(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
lt(0, s(y)) → true
lt(x, 0) → false
lt(s(x), s(y)) → lt(x, y)
fib(x) → fibiter(x, 0, 0, s(0))
fibiter(b, c, x, y) → if(lt(c, b), b, c, x, y)
if(false, b, c, x, y) → x
if(true, b, c, x, y) → fibiter(b, s(c), y, plus(x, y))
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
plus(0', y) → y
plus(s(x), y) → s(plus(x, y))
lt(0', s(y)) → true
lt(x, 0') → false
lt(s(x), s(y)) → lt(x, y)
fib(x) → fibiter(x, 0', 0', s(0'))
fibiter(b, c, x, y) → if(lt(c, b), b, c, x, y)
if(false, b, c, x, y) → x
if(true, b, c, x, y) → fibiter(b, s(c), y, plus(x, y))
S is empty.
Rewrite Strategy: INNERMOST
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
Innermost TRS:
Rules:
plus(0', y) → y
plus(s(x), y) → s(plus(x, y))
lt(0', s(y)) → true
lt(x, 0') → false
lt(s(x), s(y)) → lt(x, y)
fib(x) → fibiter(x, 0', 0', s(0'))
fibiter(b, c, x, y) → if(lt(c, b), b, c, x, y)
if(false, b, c, x, y) → x
if(true, b, c, x, y) → fibiter(b, s(c), y, plus(x, y))
Types:
plus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
lt :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
fib :: 0':s → 0':s
fibiter :: 0':s → 0':s → 0':s → 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
plus,
lt,
fibiterThey will be analysed ascendingly in the following order:
plus < fibiter
lt < fibiter
(6) Obligation:
Innermost TRS:
Rules:
plus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
lt(
0',
s(
y)) →
truelt(
x,
0') →
falselt(
s(
x),
s(
y)) →
lt(
x,
y)
fib(
x) →
fibiter(
x,
0',
0',
s(
0'))
fibiter(
b,
c,
x,
y) →
if(
lt(
c,
b),
b,
c,
x,
y)
if(
false,
b,
c,
x,
y) →
xif(
true,
b,
c,
x,
y) →
fibiter(
b,
s(
c),
y,
plus(
x,
y))
Types:
plus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
lt :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
fib :: 0':s → 0':s
fibiter :: 0':s → 0':s → 0':s → 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
plus, lt, fibiter
They will be analysed ascendingly in the following order:
plus < fibiter
lt < fibiter
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
plus(
gen_0':s3_0(
n5_0),
gen_0':s3_0(
b)) →
gen_0':s3_0(
+(
n5_0,
b)), rt ∈ Ω(1 + n5
0)
Induction Base:
plus(gen_0':s3_0(0), gen_0':s3_0(b)) →RΩ(1)
gen_0':s3_0(b)
Induction Step:
plus(gen_0':s3_0(+(n5_0, 1)), gen_0':s3_0(b)) →RΩ(1)
s(plus(gen_0':s3_0(n5_0), gen_0':s3_0(b))) →IH
s(gen_0':s3_0(+(b, c6_0)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
Innermost TRS:
Rules:
plus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
lt(
0',
s(
y)) →
truelt(
x,
0') →
falselt(
s(
x),
s(
y)) →
lt(
x,
y)
fib(
x) →
fibiter(
x,
0',
0',
s(
0'))
fibiter(
b,
c,
x,
y) →
if(
lt(
c,
b),
b,
c,
x,
y)
if(
false,
b,
c,
x,
y) →
xif(
true,
b,
c,
x,
y) →
fibiter(
b,
s(
c),
y,
plus(
x,
y))
Types:
plus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
lt :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
fib :: 0':s → 0':s
fibiter :: 0':s → 0':s → 0':s → 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Lemmas:
plus(gen_0':s3_0(n5_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n5_0, b)), rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
lt, fibiter
They will be analysed ascendingly in the following order:
lt < fibiter
(10) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
lt(
gen_0':s3_0(
n554_0),
gen_0':s3_0(
+(
1,
n554_0))) →
true, rt ∈ Ω(1 + n554
0)
Induction Base:
lt(gen_0':s3_0(0), gen_0':s3_0(+(1, 0))) →RΩ(1)
true
Induction Step:
lt(gen_0':s3_0(+(n554_0, 1)), gen_0':s3_0(+(1, +(n554_0, 1)))) →RΩ(1)
lt(gen_0':s3_0(n554_0), gen_0':s3_0(+(1, n554_0))) →IH
true
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(11) Complex Obligation (BEST)
(12) Obligation:
Innermost TRS:
Rules:
plus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
lt(
0',
s(
y)) →
truelt(
x,
0') →
falselt(
s(
x),
s(
y)) →
lt(
x,
y)
fib(
x) →
fibiter(
x,
0',
0',
s(
0'))
fibiter(
b,
c,
x,
y) →
if(
lt(
c,
b),
b,
c,
x,
y)
if(
false,
b,
c,
x,
y) →
xif(
true,
b,
c,
x,
y) →
fibiter(
b,
s(
c),
y,
plus(
x,
y))
Types:
plus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
lt :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
fib :: 0':s → 0':s
fibiter :: 0':s → 0':s → 0':s → 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Lemmas:
plus(gen_0':s3_0(n5_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n5_0, b)), rt ∈ Ω(1 + n50)
lt(gen_0':s3_0(n554_0), gen_0':s3_0(+(1, n554_0))) → true, rt ∈ Ω(1 + n5540)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
fibiter
(13) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol fibiter.
(14) Obligation:
Innermost TRS:
Rules:
plus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
lt(
0',
s(
y)) →
truelt(
x,
0') →
falselt(
s(
x),
s(
y)) →
lt(
x,
y)
fib(
x) →
fibiter(
x,
0',
0',
s(
0'))
fibiter(
b,
c,
x,
y) →
if(
lt(
c,
b),
b,
c,
x,
y)
if(
false,
b,
c,
x,
y) →
xif(
true,
b,
c,
x,
y) →
fibiter(
b,
s(
c),
y,
plus(
x,
y))
Types:
plus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
lt :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
fib :: 0':s → 0':s
fibiter :: 0':s → 0':s → 0':s → 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Lemmas:
plus(gen_0':s3_0(n5_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n5_0, b)), rt ∈ Ω(1 + n50)
lt(gen_0':s3_0(n554_0), gen_0':s3_0(+(1, n554_0))) → true, rt ∈ Ω(1 + n5540)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(15) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
plus(gen_0':s3_0(n5_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n5_0, b)), rt ∈ Ω(1 + n50)
(16) BOUNDS(n^1, INF)
(17) Obligation:
Innermost TRS:
Rules:
plus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
lt(
0',
s(
y)) →
truelt(
x,
0') →
falselt(
s(
x),
s(
y)) →
lt(
x,
y)
fib(
x) →
fibiter(
x,
0',
0',
s(
0'))
fibiter(
b,
c,
x,
y) →
if(
lt(
c,
b),
b,
c,
x,
y)
if(
false,
b,
c,
x,
y) →
xif(
true,
b,
c,
x,
y) →
fibiter(
b,
s(
c),
y,
plus(
x,
y))
Types:
plus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
lt :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
fib :: 0':s → 0':s
fibiter :: 0':s → 0':s → 0':s → 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Lemmas:
plus(gen_0':s3_0(n5_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n5_0, b)), rt ∈ Ω(1 + n50)
lt(gen_0':s3_0(n554_0), gen_0':s3_0(+(1, n554_0))) → true, rt ∈ Ω(1 + n5540)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(18) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
plus(gen_0':s3_0(n5_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n5_0, b)), rt ∈ Ω(1 + n50)
(19) BOUNDS(n^1, INF)
(20) Obligation:
Innermost TRS:
Rules:
plus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
lt(
0',
s(
y)) →
truelt(
x,
0') →
falselt(
s(
x),
s(
y)) →
lt(
x,
y)
fib(
x) →
fibiter(
x,
0',
0',
s(
0'))
fibiter(
b,
c,
x,
y) →
if(
lt(
c,
b),
b,
c,
x,
y)
if(
false,
b,
c,
x,
y) →
xif(
true,
b,
c,
x,
y) →
fibiter(
b,
s(
c),
y,
plus(
x,
y))
Types:
plus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
lt :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
fib :: 0':s → 0':s
fibiter :: 0':s → 0':s → 0':s → 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Lemmas:
plus(gen_0':s3_0(n5_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n5_0, b)), rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(21) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
plus(gen_0':s3_0(n5_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n5_0, b)), rt ∈ Ω(1 + n50)
(22) BOUNDS(n^1, INF)