*** 1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
h(x,c(y,z),t(w)) -> h(c(s(y),x),z,t(c(t(w),w)))
h(c(x,y),c(s(z),z),t(w)) -> h(z,c(y,x),t(t(c(x,c(y,t(w))))))
h(c(s(x),c(s(0()),y)),z,t(x)) -> h(y,c(s(0()),c(x,z)),t(t(c(x,s(x)))))
t(x) -> x
t(x) -> c(0(),c(0(),c(0(),c(0(),c(0(),x)))))
t(t(x)) -> t(c(t(x),x))
Weak DP Rules:
Weak TRS Rules:
Signature:
{h/3,t/1} / {0/0,c/2,s/1}
Obligation:
Innermost
basic terms: {h,t}/{0,c,s}
Applied Processor:
InnermostRuleRemoval
Proof:
Arguments of following rules are not normal-forms.
h(x,c(y,z),t(w)) -> h(c(s(y),x),z,t(c(t(w),w)))
h(c(x,y),c(s(z),z),t(w)) -> h(z,c(y,x),t(t(c(x,c(y,t(w))))))
h(c(s(x),c(s(0()),y)),z,t(x)) -> h(y,c(s(0()),c(x,z)),t(t(c(x,s(x)))))
t(t(x)) -> t(c(t(x),x))
All above mentioned rules can be savely removed.
*** 1.1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
t(x) -> x
t(x) -> c(0(),c(0(),c(0(),c(0(),c(0(),x)))))
Weak DP Rules:
Weak TRS Rules:
Signature:
{h/3,t/1} / {0/0,c/2,s/1}
Obligation:
Innermost
basic terms: {h,t}/{0,c,s}
Applied Processor:
DependencyPairs {dpKind_ = DT}
Proof:
We add the following dependency tuples:
Strict DPs
t#(x) -> c_1()
t#(x) -> c_2()
Weak DPs
and mark the set of starting terms.
*** 1.1.1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
t#(x) -> c_1()
t#(x) -> c_2()
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
t(x) -> x
t(x) -> c(0(),c(0(),c(0(),c(0(),c(0(),x)))))
Signature:
{h/3,t/1,h#/3,t#/1} / {0/0,c/2,s/1,c_1/0,c_2/0}
Obligation:
Innermost
basic terms: {h#,t#}/{0,c,s}
Applied Processor:
UsableRules
Proof:
We replace rewrite rules by usable rules:
t#(x) -> c_1()
t#(x) -> c_2()
*** 1.1.1.1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
t#(x) -> c_1()
t#(x) -> c_2()
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
Signature:
{h/3,t/1,h#/3,t#/1} / {0/0,c/2,s/1,c_1/0,c_2/0}
Obligation:
Innermost
basic terms: {h#,t#}/{0,c,s}
Applied Processor:
Trivial
Proof:
Consider the dependency graph
1:S:t#(x) -> c_1()
2:S:t#(x) -> c_2()
The dependency graph contains no loops, we remove all dependency pairs.
*** 1.1.1.1.1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
Signature:
{h/3,t/1,h#/3,t#/1} / {0/0,c/2,s/1,c_1/0,c_2/0}
Obligation:
Innermost
basic terms: {h#,t#}/{0,c,s}
Applied Processor:
EmptyProcessor
Proof:
The problem is already closed. The intended complexity is O(1).