(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
minus(x, 0) → x
minus(0, s(y)) → 0
minus(s(x), s(y)) → minus(x, y)
plus(x, 0) → x
plus(x, s(y)) → s(plus(x, y))
mod(s(x), 0) → 0
mod(x, s(y)) → help(x, s(y), 0)
help(x, s(y), c) → if(le(c, x), x, s(y), c)
if(true, x, s(y), c) → help(x, s(y), plus(c, s(y)))
if(false, x, s(y), c) → minus(x, minus(c, s(y)))
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
le(0', y) → true
le(s(x), 0') → false
le(s(x), s(y)) → le(x, y)
minus(x, 0') → x
minus(0', s(y)) → 0'
minus(s(x), s(y)) → minus(x, y)
plus(x, 0') → x
plus(x, s(y)) → s(plus(x, y))
mod(s(x), 0') → 0'
mod(x, s(y)) → help(x, s(y), 0')
help(x, s(y), c) → if(le(c, x), x, s(y), c)
if(true, x, s(y), c) → help(x, s(y), plus(c, s(y)))
if(false, x, s(y), c) → minus(x, minus(c, s(y)))
S is empty.
Rewrite Strategy: INNERMOST
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
Innermost TRS:
Rules:
le(0', y) → true
le(s(x), 0') → false
le(s(x), s(y)) → le(x, y)
minus(x, 0') → x
minus(0', s(y)) → 0'
minus(s(x), s(y)) → minus(x, y)
plus(x, 0') → x
plus(x, s(y)) → s(plus(x, y))
mod(s(x), 0') → 0'
mod(x, s(y)) → help(x, s(y), 0')
help(x, s(y), c) → if(le(c, x), x, s(y), c)
if(true, x, s(y), c) → help(x, s(y), plus(c, s(y)))
if(false, x, s(y), c) → minus(x, minus(c, s(y)))
Types:
le :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
minus :: 0':s → 0':s → 0':s
plus :: 0':s → 0':s → 0':s
mod :: 0':s → 0':s → 0':s
help :: 0':s → 0':s → 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s → 0':s
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
le,
minus,
plus,
helpThey will be analysed ascendingly in the following order:
le < help
minus < help
plus < help
(6) Obligation:
Innermost TRS:
Rules:
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
minus(
x,
0') →
xminus(
0',
s(
y)) →
0'minus(
s(
x),
s(
y)) →
minus(
x,
y)
plus(
x,
0') →
xplus(
x,
s(
y)) →
s(
plus(
x,
y))
mod(
s(
x),
0') →
0'mod(
x,
s(
y)) →
help(
x,
s(
y),
0')
help(
x,
s(
y),
c) →
if(
le(
c,
x),
x,
s(
y),
c)
if(
true,
x,
s(
y),
c) →
help(
x,
s(
y),
plus(
c,
s(
y)))
if(
false,
x,
s(
y),
c) →
minus(
x,
minus(
c,
s(
y)))
Types:
le :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
minus :: 0':s → 0':s → 0':s
plus :: 0':s → 0':s → 0':s
mod :: 0':s → 0':s → 0':s
help :: 0':s → 0':s → 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s → 0':s
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
le, minus, plus, help
They will be analysed ascendingly in the following order:
le < help
minus < help
plus < help
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
le(
gen_0':s3_0(
n5_0),
gen_0':s3_0(
n5_0)) →
true, rt ∈ Ω(1 + n5
0)
Induction Base:
le(gen_0':s3_0(0), gen_0':s3_0(0)) →RΩ(1)
true
Induction Step:
le(gen_0':s3_0(+(n5_0, 1)), gen_0':s3_0(+(n5_0, 1))) →RΩ(1)
le(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) →IH
true
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
Innermost TRS:
Rules:
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
minus(
x,
0') →
xminus(
0',
s(
y)) →
0'minus(
s(
x),
s(
y)) →
minus(
x,
y)
plus(
x,
0') →
xplus(
x,
s(
y)) →
s(
plus(
x,
y))
mod(
s(
x),
0') →
0'mod(
x,
s(
y)) →
help(
x,
s(
y),
0')
help(
x,
s(
y),
c) →
if(
le(
c,
x),
x,
s(
y),
c)
if(
true,
x,
s(
y),
c) →
help(
x,
s(
y),
plus(
c,
s(
y)))
if(
false,
x,
s(
y),
c) →
minus(
x,
minus(
c,
s(
y)))
Types:
le :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
minus :: 0':s → 0':s → 0':s
plus :: 0':s → 0':s → 0':s
mod :: 0':s → 0':s → 0':s
help :: 0':s → 0':s → 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s → 0':s
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s
Lemmas:
le(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
minus, plus, help
They will be analysed ascendingly in the following order:
minus < help
plus < help
(10) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
minus(
gen_0':s3_0(
n354_0),
gen_0':s3_0(
n354_0)) →
gen_0':s3_0(
0), rt ∈ Ω(1 + n354
0)
Induction Base:
minus(gen_0':s3_0(0), gen_0':s3_0(0)) →RΩ(1)
gen_0':s3_0(0)
Induction Step:
minus(gen_0':s3_0(+(n354_0, 1)), gen_0':s3_0(+(n354_0, 1))) →RΩ(1)
minus(gen_0':s3_0(n354_0), gen_0':s3_0(n354_0)) →IH
gen_0':s3_0(0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(11) Complex Obligation (BEST)
(12) Obligation:
Innermost TRS:
Rules:
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
minus(
x,
0') →
xminus(
0',
s(
y)) →
0'minus(
s(
x),
s(
y)) →
minus(
x,
y)
plus(
x,
0') →
xplus(
x,
s(
y)) →
s(
plus(
x,
y))
mod(
s(
x),
0') →
0'mod(
x,
s(
y)) →
help(
x,
s(
y),
0')
help(
x,
s(
y),
c) →
if(
le(
c,
x),
x,
s(
y),
c)
if(
true,
x,
s(
y),
c) →
help(
x,
s(
y),
plus(
c,
s(
y)))
if(
false,
x,
s(
y),
c) →
minus(
x,
minus(
c,
s(
y)))
Types:
le :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
minus :: 0':s → 0':s → 0':s
plus :: 0':s → 0':s → 0':s
mod :: 0':s → 0':s → 0':s
help :: 0':s → 0':s → 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s → 0':s
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s
Lemmas:
le(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
minus(gen_0':s3_0(n354_0), gen_0':s3_0(n354_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n3540)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
plus, help
They will be analysed ascendingly in the following order:
plus < help
(13) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
plus(
gen_0':s3_0(
a),
gen_0':s3_0(
n846_0)) →
gen_0':s3_0(
+(
n846_0,
a)), rt ∈ Ω(1 + n846
0)
Induction Base:
plus(gen_0':s3_0(a), gen_0':s3_0(0)) →RΩ(1)
gen_0':s3_0(a)
Induction Step:
plus(gen_0':s3_0(a), gen_0':s3_0(+(n846_0, 1))) →RΩ(1)
s(plus(gen_0':s3_0(a), gen_0':s3_0(n846_0))) →IH
s(gen_0':s3_0(+(a, c847_0)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(14) Complex Obligation (BEST)
(15) Obligation:
Innermost TRS:
Rules:
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
minus(
x,
0') →
xminus(
0',
s(
y)) →
0'minus(
s(
x),
s(
y)) →
minus(
x,
y)
plus(
x,
0') →
xplus(
x,
s(
y)) →
s(
plus(
x,
y))
mod(
s(
x),
0') →
0'mod(
x,
s(
y)) →
help(
x,
s(
y),
0')
help(
x,
s(
y),
c) →
if(
le(
c,
x),
x,
s(
y),
c)
if(
true,
x,
s(
y),
c) →
help(
x,
s(
y),
plus(
c,
s(
y)))
if(
false,
x,
s(
y),
c) →
minus(
x,
minus(
c,
s(
y)))
Types:
le :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
minus :: 0':s → 0':s → 0':s
plus :: 0':s → 0':s → 0':s
mod :: 0':s → 0':s → 0':s
help :: 0':s → 0':s → 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s → 0':s
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s
Lemmas:
le(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
minus(gen_0':s3_0(n354_0), gen_0':s3_0(n354_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n3540)
plus(gen_0':s3_0(a), gen_0':s3_0(n846_0)) → gen_0':s3_0(+(n846_0, a)), rt ∈ Ω(1 + n8460)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
help
(16) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol help.
(17) Obligation:
Innermost TRS:
Rules:
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
minus(
x,
0') →
xminus(
0',
s(
y)) →
0'minus(
s(
x),
s(
y)) →
minus(
x,
y)
plus(
x,
0') →
xplus(
x,
s(
y)) →
s(
plus(
x,
y))
mod(
s(
x),
0') →
0'mod(
x,
s(
y)) →
help(
x,
s(
y),
0')
help(
x,
s(
y),
c) →
if(
le(
c,
x),
x,
s(
y),
c)
if(
true,
x,
s(
y),
c) →
help(
x,
s(
y),
plus(
c,
s(
y)))
if(
false,
x,
s(
y),
c) →
minus(
x,
minus(
c,
s(
y)))
Types:
le :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
minus :: 0':s → 0':s → 0':s
plus :: 0':s → 0':s → 0':s
mod :: 0':s → 0':s → 0':s
help :: 0':s → 0':s → 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s → 0':s
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s
Lemmas:
le(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
minus(gen_0':s3_0(n354_0), gen_0':s3_0(n354_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n3540)
plus(gen_0':s3_0(a), gen_0':s3_0(n846_0)) → gen_0':s3_0(+(n846_0, a)), rt ∈ Ω(1 + n8460)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(18) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
le(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
(19) BOUNDS(n^1, INF)
(20) Obligation:
Innermost TRS:
Rules:
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
minus(
x,
0') →
xminus(
0',
s(
y)) →
0'minus(
s(
x),
s(
y)) →
minus(
x,
y)
plus(
x,
0') →
xplus(
x,
s(
y)) →
s(
plus(
x,
y))
mod(
s(
x),
0') →
0'mod(
x,
s(
y)) →
help(
x,
s(
y),
0')
help(
x,
s(
y),
c) →
if(
le(
c,
x),
x,
s(
y),
c)
if(
true,
x,
s(
y),
c) →
help(
x,
s(
y),
plus(
c,
s(
y)))
if(
false,
x,
s(
y),
c) →
minus(
x,
minus(
c,
s(
y)))
Types:
le :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
minus :: 0':s → 0':s → 0':s
plus :: 0':s → 0':s → 0':s
mod :: 0':s → 0':s → 0':s
help :: 0':s → 0':s → 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s → 0':s
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s
Lemmas:
le(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
minus(gen_0':s3_0(n354_0), gen_0':s3_0(n354_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n3540)
plus(gen_0':s3_0(a), gen_0':s3_0(n846_0)) → gen_0':s3_0(+(n846_0, a)), rt ∈ Ω(1 + n8460)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(21) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
le(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
(22) BOUNDS(n^1, INF)
(23) Obligation:
Innermost TRS:
Rules:
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
minus(
x,
0') →
xminus(
0',
s(
y)) →
0'minus(
s(
x),
s(
y)) →
minus(
x,
y)
plus(
x,
0') →
xplus(
x,
s(
y)) →
s(
plus(
x,
y))
mod(
s(
x),
0') →
0'mod(
x,
s(
y)) →
help(
x,
s(
y),
0')
help(
x,
s(
y),
c) →
if(
le(
c,
x),
x,
s(
y),
c)
if(
true,
x,
s(
y),
c) →
help(
x,
s(
y),
plus(
c,
s(
y)))
if(
false,
x,
s(
y),
c) →
minus(
x,
minus(
c,
s(
y)))
Types:
le :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
minus :: 0':s → 0':s → 0':s
plus :: 0':s → 0':s → 0':s
mod :: 0':s → 0':s → 0':s
help :: 0':s → 0':s → 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s → 0':s
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s
Lemmas:
le(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
minus(gen_0':s3_0(n354_0), gen_0':s3_0(n354_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n3540)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(24) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
le(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
(25) BOUNDS(n^1, INF)
(26) Obligation:
Innermost TRS:
Rules:
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
minus(
x,
0') →
xminus(
0',
s(
y)) →
0'minus(
s(
x),
s(
y)) →
minus(
x,
y)
plus(
x,
0') →
xplus(
x,
s(
y)) →
s(
plus(
x,
y))
mod(
s(
x),
0') →
0'mod(
x,
s(
y)) →
help(
x,
s(
y),
0')
help(
x,
s(
y),
c) →
if(
le(
c,
x),
x,
s(
y),
c)
if(
true,
x,
s(
y),
c) →
help(
x,
s(
y),
plus(
c,
s(
y)))
if(
false,
x,
s(
y),
c) →
minus(
x,
minus(
c,
s(
y)))
Types:
le :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
minus :: 0':s → 0':s → 0':s
plus :: 0':s → 0':s → 0':s
mod :: 0':s → 0':s → 0':s
help :: 0':s → 0':s → 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s → 0':s
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s
Lemmas:
le(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(27) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
le(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
(28) BOUNDS(n^1, INF)