(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

minus(x, x) → 0
minus(0, x) → 0
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
quot(x, y) → if_quot(minus(x, y), y, le(y, 0), le(y, x))
if_quot(x, y, true, z) → divByZeroError
if_quot(x, y, false, true) → s(quot(x, y))
if_quot(x, y, false, false) → 0

Rewrite Strategy: INNERMOST

(1) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

(2) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

minus(x, x) → 0'
minus(0', x) → 0'
minus(x, 0') → x
minus(s(x), s(y)) → minus(x, y)
le(0', y) → true
le(s(x), 0') → false
le(s(x), s(y)) → le(x, y)
quot(x, y) → if_quot(minus(x, y), y, le(y, 0'), le(y, x))
if_quot(x, y, true, z) → divByZeroError
if_quot(x, y, false, true) → s(quot(x, y))
if_quot(x, y, false, false) → 0'

S is empty.
Rewrite Strategy: INNERMOST

(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)

Infered types.

(4) Obligation:

Innermost TRS:
Rules:
minus(x, x) → 0'
minus(0', x) → 0'
minus(x, 0') → x
minus(s(x), s(y)) → minus(x, y)
le(0', y) → true
le(s(x), 0') → false
le(s(x), s(y)) → le(x, y)
quot(x, y) → if_quot(minus(x, y), y, le(y, 0'), le(y, x))
if_quot(x, y, true, z) → divByZeroError
if_quot(x, y, false, true) → s(quot(x, y))
if_quot(x, y, false, false) → 0'

Types:
minus :: 0':s:divByZeroError → 0':s:divByZeroError → 0':s:divByZeroError
0' :: 0':s:divByZeroError
s :: 0':s:divByZeroError → 0':s:divByZeroError
le :: 0':s:divByZeroError → 0':s:divByZeroError → true:false
true :: true:false
false :: true:false
quot :: 0':s:divByZeroError → 0':s:divByZeroError → 0':s:divByZeroError
if_quot :: 0':s:divByZeroError → 0':s:divByZeroError → true:false → true:false → 0':s:divByZeroError
divByZeroError :: 0':s:divByZeroError
hole_0':s:divByZeroError1_0 :: 0':s:divByZeroError
hole_true:false2_0 :: true:false
gen_0':s:divByZeroError3_0 :: Nat → 0':s:divByZeroError

(5) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
minus, le, quot

They will be analysed ascendingly in the following order:
minus < quot
le < quot

(6) Obligation:

Innermost TRS:
Rules:
minus(x, x) → 0'
minus(0', x) → 0'
minus(x, 0') → x
minus(s(x), s(y)) → minus(x, y)
le(0', y) → true
le(s(x), 0') → false
le(s(x), s(y)) → le(x, y)
quot(x, y) → if_quot(minus(x, y), y, le(y, 0'), le(y, x))
if_quot(x, y, true, z) → divByZeroError
if_quot(x, y, false, true) → s(quot(x, y))
if_quot(x, y, false, false) → 0'

Types:
minus :: 0':s:divByZeroError → 0':s:divByZeroError → 0':s:divByZeroError
0' :: 0':s:divByZeroError
s :: 0':s:divByZeroError → 0':s:divByZeroError
le :: 0':s:divByZeroError → 0':s:divByZeroError → true:false
true :: true:false
false :: true:false
quot :: 0':s:divByZeroError → 0':s:divByZeroError → 0':s:divByZeroError
if_quot :: 0':s:divByZeroError → 0':s:divByZeroError → true:false → true:false → 0':s:divByZeroError
divByZeroError :: 0':s:divByZeroError
hole_0':s:divByZeroError1_0 :: 0':s:divByZeroError
hole_true:false2_0 :: true:false
gen_0':s:divByZeroError3_0 :: Nat → 0':s:divByZeroError

Generator Equations:
gen_0':s:divByZeroError3_0(0) ⇔ 0'
gen_0':s:divByZeroError3_0(+(x, 1)) ⇔ s(gen_0':s:divByZeroError3_0(x))

The following defined symbols remain to be analysed:
minus, le, quot

They will be analysed ascendingly in the following order:
minus < quot
le < quot

(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
minus(gen_0':s:divByZeroError3_0(n5_0), gen_0':s:divByZeroError3_0(n5_0)) → gen_0':s:divByZeroError3_0(0), rt ∈ Ω(1 + n50)

Induction Base:
minus(gen_0':s:divByZeroError3_0(0), gen_0':s:divByZeroError3_0(0)) →RΩ(1)
0'

Induction Step:
minus(gen_0':s:divByZeroError3_0(+(n5_0, 1)), gen_0':s:divByZeroError3_0(+(n5_0, 1))) →RΩ(1)
minus(gen_0':s:divByZeroError3_0(n5_0), gen_0':s:divByZeroError3_0(n5_0)) →IH
gen_0':s:divByZeroError3_0(0)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(8) Complex Obligation (BEST)

(9) Obligation:

Innermost TRS:
Rules:
minus(x, x) → 0'
minus(0', x) → 0'
minus(x, 0') → x
minus(s(x), s(y)) → minus(x, y)
le(0', y) → true
le(s(x), 0') → false
le(s(x), s(y)) → le(x, y)
quot(x, y) → if_quot(minus(x, y), y, le(y, 0'), le(y, x))
if_quot(x, y, true, z) → divByZeroError
if_quot(x, y, false, true) → s(quot(x, y))
if_quot(x, y, false, false) → 0'

Types:
minus :: 0':s:divByZeroError → 0':s:divByZeroError → 0':s:divByZeroError
0' :: 0':s:divByZeroError
s :: 0':s:divByZeroError → 0':s:divByZeroError
le :: 0':s:divByZeroError → 0':s:divByZeroError → true:false
true :: true:false
false :: true:false
quot :: 0':s:divByZeroError → 0':s:divByZeroError → 0':s:divByZeroError
if_quot :: 0':s:divByZeroError → 0':s:divByZeroError → true:false → true:false → 0':s:divByZeroError
divByZeroError :: 0':s:divByZeroError
hole_0':s:divByZeroError1_0 :: 0':s:divByZeroError
hole_true:false2_0 :: true:false
gen_0':s:divByZeroError3_0 :: Nat → 0':s:divByZeroError

Lemmas:
minus(gen_0':s:divByZeroError3_0(n5_0), gen_0':s:divByZeroError3_0(n5_0)) → gen_0':s:divByZeroError3_0(0), rt ∈ Ω(1 + n50)

Generator Equations:
gen_0':s:divByZeroError3_0(0) ⇔ 0'
gen_0':s:divByZeroError3_0(+(x, 1)) ⇔ s(gen_0':s:divByZeroError3_0(x))

The following defined symbols remain to be analysed:
le, quot

They will be analysed ascendingly in the following order:
le < quot

(10) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
le(gen_0':s:divByZeroError3_0(n507_0), gen_0':s:divByZeroError3_0(n507_0)) → true, rt ∈ Ω(1 + n5070)

Induction Base:
le(gen_0':s:divByZeroError3_0(0), gen_0':s:divByZeroError3_0(0)) →RΩ(1)
true

Induction Step:
le(gen_0':s:divByZeroError3_0(+(n507_0, 1)), gen_0':s:divByZeroError3_0(+(n507_0, 1))) →RΩ(1)
le(gen_0':s:divByZeroError3_0(n507_0), gen_0':s:divByZeroError3_0(n507_0)) →IH
true

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(11) Complex Obligation (BEST)

(12) Obligation:

Innermost TRS:
Rules:
minus(x, x) → 0'
minus(0', x) → 0'
minus(x, 0') → x
minus(s(x), s(y)) → minus(x, y)
le(0', y) → true
le(s(x), 0') → false
le(s(x), s(y)) → le(x, y)
quot(x, y) → if_quot(minus(x, y), y, le(y, 0'), le(y, x))
if_quot(x, y, true, z) → divByZeroError
if_quot(x, y, false, true) → s(quot(x, y))
if_quot(x, y, false, false) → 0'

Types:
minus :: 0':s:divByZeroError → 0':s:divByZeroError → 0':s:divByZeroError
0' :: 0':s:divByZeroError
s :: 0':s:divByZeroError → 0':s:divByZeroError
le :: 0':s:divByZeroError → 0':s:divByZeroError → true:false
true :: true:false
false :: true:false
quot :: 0':s:divByZeroError → 0':s:divByZeroError → 0':s:divByZeroError
if_quot :: 0':s:divByZeroError → 0':s:divByZeroError → true:false → true:false → 0':s:divByZeroError
divByZeroError :: 0':s:divByZeroError
hole_0':s:divByZeroError1_0 :: 0':s:divByZeroError
hole_true:false2_0 :: true:false
gen_0':s:divByZeroError3_0 :: Nat → 0':s:divByZeroError

Lemmas:
minus(gen_0':s:divByZeroError3_0(n5_0), gen_0':s:divByZeroError3_0(n5_0)) → gen_0':s:divByZeroError3_0(0), rt ∈ Ω(1 + n50)
le(gen_0':s:divByZeroError3_0(n507_0), gen_0':s:divByZeroError3_0(n507_0)) → true, rt ∈ Ω(1 + n5070)

Generator Equations:
gen_0':s:divByZeroError3_0(0) ⇔ 0'
gen_0':s:divByZeroError3_0(+(x, 1)) ⇔ s(gen_0':s:divByZeroError3_0(x))

The following defined symbols remain to be analysed:
quot

(13) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol quot.

(14) Obligation:

Innermost TRS:
Rules:
minus(x, x) → 0'
minus(0', x) → 0'
minus(x, 0') → x
minus(s(x), s(y)) → minus(x, y)
le(0', y) → true
le(s(x), 0') → false
le(s(x), s(y)) → le(x, y)
quot(x, y) → if_quot(minus(x, y), y, le(y, 0'), le(y, x))
if_quot(x, y, true, z) → divByZeroError
if_quot(x, y, false, true) → s(quot(x, y))
if_quot(x, y, false, false) → 0'

Types:
minus :: 0':s:divByZeroError → 0':s:divByZeroError → 0':s:divByZeroError
0' :: 0':s:divByZeroError
s :: 0':s:divByZeroError → 0':s:divByZeroError
le :: 0':s:divByZeroError → 0':s:divByZeroError → true:false
true :: true:false
false :: true:false
quot :: 0':s:divByZeroError → 0':s:divByZeroError → 0':s:divByZeroError
if_quot :: 0':s:divByZeroError → 0':s:divByZeroError → true:false → true:false → 0':s:divByZeroError
divByZeroError :: 0':s:divByZeroError
hole_0':s:divByZeroError1_0 :: 0':s:divByZeroError
hole_true:false2_0 :: true:false
gen_0':s:divByZeroError3_0 :: Nat → 0':s:divByZeroError

Lemmas:
minus(gen_0':s:divByZeroError3_0(n5_0), gen_0':s:divByZeroError3_0(n5_0)) → gen_0':s:divByZeroError3_0(0), rt ∈ Ω(1 + n50)
le(gen_0':s:divByZeroError3_0(n507_0), gen_0':s:divByZeroError3_0(n507_0)) → true, rt ∈ Ω(1 + n5070)

Generator Equations:
gen_0':s:divByZeroError3_0(0) ⇔ 0'
gen_0':s:divByZeroError3_0(+(x, 1)) ⇔ s(gen_0':s:divByZeroError3_0(x))

No more defined symbols left to analyse.

(15) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
minus(gen_0':s:divByZeroError3_0(n5_0), gen_0':s:divByZeroError3_0(n5_0)) → gen_0':s:divByZeroError3_0(0), rt ∈ Ω(1 + n50)

(16) BOUNDS(n^1, INF)

(17) Obligation:

Innermost TRS:
Rules:
minus(x, x) → 0'
minus(0', x) → 0'
minus(x, 0') → x
minus(s(x), s(y)) → minus(x, y)
le(0', y) → true
le(s(x), 0') → false
le(s(x), s(y)) → le(x, y)
quot(x, y) → if_quot(minus(x, y), y, le(y, 0'), le(y, x))
if_quot(x, y, true, z) → divByZeroError
if_quot(x, y, false, true) → s(quot(x, y))
if_quot(x, y, false, false) → 0'

Types:
minus :: 0':s:divByZeroError → 0':s:divByZeroError → 0':s:divByZeroError
0' :: 0':s:divByZeroError
s :: 0':s:divByZeroError → 0':s:divByZeroError
le :: 0':s:divByZeroError → 0':s:divByZeroError → true:false
true :: true:false
false :: true:false
quot :: 0':s:divByZeroError → 0':s:divByZeroError → 0':s:divByZeroError
if_quot :: 0':s:divByZeroError → 0':s:divByZeroError → true:false → true:false → 0':s:divByZeroError
divByZeroError :: 0':s:divByZeroError
hole_0':s:divByZeroError1_0 :: 0':s:divByZeroError
hole_true:false2_0 :: true:false
gen_0':s:divByZeroError3_0 :: Nat → 0':s:divByZeroError

Lemmas:
minus(gen_0':s:divByZeroError3_0(n5_0), gen_0':s:divByZeroError3_0(n5_0)) → gen_0':s:divByZeroError3_0(0), rt ∈ Ω(1 + n50)
le(gen_0':s:divByZeroError3_0(n507_0), gen_0':s:divByZeroError3_0(n507_0)) → true, rt ∈ Ω(1 + n5070)

Generator Equations:
gen_0':s:divByZeroError3_0(0) ⇔ 0'
gen_0':s:divByZeroError3_0(+(x, 1)) ⇔ s(gen_0':s:divByZeroError3_0(x))

No more defined symbols left to analyse.

(18) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
minus(gen_0':s:divByZeroError3_0(n5_0), gen_0':s:divByZeroError3_0(n5_0)) → gen_0':s:divByZeroError3_0(0), rt ∈ Ω(1 + n50)

(19) BOUNDS(n^1, INF)

(20) Obligation:

Innermost TRS:
Rules:
minus(x, x) → 0'
minus(0', x) → 0'
minus(x, 0') → x
minus(s(x), s(y)) → minus(x, y)
le(0', y) → true
le(s(x), 0') → false
le(s(x), s(y)) → le(x, y)
quot(x, y) → if_quot(minus(x, y), y, le(y, 0'), le(y, x))
if_quot(x, y, true, z) → divByZeroError
if_quot(x, y, false, true) → s(quot(x, y))
if_quot(x, y, false, false) → 0'

Types:
minus :: 0':s:divByZeroError → 0':s:divByZeroError → 0':s:divByZeroError
0' :: 0':s:divByZeroError
s :: 0':s:divByZeroError → 0':s:divByZeroError
le :: 0':s:divByZeroError → 0':s:divByZeroError → true:false
true :: true:false
false :: true:false
quot :: 0':s:divByZeroError → 0':s:divByZeroError → 0':s:divByZeroError
if_quot :: 0':s:divByZeroError → 0':s:divByZeroError → true:false → true:false → 0':s:divByZeroError
divByZeroError :: 0':s:divByZeroError
hole_0':s:divByZeroError1_0 :: 0':s:divByZeroError
hole_true:false2_0 :: true:false
gen_0':s:divByZeroError3_0 :: Nat → 0':s:divByZeroError

Lemmas:
minus(gen_0':s:divByZeroError3_0(n5_0), gen_0':s:divByZeroError3_0(n5_0)) → gen_0':s:divByZeroError3_0(0), rt ∈ Ω(1 + n50)

Generator Equations:
gen_0':s:divByZeroError3_0(0) ⇔ 0'
gen_0':s:divByZeroError3_0(+(x, 1)) ⇔ s(gen_0':s:divByZeroError3_0(x))

No more defined symbols left to analyse.

(21) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
minus(gen_0':s:divByZeroError3_0(n5_0), gen_0':s:divByZeroError3_0(n5_0)) → gen_0':s:divByZeroError3_0(0), rt ∈ Ω(1 + n50)

(22) BOUNDS(n^1, INF)