(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
sum(cons(s(n), x), cons(m, y)) → sum(cons(n, x), cons(s(m), y))
sum(cons(0, x), y) → sum(x, y)
sum(nil, y) → y
empty(nil) → true
empty(cons(n, x)) → false
tail(nil) → nil
tail(cons(n, x)) → x
head(cons(n, x)) → n
weight(x) → if(empty(x), empty(tail(x)), x)
if(true, b, x) → weight_undefined_error
if(false, b, x) → if2(b, x)
if2(true, x) → head(x)
if2(false, x) → weight(sum(x, cons(0, tail(tail(x)))))
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
sum(cons(s(n), x), cons(m, y)) → sum(cons(n, x), cons(s(m), y))
sum(cons(0', x), y) → sum(x, y)
sum(nil, y) → y
empty(nil) → true
empty(cons(n, x)) → false
tail(nil) → nil
tail(cons(n, x)) → x
head(cons(n, x)) → n
weight(x) → if(empty(x), empty(tail(x)), x)
if(true, b, x) → weight_undefined_error
if(false, b, x) → if2(b, x)
if2(true, x) → head(x)
if2(false, x) → weight(sum(x, cons(0', tail(tail(x)))))
S is empty.
Rewrite Strategy: INNERMOST
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
Innermost TRS:
Rules:
sum(cons(s(n), x), cons(m, y)) → sum(cons(n, x), cons(s(m), y))
sum(cons(0', x), y) → sum(x, y)
sum(nil, y) → y
empty(nil) → true
empty(cons(n, x)) → false
tail(nil) → nil
tail(cons(n, x)) → x
head(cons(n, x)) → n
weight(x) → if(empty(x), empty(tail(x)), x)
if(true, b, x) → weight_undefined_error
if(false, b, x) → if2(b, x)
if2(true, x) → head(x)
if2(false, x) → weight(sum(x, cons(0', tail(tail(x)))))
Types:
sum :: cons:nil → cons:nil → cons:nil
cons :: s:0':weight_undefined_error → cons:nil → cons:nil
s :: s:0':weight_undefined_error → s:0':weight_undefined_error
0' :: s:0':weight_undefined_error
nil :: cons:nil
empty :: cons:nil → true:false
true :: true:false
false :: true:false
tail :: cons:nil → cons:nil
head :: cons:nil → s:0':weight_undefined_error
weight :: cons:nil → s:0':weight_undefined_error
if :: true:false → true:false → cons:nil → s:0':weight_undefined_error
weight_undefined_error :: s:0':weight_undefined_error
if2 :: true:false → cons:nil → s:0':weight_undefined_error
hole_cons:nil1_0 :: cons:nil
hole_s:0':weight_undefined_error2_0 :: s:0':weight_undefined_error
hole_true:false3_0 :: true:false
gen_cons:nil4_0 :: Nat → cons:nil
gen_s:0':weight_undefined_error5_0 :: Nat → s:0':weight_undefined_error
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
sum,
weightThey will be analysed ascendingly in the following order:
sum < weight
(6) Obligation:
Innermost TRS:
Rules:
sum(
cons(
s(
n),
x),
cons(
m,
y)) →
sum(
cons(
n,
x),
cons(
s(
m),
y))
sum(
cons(
0',
x),
y) →
sum(
x,
y)
sum(
nil,
y) →
yempty(
nil) →
trueempty(
cons(
n,
x)) →
falsetail(
nil) →
niltail(
cons(
n,
x)) →
xhead(
cons(
n,
x)) →
nweight(
x) →
if(
empty(
x),
empty(
tail(
x)),
x)
if(
true,
b,
x) →
weight_undefined_errorif(
false,
b,
x) →
if2(
b,
x)
if2(
true,
x) →
head(
x)
if2(
false,
x) →
weight(
sum(
x,
cons(
0',
tail(
tail(
x)))))
Types:
sum :: cons:nil → cons:nil → cons:nil
cons :: s:0':weight_undefined_error → cons:nil → cons:nil
s :: s:0':weight_undefined_error → s:0':weight_undefined_error
0' :: s:0':weight_undefined_error
nil :: cons:nil
empty :: cons:nil → true:false
true :: true:false
false :: true:false
tail :: cons:nil → cons:nil
head :: cons:nil → s:0':weight_undefined_error
weight :: cons:nil → s:0':weight_undefined_error
if :: true:false → true:false → cons:nil → s:0':weight_undefined_error
weight_undefined_error :: s:0':weight_undefined_error
if2 :: true:false → cons:nil → s:0':weight_undefined_error
hole_cons:nil1_0 :: cons:nil
hole_s:0':weight_undefined_error2_0 :: s:0':weight_undefined_error
hole_true:false3_0 :: true:false
gen_cons:nil4_0 :: Nat → cons:nil
gen_s:0':weight_undefined_error5_0 :: Nat → s:0':weight_undefined_error
Generator Equations:
gen_cons:nil4_0(0) ⇔ nil
gen_cons:nil4_0(+(x, 1)) ⇔ cons(0', gen_cons:nil4_0(x))
gen_s:0':weight_undefined_error5_0(0) ⇔ 0'
gen_s:0':weight_undefined_error5_0(+(x, 1)) ⇔ s(gen_s:0':weight_undefined_error5_0(x))
The following defined symbols remain to be analysed:
sum, weight
They will be analysed ascendingly in the following order:
sum < weight
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
sum(
gen_cons:nil4_0(
n7_0),
gen_cons:nil4_0(
b)) →
gen_cons:nil4_0(
b), rt ∈ Ω(1 + n7
0)
Induction Base:
sum(gen_cons:nil4_0(0), gen_cons:nil4_0(b)) →RΩ(1)
gen_cons:nil4_0(b)
Induction Step:
sum(gen_cons:nil4_0(+(n7_0, 1)), gen_cons:nil4_0(b)) →RΩ(1)
sum(gen_cons:nil4_0(n7_0), gen_cons:nil4_0(b)) →IH
gen_cons:nil4_0(b)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
Innermost TRS:
Rules:
sum(
cons(
s(
n),
x),
cons(
m,
y)) →
sum(
cons(
n,
x),
cons(
s(
m),
y))
sum(
cons(
0',
x),
y) →
sum(
x,
y)
sum(
nil,
y) →
yempty(
nil) →
trueempty(
cons(
n,
x)) →
falsetail(
nil) →
niltail(
cons(
n,
x)) →
xhead(
cons(
n,
x)) →
nweight(
x) →
if(
empty(
x),
empty(
tail(
x)),
x)
if(
true,
b,
x) →
weight_undefined_errorif(
false,
b,
x) →
if2(
b,
x)
if2(
true,
x) →
head(
x)
if2(
false,
x) →
weight(
sum(
x,
cons(
0',
tail(
tail(
x)))))
Types:
sum :: cons:nil → cons:nil → cons:nil
cons :: s:0':weight_undefined_error → cons:nil → cons:nil
s :: s:0':weight_undefined_error → s:0':weight_undefined_error
0' :: s:0':weight_undefined_error
nil :: cons:nil
empty :: cons:nil → true:false
true :: true:false
false :: true:false
tail :: cons:nil → cons:nil
head :: cons:nil → s:0':weight_undefined_error
weight :: cons:nil → s:0':weight_undefined_error
if :: true:false → true:false → cons:nil → s:0':weight_undefined_error
weight_undefined_error :: s:0':weight_undefined_error
if2 :: true:false → cons:nil → s:0':weight_undefined_error
hole_cons:nil1_0 :: cons:nil
hole_s:0':weight_undefined_error2_0 :: s:0':weight_undefined_error
hole_true:false3_0 :: true:false
gen_cons:nil4_0 :: Nat → cons:nil
gen_s:0':weight_undefined_error5_0 :: Nat → s:0':weight_undefined_error
Lemmas:
sum(gen_cons:nil4_0(n7_0), gen_cons:nil4_0(b)) → gen_cons:nil4_0(b), rt ∈ Ω(1 + n70)
Generator Equations:
gen_cons:nil4_0(0) ⇔ nil
gen_cons:nil4_0(+(x, 1)) ⇔ cons(0', gen_cons:nil4_0(x))
gen_s:0':weight_undefined_error5_0(0) ⇔ 0'
gen_s:0':weight_undefined_error5_0(+(x, 1)) ⇔ s(gen_s:0':weight_undefined_error5_0(x))
The following defined symbols remain to be analysed:
weight
(10) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
weight(
gen_cons:nil4_0(
+(
1,
n704_0))) →
gen_s:0':weight_undefined_error5_0(
0), rt ∈ Ω(1 + n704
0 + n704
02)
Induction Base:
weight(gen_cons:nil4_0(+(1, 0))) →RΩ(1)
if(empty(gen_cons:nil4_0(+(1, 0))), empty(tail(gen_cons:nil4_0(+(1, 0)))), gen_cons:nil4_0(+(1, 0))) →RΩ(1)
if(false, empty(tail(gen_cons:nil4_0(1))), gen_cons:nil4_0(1)) →RΩ(1)
if(false, empty(gen_cons:nil4_0(0)), gen_cons:nil4_0(1)) →RΩ(1)
if(false, true, gen_cons:nil4_0(1)) →RΩ(1)
if2(true, gen_cons:nil4_0(1)) →RΩ(1)
head(gen_cons:nil4_0(1)) →RΩ(1)
0'
Induction Step:
weight(gen_cons:nil4_0(+(1, +(n704_0, 1)))) →RΩ(1)
if(empty(gen_cons:nil4_0(+(1, +(n704_0, 1)))), empty(tail(gen_cons:nil4_0(+(1, +(n704_0, 1))))), gen_cons:nil4_0(+(1, +(n704_0, 1)))) →RΩ(1)
if(false, empty(tail(gen_cons:nil4_0(+(2, n704_0)))), gen_cons:nil4_0(+(2, n704_0))) →RΩ(1)
if(false, empty(gen_cons:nil4_0(+(1, n704_0))), gen_cons:nil4_0(+(2, n704_0))) →RΩ(1)
if(false, false, gen_cons:nil4_0(+(2, n704_0))) →RΩ(1)
if2(false, gen_cons:nil4_0(+(2, n704_0))) →RΩ(1)
weight(sum(gen_cons:nil4_0(+(2, n704_0)), cons(0', tail(tail(gen_cons:nil4_0(+(2, n704_0))))))) →RΩ(1)
weight(sum(gen_cons:nil4_0(+(2, n704_0)), cons(0', tail(gen_cons:nil4_0(+(1, n704_0)))))) →RΩ(1)
weight(sum(gen_cons:nil4_0(+(2, n704_0)), cons(0', gen_cons:nil4_0(n704_0)))) →LΩ(3 + n7040)
weight(gen_cons:nil4_0(+(n704_0, 1))) →IH
gen_s:0':weight_undefined_error5_0(0)
We have rt ∈ Ω(n2) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n2).
(11) Complex Obligation (BEST)
(12) Obligation:
Innermost TRS:
Rules:
sum(
cons(
s(
n),
x),
cons(
m,
y)) →
sum(
cons(
n,
x),
cons(
s(
m),
y))
sum(
cons(
0',
x),
y) →
sum(
x,
y)
sum(
nil,
y) →
yempty(
nil) →
trueempty(
cons(
n,
x)) →
falsetail(
nil) →
niltail(
cons(
n,
x)) →
xhead(
cons(
n,
x)) →
nweight(
x) →
if(
empty(
x),
empty(
tail(
x)),
x)
if(
true,
b,
x) →
weight_undefined_errorif(
false,
b,
x) →
if2(
b,
x)
if2(
true,
x) →
head(
x)
if2(
false,
x) →
weight(
sum(
x,
cons(
0',
tail(
tail(
x)))))
Types:
sum :: cons:nil → cons:nil → cons:nil
cons :: s:0':weight_undefined_error → cons:nil → cons:nil
s :: s:0':weight_undefined_error → s:0':weight_undefined_error
0' :: s:0':weight_undefined_error
nil :: cons:nil
empty :: cons:nil → true:false
true :: true:false
false :: true:false
tail :: cons:nil → cons:nil
head :: cons:nil → s:0':weight_undefined_error
weight :: cons:nil → s:0':weight_undefined_error
if :: true:false → true:false → cons:nil → s:0':weight_undefined_error
weight_undefined_error :: s:0':weight_undefined_error
if2 :: true:false → cons:nil → s:0':weight_undefined_error
hole_cons:nil1_0 :: cons:nil
hole_s:0':weight_undefined_error2_0 :: s:0':weight_undefined_error
hole_true:false3_0 :: true:false
gen_cons:nil4_0 :: Nat → cons:nil
gen_s:0':weight_undefined_error5_0 :: Nat → s:0':weight_undefined_error
Lemmas:
sum(gen_cons:nil4_0(n7_0), gen_cons:nil4_0(b)) → gen_cons:nil4_0(b), rt ∈ Ω(1 + n70)
weight(gen_cons:nil4_0(+(1, n704_0))) → gen_s:0':weight_undefined_error5_0(0), rt ∈ Ω(1 + n7040 + n70402)
Generator Equations:
gen_cons:nil4_0(0) ⇔ nil
gen_cons:nil4_0(+(x, 1)) ⇔ cons(0', gen_cons:nil4_0(x))
gen_s:0':weight_undefined_error5_0(0) ⇔ 0'
gen_s:0':weight_undefined_error5_0(+(x, 1)) ⇔ s(gen_s:0':weight_undefined_error5_0(x))
No more defined symbols left to analyse.
(13) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n2) was proven with the following lemma:
weight(gen_cons:nil4_0(+(1, n704_0))) → gen_s:0':weight_undefined_error5_0(0), rt ∈ Ω(1 + n7040 + n70402)
(14) BOUNDS(n^2, INF)
(15) Obligation:
Innermost TRS:
Rules:
sum(
cons(
s(
n),
x),
cons(
m,
y)) →
sum(
cons(
n,
x),
cons(
s(
m),
y))
sum(
cons(
0',
x),
y) →
sum(
x,
y)
sum(
nil,
y) →
yempty(
nil) →
trueempty(
cons(
n,
x)) →
falsetail(
nil) →
niltail(
cons(
n,
x)) →
xhead(
cons(
n,
x)) →
nweight(
x) →
if(
empty(
x),
empty(
tail(
x)),
x)
if(
true,
b,
x) →
weight_undefined_errorif(
false,
b,
x) →
if2(
b,
x)
if2(
true,
x) →
head(
x)
if2(
false,
x) →
weight(
sum(
x,
cons(
0',
tail(
tail(
x)))))
Types:
sum :: cons:nil → cons:nil → cons:nil
cons :: s:0':weight_undefined_error → cons:nil → cons:nil
s :: s:0':weight_undefined_error → s:0':weight_undefined_error
0' :: s:0':weight_undefined_error
nil :: cons:nil
empty :: cons:nil → true:false
true :: true:false
false :: true:false
tail :: cons:nil → cons:nil
head :: cons:nil → s:0':weight_undefined_error
weight :: cons:nil → s:0':weight_undefined_error
if :: true:false → true:false → cons:nil → s:0':weight_undefined_error
weight_undefined_error :: s:0':weight_undefined_error
if2 :: true:false → cons:nil → s:0':weight_undefined_error
hole_cons:nil1_0 :: cons:nil
hole_s:0':weight_undefined_error2_0 :: s:0':weight_undefined_error
hole_true:false3_0 :: true:false
gen_cons:nil4_0 :: Nat → cons:nil
gen_s:0':weight_undefined_error5_0 :: Nat → s:0':weight_undefined_error
Lemmas:
sum(gen_cons:nil4_0(n7_0), gen_cons:nil4_0(b)) → gen_cons:nil4_0(b), rt ∈ Ω(1 + n70)
weight(gen_cons:nil4_0(+(1, n704_0))) → gen_s:0':weight_undefined_error5_0(0), rt ∈ Ω(1 + n7040 + n70402)
Generator Equations:
gen_cons:nil4_0(0) ⇔ nil
gen_cons:nil4_0(+(x, 1)) ⇔ cons(0', gen_cons:nil4_0(x))
gen_s:0':weight_undefined_error5_0(0) ⇔ 0'
gen_s:0':weight_undefined_error5_0(+(x, 1)) ⇔ s(gen_s:0':weight_undefined_error5_0(x))
No more defined symbols left to analyse.
(16) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n2) was proven with the following lemma:
weight(gen_cons:nil4_0(+(1, n704_0))) → gen_s:0':weight_undefined_error5_0(0), rt ∈ Ω(1 + n7040 + n70402)
(17) BOUNDS(n^2, INF)
(18) Obligation:
Innermost TRS:
Rules:
sum(
cons(
s(
n),
x),
cons(
m,
y)) →
sum(
cons(
n,
x),
cons(
s(
m),
y))
sum(
cons(
0',
x),
y) →
sum(
x,
y)
sum(
nil,
y) →
yempty(
nil) →
trueempty(
cons(
n,
x)) →
falsetail(
nil) →
niltail(
cons(
n,
x)) →
xhead(
cons(
n,
x)) →
nweight(
x) →
if(
empty(
x),
empty(
tail(
x)),
x)
if(
true,
b,
x) →
weight_undefined_errorif(
false,
b,
x) →
if2(
b,
x)
if2(
true,
x) →
head(
x)
if2(
false,
x) →
weight(
sum(
x,
cons(
0',
tail(
tail(
x)))))
Types:
sum :: cons:nil → cons:nil → cons:nil
cons :: s:0':weight_undefined_error → cons:nil → cons:nil
s :: s:0':weight_undefined_error → s:0':weight_undefined_error
0' :: s:0':weight_undefined_error
nil :: cons:nil
empty :: cons:nil → true:false
true :: true:false
false :: true:false
tail :: cons:nil → cons:nil
head :: cons:nil → s:0':weight_undefined_error
weight :: cons:nil → s:0':weight_undefined_error
if :: true:false → true:false → cons:nil → s:0':weight_undefined_error
weight_undefined_error :: s:0':weight_undefined_error
if2 :: true:false → cons:nil → s:0':weight_undefined_error
hole_cons:nil1_0 :: cons:nil
hole_s:0':weight_undefined_error2_0 :: s:0':weight_undefined_error
hole_true:false3_0 :: true:false
gen_cons:nil4_0 :: Nat → cons:nil
gen_s:0':weight_undefined_error5_0 :: Nat → s:0':weight_undefined_error
Lemmas:
sum(gen_cons:nil4_0(n7_0), gen_cons:nil4_0(b)) → gen_cons:nil4_0(b), rt ∈ Ω(1 + n70)
Generator Equations:
gen_cons:nil4_0(0) ⇔ nil
gen_cons:nil4_0(+(x, 1)) ⇔ cons(0', gen_cons:nil4_0(x))
gen_s:0':weight_undefined_error5_0(0) ⇔ 0'
gen_s:0':weight_undefined_error5_0(+(x, 1)) ⇔ s(gen_s:0':weight_undefined_error5_0(x))
No more defined symbols left to analyse.
(19) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
sum(gen_cons:nil4_0(n7_0), gen_cons:nil4_0(b)) → gen_cons:nil4_0(b), rt ∈ Ω(1 + n70)
(20) BOUNDS(n^1, INF)