(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
half(0) → 0
half(s(0)) → 0
half(s(s(x))) → s(half(x))
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
inc(0) → 0
inc(s(x)) → s(inc(x))
log(x) → log2(x, 0)
log2(x, y) → if(le(x, s(0)), x, inc(y))
if(true, x, s(y)) → y
if(false, x, y) → log2(half(x), y)
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
half(0') → 0'
half(s(0')) → 0'
half(s(s(x))) → s(half(x))
le(0', y) → true
le(s(x), 0') → false
le(s(x), s(y)) → le(x, y)
inc(0') → 0'
inc(s(x)) → s(inc(x))
log(x) → log2(x, 0')
log2(x, y) → if(le(x, s(0')), x, inc(y))
if(true, x, s(y)) → y
if(false, x, y) → log2(half(x), y)
S is empty.
Rewrite Strategy: INNERMOST
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
Innermost TRS:
Rules:
half(0') → 0'
half(s(0')) → 0'
half(s(s(x))) → s(half(x))
le(0', y) → true
le(s(x), 0') → false
le(s(x), s(y)) → le(x, y)
inc(0') → 0'
inc(s(x)) → s(inc(x))
log(x) → log2(x, 0')
log2(x, y) → if(le(x, s(0')), x, inc(y))
if(true, x, s(y)) → y
if(false, x, y) → log2(half(x), y)
Types:
half :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
le :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
inc :: 0':s → 0':s
log :: 0':s → 0':s
log2 :: 0':s → 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
half,
le,
inc,
log2They will be analysed ascendingly in the following order:
half < log2
le < log2
inc < log2
(6) Obligation:
Innermost TRS:
Rules:
half(
0') →
0'half(
s(
0')) →
0'half(
s(
s(
x))) →
s(
half(
x))
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
inc(
0') →
0'inc(
s(
x)) →
s(
inc(
x))
log(
x) →
log2(
x,
0')
log2(
x,
y) →
if(
le(
x,
s(
0')),
x,
inc(
y))
if(
true,
x,
s(
y)) →
yif(
false,
x,
y) →
log2(
half(
x),
y)
Types:
half :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
le :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
inc :: 0':s → 0':s
log :: 0':s → 0':s
log2 :: 0':s → 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
half, le, inc, log2
They will be analysed ascendingly in the following order:
half < log2
le < log2
inc < log2
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
half(
gen_0':s3_0(
*(
2,
n5_0))) →
gen_0':s3_0(
n5_0), rt ∈ Ω(1 + n5
0)
Induction Base:
half(gen_0':s3_0(*(2, 0))) →RΩ(1)
0'
Induction Step:
half(gen_0':s3_0(*(2, +(n5_0, 1)))) →RΩ(1)
s(half(gen_0':s3_0(*(2, n5_0)))) →IH
s(gen_0':s3_0(c6_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
Innermost TRS:
Rules:
half(
0') →
0'half(
s(
0')) →
0'half(
s(
s(
x))) →
s(
half(
x))
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
inc(
0') →
0'inc(
s(
x)) →
s(
inc(
x))
log(
x) →
log2(
x,
0')
log2(
x,
y) →
if(
le(
x,
s(
0')),
x,
inc(
y))
if(
true,
x,
s(
y)) →
yif(
false,
x,
y) →
log2(
half(
x),
y)
Types:
half :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
le :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
inc :: 0':s → 0':s
log :: 0':s → 0':s
log2 :: 0':s → 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Lemmas:
half(gen_0':s3_0(*(2, n5_0))) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
le, inc, log2
They will be analysed ascendingly in the following order:
le < log2
inc < log2
(10) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
le(
gen_0':s3_0(
n343_0),
gen_0':s3_0(
n343_0)) →
true, rt ∈ Ω(1 + n343
0)
Induction Base:
le(gen_0':s3_0(0), gen_0':s3_0(0)) →RΩ(1)
true
Induction Step:
le(gen_0':s3_0(+(n343_0, 1)), gen_0':s3_0(+(n343_0, 1))) →RΩ(1)
le(gen_0':s3_0(n343_0), gen_0':s3_0(n343_0)) →IH
true
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(11) Complex Obligation (BEST)
(12) Obligation:
Innermost TRS:
Rules:
half(
0') →
0'half(
s(
0')) →
0'half(
s(
s(
x))) →
s(
half(
x))
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
inc(
0') →
0'inc(
s(
x)) →
s(
inc(
x))
log(
x) →
log2(
x,
0')
log2(
x,
y) →
if(
le(
x,
s(
0')),
x,
inc(
y))
if(
true,
x,
s(
y)) →
yif(
false,
x,
y) →
log2(
half(
x),
y)
Types:
half :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
le :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
inc :: 0':s → 0':s
log :: 0':s → 0':s
log2 :: 0':s → 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Lemmas:
half(gen_0':s3_0(*(2, n5_0))) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
le(gen_0':s3_0(n343_0), gen_0':s3_0(n343_0)) → true, rt ∈ Ω(1 + n3430)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
inc, log2
They will be analysed ascendingly in the following order:
inc < log2
(13) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
inc(
gen_0':s3_0(
n686_0)) →
gen_0':s3_0(
n686_0), rt ∈ Ω(1 + n686
0)
Induction Base:
inc(gen_0':s3_0(0)) →RΩ(1)
0'
Induction Step:
inc(gen_0':s3_0(+(n686_0, 1))) →RΩ(1)
s(inc(gen_0':s3_0(n686_0))) →IH
s(gen_0':s3_0(c687_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(14) Complex Obligation (BEST)
(15) Obligation:
Innermost TRS:
Rules:
half(
0') →
0'half(
s(
0')) →
0'half(
s(
s(
x))) →
s(
half(
x))
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
inc(
0') →
0'inc(
s(
x)) →
s(
inc(
x))
log(
x) →
log2(
x,
0')
log2(
x,
y) →
if(
le(
x,
s(
0')),
x,
inc(
y))
if(
true,
x,
s(
y)) →
yif(
false,
x,
y) →
log2(
half(
x),
y)
Types:
half :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
le :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
inc :: 0':s → 0':s
log :: 0':s → 0':s
log2 :: 0':s → 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Lemmas:
half(gen_0':s3_0(*(2, n5_0))) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
le(gen_0':s3_0(n343_0), gen_0':s3_0(n343_0)) → true, rt ∈ Ω(1 + n3430)
inc(gen_0':s3_0(n686_0)) → gen_0':s3_0(n686_0), rt ∈ Ω(1 + n6860)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
log2
(16) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol log2.
(17) Obligation:
Innermost TRS:
Rules:
half(
0') →
0'half(
s(
0')) →
0'half(
s(
s(
x))) →
s(
half(
x))
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
inc(
0') →
0'inc(
s(
x)) →
s(
inc(
x))
log(
x) →
log2(
x,
0')
log2(
x,
y) →
if(
le(
x,
s(
0')),
x,
inc(
y))
if(
true,
x,
s(
y)) →
yif(
false,
x,
y) →
log2(
half(
x),
y)
Types:
half :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
le :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
inc :: 0':s → 0':s
log :: 0':s → 0':s
log2 :: 0':s → 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Lemmas:
half(gen_0':s3_0(*(2, n5_0))) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
le(gen_0':s3_0(n343_0), gen_0':s3_0(n343_0)) → true, rt ∈ Ω(1 + n3430)
inc(gen_0':s3_0(n686_0)) → gen_0':s3_0(n686_0), rt ∈ Ω(1 + n6860)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(18) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
half(gen_0':s3_0(*(2, n5_0))) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
(19) BOUNDS(n^1, INF)
(20) Obligation:
Innermost TRS:
Rules:
half(
0') →
0'half(
s(
0')) →
0'half(
s(
s(
x))) →
s(
half(
x))
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
inc(
0') →
0'inc(
s(
x)) →
s(
inc(
x))
log(
x) →
log2(
x,
0')
log2(
x,
y) →
if(
le(
x,
s(
0')),
x,
inc(
y))
if(
true,
x,
s(
y)) →
yif(
false,
x,
y) →
log2(
half(
x),
y)
Types:
half :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
le :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
inc :: 0':s → 0':s
log :: 0':s → 0':s
log2 :: 0':s → 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Lemmas:
half(gen_0':s3_0(*(2, n5_0))) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
le(gen_0':s3_0(n343_0), gen_0':s3_0(n343_0)) → true, rt ∈ Ω(1 + n3430)
inc(gen_0':s3_0(n686_0)) → gen_0':s3_0(n686_0), rt ∈ Ω(1 + n6860)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(21) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
half(gen_0':s3_0(*(2, n5_0))) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
(22) BOUNDS(n^1, INF)
(23) Obligation:
Innermost TRS:
Rules:
half(
0') →
0'half(
s(
0')) →
0'half(
s(
s(
x))) →
s(
half(
x))
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
inc(
0') →
0'inc(
s(
x)) →
s(
inc(
x))
log(
x) →
log2(
x,
0')
log2(
x,
y) →
if(
le(
x,
s(
0')),
x,
inc(
y))
if(
true,
x,
s(
y)) →
yif(
false,
x,
y) →
log2(
half(
x),
y)
Types:
half :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
le :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
inc :: 0':s → 0':s
log :: 0':s → 0':s
log2 :: 0':s → 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Lemmas:
half(gen_0':s3_0(*(2, n5_0))) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
le(gen_0':s3_0(n343_0), gen_0':s3_0(n343_0)) → true, rt ∈ Ω(1 + n3430)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(24) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
half(gen_0':s3_0(*(2, n5_0))) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
(25) BOUNDS(n^1, INF)
(26) Obligation:
Innermost TRS:
Rules:
half(
0') →
0'half(
s(
0')) →
0'half(
s(
s(
x))) →
s(
half(
x))
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
inc(
0') →
0'inc(
s(
x)) →
s(
inc(
x))
log(
x) →
log2(
x,
0')
log2(
x,
y) →
if(
le(
x,
s(
0')),
x,
inc(
y))
if(
true,
x,
s(
y)) →
yif(
false,
x,
y) →
log2(
half(
x),
y)
Types:
half :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
le :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
inc :: 0':s → 0':s
log :: 0':s → 0':s
log2 :: 0':s → 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Lemmas:
half(gen_0':s3_0(*(2, n5_0))) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(27) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
half(gen_0':s3_0(*(2, n5_0))) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
(28) BOUNDS(n^1, INF)