(21) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
length(gen_nil:cons6_0(n8_0)) → gen_0':s5_0(n8_0), rt ∈ Ω(1 + n80)
(22) BOUNDS(n^1, INF)