(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
gt(0, y) → false
gt(s(x), 0) → true
gt(s(x), s(y)) → gt(x, y)
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
double(0) → 0
double(s(x)) → s(s(double(x)))
average(x, y) → aver(plus(x, y), 0)
aver(sum, z) → if(gt(sum, double(z)), sum, z)
if(true, sum, z) → aver(sum, s(z))
if(false, sum, z) → z
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
gt(0', y) → false
gt(s(x), 0') → true
gt(s(x), s(y)) → gt(x, y)
plus(0', y) → y
plus(s(x), y) → s(plus(x, y))
double(0') → 0'
double(s(x)) → s(s(double(x)))
average(x, y) → aver(plus(x, y), 0')
aver(sum, z) → if(gt(sum, double(z)), sum, z)
if(true, sum, z) → aver(sum, s(z))
if(false, sum, z) → z
S is empty.
Rewrite Strategy: INNERMOST
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
Innermost TRS:
Rules:
gt(0', y) → false
gt(s(x), 0') → true
gt(s(x), s(y)) → gt(x, y)
plus(0', y) → y
plus(s(x), y) → s(plus(x, y))
double(0') → 0'
double(s(x)) → s(s(double(x)))
average(x, y) → aver(plus(x, y), 0')
aver(sum, z) → if(gt(sum, double(z)), sum, z)
if(true, sum, z) → aver(sum, s(z))
if(false, sum, z) → z
Types:
gt :: 0':s → 0':s → false:true
0' :: 0':s
false :: false:true
s :: 0':s → 0':s
true :: false:true
plus :: 0':s → 0':s → 0':s
double :: 0':s → 0':s
average :: 0':s → 0':s → 0':s
aver :: 0':s → 0':s → 0':s
if :: false:true → 0':s → 0':s → 0':s
hole_false:true1_0 :: false:true
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
gt,
plus,
double,
averThey will be analysed ascendingly in the following order:
gt < aver
double < aver
(6) Obligation:
Innermost TRS:
Rules:
gt(
0',
y) →
falsegt(
s(
x),
0') →
truegt(
s(
x),
s(
y)) →
gt(
x,
y)
plus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
double(
0') →
0'double(
s(
x)) →
s(
s(
double(
x)))
average(
x,
y) →
aver(
plus(
x,
y),
0')
aver(
sum,
z) →
if(
gt(
sum,
double(
z)),
sum,
z)
if(
true,
sum,
z) →
aver(
sum,
s(
z))
if(
false,
sum,
z) →
zTypes:
gt :: 0':s → 0':s → false:true
0' :: 0':s
false :: false:true
s :: 0':s → 0':s
true :: false:true
plus :: 0':s → 0':s → 0':s
double :: 0':s → 0':s
average :: 0':s → 0':s → 0':s
aver :: 0':s → 0':s → 0':s
if :: false:true → 0':s → 0':s → 0':s
hole_false:true1_0 :: false:true
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
gt, plus, double, aver
They will be analysed ascendingly in the following order:
gt < aver
double < aver
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
gt(
gen_0':s3_0(
n5_0),
gen_0':s3_0(
n5_0)) →
false, rt ∈ Ω(1 + n5
0)
Induction Base:
gt(gen_0':s3_0(0), gen_0':s3_0(0)) →RΩ(1)
false
Induction Step:
gt(gen_0':s3_0(+(n5_0, 1)), gen_0':s3_0(+(n5_0, 1))) →RΩ(1)
gt(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) →IH
false
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
Innermost TRS:
Rules:
gt(
0',
y) →
falsegt(
s(
x),
0') →
truegt(
s(
x),
s(
y)) →
gt(
x,
y)
plus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
double(
0') →
0'double(
s(
x)) →
s(
s(
double(
x)))
average(
x,
y) →
aver(
plus(
x,
y),
0')
aver(
sum,
z) →
if(
gt(
sum,
double(
z)),
sum,
z)
if(
true,
sum,
z) →
aver(
sum,
s(
z))
if(
false,
sum,
z) →
zTypes:
gt :: 0':s → 0':s → false:true
0' :: 0':s
false :: false:true
s :: 0':s → 0':s
true :: false:true
plus :: 0':s → 0':s → 0':s
double :: 0':s → 0':s
average :: 0':s → 0':s → 0':s
aver :: 0':s → 0':s → 0':s
if :: false:true → 0':s → 0':s → 0':s
hole_false:true1_0 :: false:true
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s
Lemmas:
gt(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → false, rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
plus, double, aver
They will be analysed ascendingly in the following order:
double < aver
(10) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
plus(
gen_0':s3_0(
n330_0),
gen_0':s3_0(
b)) →
gen_0':s3_0(
+(
n330_0,
b)), rt ∈ Ω(1 + n330
0)
Induction Base:
plus(gen_0':s3_0(0), gen_0':s3_0(b)) →RΩ(1)
gen_0':s3_0(b)
Induction Step:
plus(gen_0':s3_0(+(n330_0, 1)), gen_0':s3_0(b)) →RΩ(1)
s(plus(gen_0':s3_0(n330_0), gen_0':s3_0(b))) →IH
s(gen_0':s3_0(+(b, c331_0)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(11) Complex Obligation (BEST)
(12) Obligation:
Innermost TRS:
Rules:
gt(
0',
y) →
falsegt(
s(
x),
0') →
truegt(
s(
x),
s(
y)) →
gt(
x,
y)
plus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
double(
0') →
0'double(
s(
x)) →
s(
s(
double(
x)))
average(
x,
y) →
aver(
plus(
x,
y),
0')
aver(
sum,
z) →
if(
gt(
sum,
double(
z)),
sum,
z)
if(
true,
sum,
z) →
aver(
sum,
s(
z))
if(
false,
sum,
z) →
zTypes:
gt :: 0':s → 0':s → false:true
0' :: 0':s
false :: false:true
s :: 0':s → 0':s
true :: false:true
plus :: 0':s → 0':s → 0':s
double :: 0':s → 0':s
average :: 0':s → 0':s → 0':s
aver :: 0':s → 0':s → 0':s
if :: false:true → 0':s → 0':s → 0':s
hole_false:true1_0 :: false:true
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s
Lemmas:
gt(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → false, rt ∈ Ω(1 + n50)
plus(gen_0':s3_0(n330_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n330_0, b)), rt ∈ Ω(1 + n3300)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
double, aver
They will be analysed ascendingly in the following order:
double < aver
(13) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
double(
gen_0':s3_0(
n953_0)) →
gen_0':s3_0(
*(
2,
n953_0)), rt ∈ Ω(1 + n953
0)
Induction Base:
double(gen_0':s3_0(0)) →RΩ(1)
0'
Induction Step:
double(gen_0':s3_0(+(n953_0, 1))) →RΩ(1)
s(s(double(gen_0':s3_0(n953_0)))) →IH
s(s(gen_0':s3_0(*(2, c954_0))))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(14) Complex Obligation (BEST)
(15) Obligation:
Innermost TRS:
Rules:
gt(
0',
y) →
falsegt(
s(
x),
0') →
truegt(
s(
x),
s(
y)) →
gt(
x,
y)
plus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
double(
0') →
0'double(
s(
x)) →
s(
s(
double(
x)))
average(
x,
y) →
aver(
plus(
x,
y),
0')
aver(
sum,
z) →
if(
gt(
sum,
double(
z)),
sum,
z)
if(
true,
sum,
z) →
aver(
sum,
s(
z))
if(
false,
sum,
z) →
zTypes:
gt :: 0':s → 0':s → false:true
0' :: 0':s
false :: false:true
s :: 0':s → 0':s
true :: false:true
plus :: 0':s → 0':s → 0':s
double :: 0':s → 0':s
average :: 0':s → 0':s → 0':s
aver :: 0':s → 0':s → 0':s
if :: false:true → 0':s → 0':s → 0':s
hole_false:true1_0 :: false:true
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s
Lemmas:
gt(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → false, rt ∈ Ω(1 + n50)
plus(gen_0':s3_0(n330_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n330_0, b)), rt ∈ Ω(1 + n3300)
double(gen_0':s3_0(n953_0)) → gen_0':s3_0(*(2, n953_0)), rt ∈ Ω(1 + n9530)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
aver
(16) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol aver.
(17) Obligation:
Innermost TRS:
Rules:
gt(
0',
y) →
falsegt(
s(
x),
0') →
truegt(
s(
x),
s(
y)) →
gt(
x,
y)
plus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
double(
0') →
0'double(
s(
x)) →
s(
s(
double(
x)))
average(
x,
y) →
aver(
plus(
x,
y),
0')
aver(
sum,
z) →
if(
gt(
sum,
double(
z)),
sum,
z)
if(
true,
sum,
z) →
aver(
sum,
s(
z))
if(
false,
sum,
z) →
zTypes:
gt :: 0':s → 0':s → false:true
0' :: 0':s
false :: false:true
s :: 0':s → 0':s
true :: false:true
plus :: 0':s → 0':s → 0':s
double :: 0':s → 0':s
average :: 0':s → 0':s → 0':s
aver :: 0':s → 0':s → 0':s
if :: false:true → 0':s → 0':s → 0':s
hole_false:true1_0 :: false:true
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s
Lemmas:
gt(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → false, rt ∈ Ω(1 + n50)
plus(gen_0':s3_0(n330_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n330_0, b)), rt ∈ Ω(1 + n3300)
double(gen_0':s3_0(n953_0)) → gen_0':s3_0(*(2, n953_0)), rt ∈ Ω(1 + n9530)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(18) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
gt(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → false, rt ∈ Ω(1 + n50)
(19) BOUNDS(n^1, INF)
(20) Obligation:
Innermost TRS:
Rules:
gt(
0',
y) →
falsegt(
s(
x),
0') →
truegt(
s(
x),
s(
y)) →
gt(
x,
y)
plus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
double(
0') →
0'double(
s(
x)) →
s(
s(
double(
x)))
average(
x,
y) →
aver(
plus(
x,
y),
0')
aver(
sum,
z) →
if(
gt(
sum,
double(
z)),
sum,
z)
if(
true,
sum,
z) →
aver(
sum,
s(
z))
if(
false,
sum,
z) →
zTypes:
gt :: 0':s → 0':s → false:true
0' :: 0':s
false :: false:true
s :: 0':s → 0':s
true :: false:true
plus :: 0':s → 0':s → 0':s
double :: 0':s → 0':s
average :: 0':s → 0':s → 0':s
aver :: 0':s → 0':s → 0':s
if :: false:true → 0':s → 0':s → 0':s
hole_false:true1_0 :: false:true
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s
Lemmas:
gt(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → false, rt ∈ Ω(1 + n50)
plus(gen_0':s3_0(n330_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n330_0, b)), rt ∈ Ω(1 + n3300)
double(gen_0':s3_0(n953_0)) → gen_0':s3_0(*(2, n953_0)), rt ∈ Ω(1 + n9530)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(21) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
gt(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → false, rt ∈ Ω(1 + n50)
(22) BOUNDS(n^1, INF)
(23) Obligation:
Innermost TRS:
Rules:
gt(
0',
y) →
falsegt(
s(
x),
0') →
truegt(
s(
x),
s(
y)) →
gt(
x,
y)
plus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
double(
0') →
0'double(
s(
x)) →
s(
s(
double(
x)))
average(
x,
y) →
aver(
plus(
x,
y),
0')
aver(
sum,
z) →
if(
gt(
sum,
double(
z)),
sum,
z)
if(
true,
sum,
z) →
aver(
sum,
s(
z))
if(
false,
sum,
z) →
zTypes:
gt :: 0':s → 0':s → false:true
0' :: 0':s
false :: false:true
s :: 0':s → 0':s
true :: false:true
plus :: 0':s → 0':s → 0':s
double :: 0':s → 0':s
average :: 0':s → 0':s → 0':s
aver :: 0':s → 0':s → 0':s
if :: false:true → 0':s → 0':s → 0':s
hole_false:true1_0 :: false:true
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s
Lemmas:
gt(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → false, rt ∈ Ω(1 + n50)
plus(gen_0':s3_0(n330_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n330_0, b)), rt ∈ Ω(1 + n3300)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(24) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
gt(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → false, rt ∈ Ω(1 + n50)
(25) BOUNDS(n^1, INF)
(26) Obligation:
Innermost TRS:
Rules:
gt(
0',
y) →
falsegt(
s(
x),
0') →
truegt(
s(
x),
s(
y)) →
gt(
x,
y)
plus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
double(
0') →
0'double(
s(
x)) →
s(
s(
double(
x)))
average(
x,
y) →
aver(
plus(
x,
y),
0')
aver(
sum,
z) →
if(
gt(
sum,
double(
z)),
sum,
z)
if(
true,
sum,
z) →
aver(
sum,
s(
z))
if(
false,
sum,
z) →
zTypes:
gt :: 0':s → 0':s → false:true
0' :: 0':s
false :: false:true
s :: 0':s → 0':s
true :: false:true
plus :: 0':s → 0':s → 0':s
double :: 0':s → 0':s
average :: 0':s → 0':s → 0':s
aver :: 0':s → 0':s → 0':s
if :: false:true → 0':s → 0':s → 0':s
hole_false:true1_0 :: false:true
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s
Lemmas:
gt(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → false, rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(27) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
gt(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → false, rt ∈ Ω(1 + n50)
(28) BOUNDS(n^1, INF)