(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
or(true, y) → true
or(false, y) → y
and(true, y) → y
and(false, y) → false
size(empty) → 0
size(edge(x, y, i)) → s(size(i))
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
reachable(x, y, i) → reach(x, y, 0, i, i)
reach(x, y, c, i, j) → if1(eq(x, y), x, y, c, i, j)
if1(true, x, y, c, i, j) → true
if1(false, x, y, c, i, j) → if2(le(c, size(j)), x, y, c, i, j)
if2(false, x, y, c, i, j) → false
if2(true, x, y, c, empty, j) → false
if2(true, x, y, c, edge(u, v, i), j) → or(if2(true, x, y, c, i, j), and(eq(x, u), reach(v, y, s(c), j, j)))
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
eq(0', 0') → true
eq(0', s(x)) → false
eq(s(x), 0') → false
eq(s(x), s(y)) → eq(x, y)
or(true, y) → true
or(false, y) → y
and(true, y) → y
and(false, y) → false
size(empty) → 0'
size(edge(x, y, i)) → s(size(i))
le(0', y) → true
le(s(x), 0') → false
le(s(x), s(y)) → le(x, y)
reachable(x, y, i) → reach(x, y, 0', i, i)
reach(x, y, c, i, j) → if1(eq(x, y), x, y, c, i, j)
if1(true, x, y, c, i, j) → true
if1(false, x, y, c, i, j) → if2(le(c, size(j)), x, y, c, i, j)
if2(false, x, y, c, i, j) → false
if2(true, x, y, c, empty, j) → false
if2(true, x, y, c, edge(u, v, i), j) → or(if2(true, x, y, c, i, j), and(eq(x, u), reach(v, y, s(c), j, j)))
S is empty.
Rewrite Strategy: INNERMOST
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
Innermost TRS:
Rules:
eq(0', 0') → true
eq(0', s(x)) → false
eq(s(x), 0') → false
eq(s(x), s(y)) → eq(x, y)
or(true, y) → true
or(false, y) → y
and(true, y) → y
and(false, y) → false
size(empty) → 0'
size(edge(x, y, i)) → s(size(i))
le(0', y) → true
le(s(x), 0') → false
le(s(x), s(y)) → le(x, y)
reachable(x, y, i) → reach(x, y, 0', i, i)
reach(x, y, c, i, j) → if1(eq(x, y), x, y, c, i, j)
if1(true, x, y, c, i, j) → true
if1(false, x, y, c, i, j) → if2(le(c, size(j)), x, y, c, i, j)
if2(false, x, y, c, i, j) → false
if2(true, x, y, c, empty, j) → false
if2(true, x, y, c, edge(u, v, i), j) → or(if2(true, x, y, c, i, j), and(eq(x, u), reach(v, y, s(c), j, j)))
Types:
eq :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
or :: true:false → true:false → true:false
and :: true:false → true:false → true:false
size :: empty:edge → 0':s
empty :: empty:edge
edge :: 0':s → 0':s → empty:edge → empty:edge
le :: 0':s → 0':s → true:false
reachable :: 0':s → 0':s → empty:edge → true:false
reach :: 0':s → 0':s → 0':s → empty:edge → empty:edge → true:false
if1 :: true:false → 0':s → 0':s → 0':s → empty:edge → empty:edge → true:false
if2 :: true:false → 0':s → 0':s → 0':s → empty:edge → empty:edge → true:false
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
hole_empty:edge3_0 :: empty:edge
gen_0':s4_0 :: Nat → 0':s
gen_empty:edge5_0 :: Nat → empty:edge
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
eq,
size,
le,
reach,
if2They will be analysed ascendingly in the following order:
eq < reach
eq < if2
size < reach
le < reach
reach = if2
(6) Obligation:
Innermost TRS:
Rules:
eq(
0',
0') →
trueeq(
0',
s(
x)) →
falseeq(
s(
x),
0') →
falseeq(
s(
x),
s(
y)) →
eq(
x,
y)
or(
true,
y) →
trueor(
false,
y) →
yand(
true,
y) →
yand(
false,
y) →
falsesize(
empty) →
0'size(
edge(
x,
y,
i)) →
s(
size(
i))
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
reachable(
x,
y,
i) →
reach(
x,
y,
0',
i,
i)
reach(
x,
y,
c,
i,
j) →
if1(
eq(
x,
y),
x,
y,
c,
i,
j)
if1(
true,
x,
y,
c,
i,
j) →
trueif1(
false,
x,
y,
c,
i,
j) →
if2(
le(
c,
size(
j)),
x,
y,
c,
i,
j)
if2(
false,
x,
y,
c,
i,
j) →
falseif2(
true,
x,
y,
c,
empty,
j) →
falseif2(
true,
x,
y,
c,
edge(
u,
v,
i),
j) →
or(
if2(
true,
x,
y,
c,
i,
j),
and(
eq(
x,
u),
reach(
v,
y,
s(
c),
j,
j)))
Types:
eq :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
or :: true:false → true:false → true:false
and :: true:false → true:false → true:false
size :: empty:edge → 0':s
empty :: empty:edge
edge :: 0':s → 0':s → empty:edge → empty:edge
le :: 0':s → 0':s → true:false
reachable :: 0':s → 0':s → empty:edge → true:false
reach :: 0':s → 0':s → 0':s → empty:edge → empty:edge → true:false
if1 :: true:false → 0':s → 0':s → 0':s → empty:edge → empty:edge → true:false
if2 :: true:false → 0':s → 0':s → 0':s → empty:edge → empty:edge → true:false
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
hole_empty:edge3_0 :: empty:edge
gen_0':s4_0 :: Nat → 0':s
gen_empty:edge5_0 :: Nat → empty:edge
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
gen_empty:edge5_0(0) ⇔ empty
gen_empty:edge5_0(+(x, 1)) ⇔ edge(0', 0', gen_empty:edge5_0(x))
The following defined symbols remain to be analysed:
eq, size, le, reach, if2
They will be analysed ascendingly in the following order:
eq < reach
eq < if2
size < reach
le < reach
reach = if2
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
eq(
gen_0':s4_0(
n7_0),
gen_0':s4_0(
n7_0)) →
true, rt ∈ Ω(1 + n7
0)
Induction Base:
eq(gen_0':s4_0(0), gen_0':s4_0(0)) →RΩ(1)
true
Induction Step:
eq(gen_0':s4_0(+(n7_0, 1)), gen_0':s4_0(+(n7_0, 1))) →RΩ(1)
eq(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) →IH
true
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
Innermost TRS:
Rules:
eq(
0',
0') →
trueeq(
0',
s(
x)) →
falseeq(
s(
x),
0') →
falseeq(
s(
x),
s(
y)) →
eq(
x,
y)
or(
true,
y) →
trueor(
false,
y) →
yand(
true,
y) →
yand(
false,
y) →
falsesize(
empty) →
0'size(
edge(
x,
y,
i)) →
s(
size(
i))
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
reachable(
x,
y,
i) →
reach(
x,
y,
0',
i,
i)
reach(
x,
y,
c,
i,
j) →
if1(
eq(
x,
y),
x,
y,
c,
i,
j)
if1(
true,
x,
y,
c,
i,
j) →
trueif1(
false,
x,
y,
c,
i,
j) →
if2(
le(
c,
size(
j)),
x,
y,
c,
i,
j)
if2(
false,
x,
y,
c,
i,
j) →
falseif2(
true,
x,
y,
c,
empty,
j) →
falseif2(
true,
x,
y,
c,
edge(
u,
v,
i),
j) →
or(
if2(
true,
x,
y,
c,
i,
j),
and(
eq(
x,
u),
reach(
v,
y,
s(
c),
j,
j)))
Types:
eq :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
or :: true:false → true:false → true:false
and :: true:false → true:false → true:false
size :: empty:edge → 0':s
empty :: empty:edge
edge :: 0':s → 0':s → empty:edge → empty:edge
le :: 0':s → 0':s → true:false
reachable :: 0':s → 0':s → empty:edge → true:false
reach :: 0':s → 0':s → 0':s → empty:edge → empty:edge → true:false
if1 :: true:false → 0':s → 0':s → 0':s → empty:edge → empty:edge → true:false
if2 :: true:false → 0':s → 0':s → 0':s → empty:edge → empty:edge → true:false
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
hole_empty:edge3_0 :: empty:edge
gen_0':s4_0 :: Nat → 0':s
gen_empty:edge5_0 :: Nat → empty:edge
Lemmas:
eq(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) → true, rt ∈ Ω(1 + n70)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
gen_empty:edge5_0(0) ⇔ empty
gen_empty:edge5_0(+(x, 1)) ⇔ edge(0', 0', gen_empty:edge5_0(x))
The following defined symbols remain to be analysed:
size, le, reach, if2
They will be analysed ascendingly in the following order:
size < reach
le < reach
reach = if2
(10) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
size(
gen_empty:edge5_0(
n588_0)) →
gen_0':s4_0(
n588_0), rt ∈ Ω(1 + n588
0)
Induction Base:
size(gen_empty:edge5_0(0)) →RΩ(1)
0'
Induction Step:
size(gen_empty:edge5_0(+(n588_0, 1))) →RΩ(1)
s(size(gen_empty:edge5_0(n588_0))) →IH
s(gen_0':s4_0(c589_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(11) Complex Obligation (BEST)
(12) Obligation:
Innermost TRS:
Rules:
eq(
0',
0') →
trueeq(
0',
s(
x)) →
falseeq(
s(
x),
0') →
falseeq(
s(
x),
s(
y)) →
eq(
x,
y)
or(
true,
y) →
trueor(
false,
y) →
yand(
true,
y) →
yand(
false,
y) →
falsesize(
empty) →
0'size(
edge(
x,
y,
i)) →
s(
size(
i))
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
reachable(
x,
y,
i) →
reach(
x,
y,
0',
i,
i)
reach(
x,
y,
c,
i,
j) →
if1(
eq(
x,
y),
x,
y,
c,
i,
j)
if1(
true,
x,
y,
c,
i,
j) →
trueif1(
false,
x,
y,
c,
i,
j) →
if2(
le(
c,
size(
j)),
x,
y,
c,
i,
j)
if2(
false,
x,
y,
c,
i,
j) →
falseif2(
true,
x,
y,
c,
empty,
j) →
falseif2(
true,
x,
y,
c,
edge(
u,
v,
i),
j) →
or(
if2(
true,
x,
y,
c,
i,
j),
and(
eq(
x,
u),
reach(
v,
y,
s(
c),
j,
j)))
Types:
eq :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
or :: true:false → true:false → true:false
and :: true:false → true:false → true:false
size :: empty:edge → 0':s
empty :: empty:edge
edge :: 0':s → 0':s → empty:edge → empty:edge
le :: 0':s → 0':s → true:false
reachable :: 0':s → 0':s → empty:edge → true:false
reach :: 0':s → 0':s → 0':s → empty:edge → empty:edge → true:false
if1 :: true:false → 0':s → 0':s → 0':s → empty:edge → empty:edge → true:false
if2 :: true:false → 0':s → 0':s → 0':s → empty:edge → empty:edge → true:false
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
hole_empty:edge3_0 :: empty:edge
gen_0':s4_0 :: Nat → 0':s
gen_empty:edge5_0 :: Nat → empty:edge
Lemmas:
eq(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) → true, rt ∈ Ω(1 + n70)
size(gen_empty:edge5_0(n588_0)) → gen_0':s4_0(n588_0), rt ∈ Ω(1 + n5880)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
gen_empty:edge5_0(0) ⇔ empty
gen_empty:edge5_0(+(x, 1)) ⇔ edge(0', 0', gen_empty:edge5_0(x))
The following defined symbols remain to be analysed:
le, reach, if2
They will be analysed ascendingly in the following order:
le < reach
reach = if2
(13) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
le(
gen_0':s4_0(
n864_0),
gen_0':s4_0(
n864_0)) →
true, rt ∈ Ω(1 + n864
0)
Induction Base:
le(gen_0':s4_0(0), gen_0':s4_0(0)) →RΩ(1)
true
Induction Step:
le(gen_0':s4_0(+(n864_0, 1)), gen_0':s4_0(+(n864_0, 1))) →RΩ(1)
le(gen_0':s4_0(n864_0), gen_0':s4_0(n864_0)) →IH
true
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(14) Complex Obligation (BEST)
(15) Obligation:
Innermost TRS:
Rules:
eq(
0',
0') →
trueeq(
0',
s(
x)) →
falseeq(
s(
x),
0') →
falseeq(
s(
x),
s(
y)) →
eq(
x,
y)
or(
true,
y) →
trueor(
false,
y) →
yand(
true,
y) →
yand(
false,
y) →
falsesize(
empty) →
0'size(
edge(
x,
y,
i)) →
s(
size(
i))
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
reachable(
x,
y,
i) →
reach(
x,
y,
0',
i,
i)
reach(
x,
y,
c,
i,
j) →
if1(
eq(
x,
y),
x,
y,
c,
i,
j)
if1(
true,
x,
y,
c,
i,
j) →
trueif1(
false,
x,
y,
c,
i,
j) →
if2(
le(
c,
size(
j)),
x,
y,
c,
i,
j)
if2(
false,
x,
y,
c,
i,
j) →
falseif2(
true,
x,
y,
c,
empty,
j) →
falseif2(
true,
x,
y,
c,
edge(
u,
v,
i),
j) →
or(
if2(
true,
x,
y,
c,
i,
j),
and(
eq(
x,
u),
reach(
v,
y,
s(
c),
j,
j)))
Types:
eq :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
or :: true:false → true:false → true:false
and :: true:false → true:false → true:false
size :: empty:edge → 0':s
empty :: empty:edge
edge :: 0':s → 0':s → empty:edge → empty:edge
le :: 0':s → 0':s → true:false
reachable :: 0':s → 0':s → empty:edge → true:false
reach :: 0':s → 0':s → 0':s → empty:edge → empty:edge → true:false
if1 :: true:false → 0':s → 0':s → 0':s → empty:edge → empty:edge → true:false
if2 :: true:false → 0':s → 0':s → 0':s → empty:edge → empty:edge → true:false
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
hole_empty:edge3_0 :: empty:edge
gen_0':s4_0 :: Nat → 0':s
gen_empty:edge5_0 :: Nat → empty:edge
Lemmas:
eq(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) → true, rt ∈ Ω(1 + n70)
size(gen_empty:edge5_0(n588_0)) → gen_0':s4_0(n588_0), rt ∈ Ω(1 + n5880)
le(gen_0':s4_0(n864_0), gen_0':s4_0(n864_0)) → true, rt ∈ Ω(1 + n8640)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
gen_empty:edge5_0(0) ⇔ empty
gen_empty:edge5_0(+(x, 1)) ⇔ edge(0', 0', gen_empty:edge5_0(x))
The following defined symbols remain to be analysed:
if2, reach
They will be analysed ascendingly in the following order:
reach = if2
(16) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol if2.
(17) Obligation:
Innermost TRS:
Rules:
eq(
0',
0') →
trueeq(
0',
s(
x)) →
falseeq(
s(
x),
0') →
falseeq(
s(
x),
s(
y)) →
eq(
x,
y)
or(
true,
y) →
trueor(
false,
y) →
yand(
true,
y) →
yand(
false,
y) →
falsesize(
empty) →
0'size(
edge(
x,
y,
i)) →
s(
size(
i))
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
reachable(
x,
y,
i) →
reach(
x,
y,
0',
i,
i)
reach(
x,
y,
c,
i,
j) →
if1(
eq(
x,
y),
x,
y,
c,
i,
j)
if1(
true,
x,
y,
c,
i,
j) →
trueif1(
false,
x,
y,
c,
i,
j) →
if2(
le(
c,
size(
j)),
x,
y,
c,
i,
j)
if2(
false,
x,
y,
c,
i,
j) →
falseif2(
true,
x,
y,
c,
empty,
j) →
falseif2(
true,
x,
y,
c,
edge(
u,
v,
i),
j) →
or(
if2(
true,
x,
y,
c,
i,
j),
and(
eq(
x,
u),
reach(
v,
y,
s(
c),
j,
j)))
Types:
eq :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
or :: true:false → true:false → true:false
and :: true:false → true:false → true:false
size :: empty:edge → 0':s
empty :: empty:edge
edge :: 0':s → 0':s → empty:edge → empty:edge
le :: 0':s → 0':s → true:false
reachable :: 0':s → 0':s → empty:edge → true:false
reach :: 0':s → 0':s → 0':s → empty:edge → empty:edge → true:false
if1 :: true:false → 0':s → 0':s → 0':s → empty:edge → empty:edge → true:false
if2 :: true:false → 0':s → 0':s → 0':s → empty:edge → empty:edge → true:false
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
hole_empty:edge3_0 :: empty:edge
gen_0':s4_0 :: Nat → 0':s
gen_empty:edge5_0 :: Nat → empty:edge
Lemmas:
eq(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) → true, rt ∈ Ω(1 + n70)
size(gen_empty:edge5_0(n588_0)) → gen_0':s4_0(n588_0), rt ∈ Ω(1 + n5880)
le(gen_0':s4_0(n864_0), gen_0':s4_0(n864_0)) → true, rt ∈ Ω(1 + n8640)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
gen_empty:edge5_0(0) ⇔ empty
gen_empty:edge5_0(+(x, 1)) ⇔ edge(0', 0', gen_empty:edge5_0(x))
The following defined symbols remain to be analysed:
reach
They will be analysed ascendingly in the following order:
reach = if2
(18) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol reach.
(19) Obligation:
Innermost TRS:
Rules:
eq(
0',
0') →
trueeq(
0',
s(
x)) →
falseeq(
s(
x),
0') →
falseeq(
s(
x),
s(
y)) →
eq(
x,
y)
or(
true,
y) →
trueor(
false,
y) →
yand(
true,
y) →
yand(
false,
y) →
falsesize(
empty) →
0'size(
edge(
x,
y,
i)) →
s(
size(
i))
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
reachable(
x,
y,
i) →
reach(
x,
y,
0',
i,
i)
reach(
x,
y,
c,
i,
j) →
if1(
eq(
x,
y),
x,
y,
c,
i,
j)
if1(
true,
x,
y,
c,
i,
j) →
trueif1(
false,
x,
y,
c,
i,
j) →
if2(
le(
c,
size(
j)),
x,
y,
c,
i,
j)
if2(
false,
x,
y,
c,
i,
j) →
falseif2(
true,
x,
y,
c,
empty,
j) →
falseif2(
true,
x,
y,
c,
edge(
u,
v,
i),
j) →
or(
if2(
true,
x,
y,
c,
i,
j),
and(
eq(
x,
u),
reach(
v,
y,
s(
c),
j,
j)))
Types:
eq :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
or :: true:false → true:false → true:false
and :: true:false → true:false → true:false
size :: empty:edge → 0':s
empty :: empty:edge
edge :: 0':s → 0':s → empty:edge → empty:edge
le :: 0':s → 0':s → true:false
reachable :: 0':s → 0':s → empty:edge → true:false
reach :: 0':s → 0':s → 0':s → empty:edge → empty:edge → true:false
if1 :: true:false → 0':s → 0':s → 0':s → empty:edge → empty:edge → true:false
if2 :: true:false → 0':s → 0':s → 0':s → empty:edge → empty:edge → true:false
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
hole_empty:edge3_0 :: empty:edge
gen_0':s4_0 :: Nat → 0':s
gen_empty:edge5_0 :: Nat → empty:edge
Lemmas:
eq(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) → true, rt ∈ Ω(1 + n70)
size(gen_empty:edge5_0(n588_0)) → gen_0':s4_0(n588_0), rt ∈ Ω(1 + n5880)
le(gen_0':s4_0(n864_0), gen_0':s4_0(n864_0)) → true, rt ∈ Ω(1 + n8640)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
gen_empty:edge5_0(0) ⇔ empty
gen_empty:edge5_0(+(x, 1)) ⇔ edge(0', 0', gen_empty:edge5_0(x))
No more defined symbols left to analyse.
(20) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
eq(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) → true, rt ∈ Ω(1 + n70)
(21) BOUNDS(n^1, INF)
(22) Obligation:
Innermost TRS:
Rules:
eq(
0',
0') →
trueeq(
0',
s(
x)) →
falseeq(
s(
x),
0') →
falseeq(
s(
x),
s(
y)) →
eq(
x,
y)
or(
true,
y) →
trueor(
false,
y) →
yand(
true,
y) →
yand(
false,
y) →
falsesize(
empty) →
0'size(
edge(
x,
y,
i)) →
s(
size(
i))
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
reachable(
x,
y,
i) →
reach(
x,
y,
0',
i,
i)
reach(
x,
y,
c,
i,
j) →
if1(
eq(
x,
y),
x,
y,
c,
i,
j)
if1(
true,
x,
y,
c,
i,
j) →
trueif1(
false,
x,
y,
c,
i,
j) →
if2(
le(
c,
size(
j)),
x,
y,
c,
i,
j)
if2(
false,
x,
y,
c,
i,
j) →
falseif2(
true,
x,
y,
c,
empty,
j) →
falseif2(
true,
x,
y,
c,
edge(
u,
v,
i),
j) →
or(
if2(
true,
x,
y,
c,
i,
j),
and(
eq(
x,
u),
reach(
v,
y,
s(
c),
j,
j)))
Types:
eq :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
or :: true:false → true:false → true:false
and :: true:false → true:false → true:false
size :: empty:edge → 0':s
empty :: empty:edge
edge :: 0':s → 0':s → empty:edge → empty:edge
le :: 0':s → 0':s → true:false
reachable :: 0':s → 0':s → empty:edge → true:false
reach :: 0':s → 0':s → 0':s → empty:edge → empty:edge → true:false
if1 :: true:false → 0':s → 0':s → 0':s → empty:edge → empty:edge → true:false
if2 :: true:false → 0':s → 0':s → 0':s → empty:edge → empty:edge → true:false
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
hole_empty:edge3_0 :: empty:edge
gen_0':s4_0 :: Nat → 0':s
gen_empty:edge5_0 :: Nat → empty:edge
Lemmas:
eq(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) → true, rt ∈ Ω(1 + n70)
size(gen_empty:edge5_0(n588_0)) → gen_0':s4_0(n588_0), rt ∈ Ω(1 + n5880)
le(gen_0':s4_0(n864_0), gen_0':s4_0(n864_0)) → true, rt ∈ Ω(1 + n8640)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
gen_empty:edge5_0(0) ⇔ empty
gen_empty:edge5_0(+(x, 1)) ⇔ edge(0', 0', gen_empty:edge5_0(x))
No more defined symbols left to analyse.
(23) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
eq(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) → true, rt ∈ Ω(1 + n70)
(24) BOUNDS(n^1, INF)
(25) Obligation:
Innermost TRS:
Rules:
eq(
0',
0') →
trueeq(
0',
s(
x)) →
falseeq(
s(
x),
0') →
falseeq(
s(
x),
s(
y)) →
eq(
x,
y)
or(
true,
y) →
trueor(
false,
y) →
yand(
true,
y) →
yand(
false,
y) →
falsesize(
empty) →
0'size(
edge(
x,
y,
i)) →
s(
size(
i))
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
reachable(
x,
y,
i) →
reach(
x,
y,
0',
i,
i)
reach(
x,
y,
c,
i,
j) →
if1(
eq(
x,
y),
x,
y,
c,
i,
j)
if1(
true,
x,
y,
c,
i,
j) →
trueif1(
false,
x,
y,
c,
i,
j) →
if2(
le(
c,
size(
j)),
x,
y,
c,
i,
j)
if2(
false,
x,
y,
c,
i,
j) →
falseif2(
true,
x,
y,
c,
empty,
j) →
falseif2(
true,
x,
y,
c,
edge(
u,
v,
i),
j) →
or(
if2(
true,
x,
y,
c,
i,
j),
and(
eq(
x,
u),
reach(
v,
y,
s(
c),
j,
j)))
Types:
eq :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
or :: true:false → true:false → true:false
and :: true:false → true:false → true:false
size :: empty:edge → 0':s
empty :: empty:edge
edge :: 0':s → 0':s → empty:edge → empty:edge
le :: 0':s → 0':s → true:false
reachable :: 0':s → 0':s → empty:edge → true:false
reach :: 0':s → 0':s → 0':s → empty:edge → empty:edge → true:false
if1 :: true:false → 0':s → 0':s → 0':s → empty:edge → empty:edge → true:false
if2 :: true:false → 0':s → 0':s → 0':s → empty:edge → empty:edge → true:false
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
hole_empty:edge3_0 :: empty:edge
gen_0':s4_0 :: Nat → 0':s
gen_empty:edge5_0 :: Nat → empty:edge
Lemmas:
eq(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) → true, rt ∈ Ω(1 + n70)
size(gen_empty:edge5_0(n588_0)) → gen_0':s4_0(n588_0), rt ∈ Ω(1 + n5880)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
gen_empty:edge5_0(0) ⇔ empty
gen_empty:edge5_0(+(x, 1)) ⇔ edge(0', 0', gen_empty:edge5_0(x))
No more defined symbols left to analyse.
(26) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
eq(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) → true, rt ∈ Ω(1 + n70)
(27) BOUNDS(n^1, INF)
(28) Obligation:
Innermost TRS:
Rules:
eq(
0',
0') →
trueeq(
0',
s(
x)) →
falseeq(
s(
x),
0') →
falseeq(
s(
x),
s(
y)) →
eq(
x,
y)
or(
true,
y) →
trueor(
false,
y) →
yand(
true,
y) →
yand(
false,
y) →
falsesize(
empty) →
0'size(
edge(
x,
y,
i)) →
s(
size(
i))
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
reachable(
x,
y,
i) →
reach(
x,
y,
0',
i,
i)
reach(
x,
y,
c,
i,
j) →
if1(
eq(
x,
y),
x,
y,
c,
i,
j)
if1(
true,
x,
y,
c,
i,
j) →
trueif1(
false,
x,
y,
c,
i,
j) →
if2(
le(
c,
size(
j)),
x,
y,
c,
i,
j)
if2(
false,
x,
y,
c,
i,
j) →
falseif2(
true,
x,
y,
c,
empty,
j) →
falseif2(
true,
x,
y,
c,
edge(
u,
v,
i),
j) →
or(
if2(
true,
x,
y,
c,
i,
j),
and(
eq(
x,
u),
reach(
v,
y,
s(
c),
j,
j)))
Types:
eq :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
or :: true:false → true:false → true:false
and :: true:false → true:false → true:false
size :: empty:edge → 0':s
empty :: empty:edge
edge :: 0':s → 0':s → empty:edge → empty:edge
le :: 0':s → 0':s → true:false
reachable :: 0':s → 0':s → empty:edge → true:false
reach :: 0':s → 0':s → 0':s → empty:edge → empty:edge → true:false
if1 :: true:false → 0':s → 0':s → 0':s → empty:edge → empty:edge → true:false
if2 :: true:false → 0':s → 0':s → 0':s → empty:edge → empty:edge → true:false
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
hole_empty:edge3_0 :: empty:edge
gen_0':s4_0 :: Nat → 0':s
gen_empty:edge5_0 :: Nat → empty:edge
Lemmas:
eq(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) → true, rt ∈ Ω(1 + n70)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
gen_empty:edge5_0(0) ⇔ empty
gen_empty:edge5_0(+(x, 1)) ⇔ edge(0', 0', gen_empty:edge5_0(x))
No more defined symbols left to analyse.
(29) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
eq(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) → true, rt ∈ Ω(1 + n70)
(30) BOUNDS(n^1, INF)