*** 1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: h(x,c(y,z),t(w)) -> h(c(s(y),x),z,t(c(t(w),w))) h(c(x,y),c(s(z),z),t(w)) -> h(z,c(y,x),t(t(c(x,c(y,t(w)))))) h(c(s(x),c(s(0()),y)),z,t(x)) -> h(y,c(s(0()),c(x,z)),t(t(c(x,s(x))))) t(x) -> x t(x) -> c(0(),c(0(),c(0(),c(0(),c(0(),x))))) t(t(x)) -> t(c(t(x),x)) Weak DP Rules: Weak TRS Rules: Signature: {h/3,t/1} / {0/0,c/2,s/1} Obligation: Innermost basic terms: {h,t}/{0,c,s} Applied Processor: InnermostRuleRemoval Proof: Arguments of following rules are not normal-forms. h(x,c(y,z),t(w)) -> h(c(s(y),x),z,t(c(t(w),w))) h(c(x,y),c(s(z),z),t(w)) -> h(z,c(y,x),t(t(c(x,c(y,t(w)))))) h(c(s(x),c(s(0()),y)),z,t(x)) -> h(y,c(s(0()),c(x,z)),t(t(c(x,s(x))))) t(t(x)) -> t(c(t(x),x)) All above mentioned rules can be savely removed. *** 1.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: t(x) -> x t(x) -> c(0(),c(0(),c(0(),c(0(),c(0(),x))))) Weak DP Rules: Weak TRS Rules: Signature: {h/3,t/1} / {0/0,c/2,s/1} Obligation: Innermost basic terms: {h,t}/{0,c,s} Applied Processor: DependencyPairs {dpKind_ = DT} Proof: We add the following dependency tuples: Strict DPs t#(x) -> c_1() t#(x) -> c_2() Weak DPs and mark the set of starting terms. *** 1.1.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: t#(x) -> c_1() t#(x) -> c_2() Strict TRS Rules: Weak DP Rules: Weak TRS Rules: t(x) -> x t(x) -> c(0(),c(0(),c(0(),c(0(),c(0(),x))))) Signature: {h/3,t/1,h#/3,t#/1} / {0/0,c/2,s/1,c_1/0,c_2/0} Obligation: Innermost basic terms: {h#,t#}/{0,c,s} Applied Processor: UsableRules Proof: We replace rewrite rules by usable rules: t#(x) -> c_1() t#(x) -> c_2() *** 1.1.1.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: t#(x) -> c_1() t#(x) -> c_2() Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {h/3,t/1,h#/3,t#/1} / {0/0,c/2,s/1,c_1/0,c_2/0} Obligation: Innermost basic terms: {h#,t#}/{0,c,s} Applied Processor: Trivial Proof: Consider the dependency graph 1:S:t#(x) -> c_1() 2:S:t#(x) -> c_2() The dependency graph contains no loops, we remove all dependency pairs. *** 1.1.1.1.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {h/3,t/1,h#/3,t#/1} / {0/0,c/2,s/1,c_1/0,c_2/0} Obligation: Innermost basic terms: {h#,t#}/{0,c,s} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1).