(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
rec(rec(x)) → sent(rec(x))
rec(sent(x)) → sent(rec(x))
rec(no(x)) → sent(rec(x))
rec(bot) → up(sent(bot))
rec(up(x)) → up(rec(x))
sent(up(x)) → up(sent(x))
no(up(x)) → up(no(x))
top(rec(up(x))) → top(check(rec(x)))
top(sent(up(x))) → top(check(rec(x)))
top(no(up(x))) → top(check(rec(x)))
check(up(x)) → up(check(x))
check(sent(x)) → sent(check(x))
check(rec(x)) → rec(check(x))
check(no(x)) → no(check(x))
check(no(x)) → no(x)
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
rec(rec(x)) → sent(rec(x))
rec(sent(x)) → sent(rec(x))
rec(no(x)) → sent(rec(x))
rec(bot) → up(sent(bot))
rec(up(x)) → up(rec(x))
sent(up(x)) → up(sent(x))
no(up(x)) → up(no(x))
top(rec(up(x))) → top(check(rec(x)))
top(sent(up(x))) → top(check(rec(x)))
top(no(up(x))) → top(check(rec(x)))
check(up(x)) → up(check(x))
check(sent(x)) → sent(check(x))
check(rec(x)) → rec(check(x))
check(no(x)) → no(check(x))
check(no(x)) → no(x)
S is empty.
Rewrite Strategy: INNERMOST
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
Innermost TRS:
Rules:
rec(rec(x)) → sent(rec(x))
rec(sent(x)) → sent(rec(x))
rec(no(x)) → sent(rec(x))
rec(bot) → up(sent(bot))
rec(up(x)) → up(rec(x))
sent(up(x)) → up(sent(x))
no(up(x)) → up(no(x))
top(rec(up(x))) → top(check(rec(x)))
top(sent(up(x))) → top(check(rec(x)))
top(no(up(x))) → top(check(rec(x)))
check(up(x)) → up(check(x))
check(sent(x)) → sent(check(x))
check(rec(x)) → rec(check(x))
check(no(x)) → no(check(x))
check(no(x)) → no(x)
Types:
rec :: bot:up → bot:up
sent :: bot:up → bot:up
no :: bot:up → bot:up
bot :: bot:up
up :: bot:up → bot:up
top :: bot:up → top
check :: bot:up → bot:up
hole_bot:up1_0 :: bot:up
hole_top2_0 :: top
gen_bot:up3_0 :: Nat → bot:up
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
rec,
sent,
no,
top,
checkThey will be analysed ascendingly in the following order:
sent < rec
rec < top
rec < check
sent < check
no < check
check < top
(6) Obligation:
Innermost TRS:
Rules:
rec(
rec(
x)) →
sent(
rec(
x))
rec(
sent(
x)) →
sent(
rec(
x))
rec(
no(
x)) →
sent(
rec(
x))
rec(
bot) →
up(
sent(
bot))
rec(
up(
x)) →
up(
rec(
x))
sent(
up(
x)) →
up(
sent(
x))
no(
up(
x)) →
up(
no(
x))
top(
rec(
up(
x))) →
top(
check(
rec(
x)))
top(
sent(
up(
x))) →
top(
check(
rec(
x)))
top(
no(
up(
x))) →
top(
check(
rec(
x)))
check(
up(
x)) →
up(
check(
x))
check(
sent(
x)) →
sent(
check(
x))
check(
rec(
x)) →
rec(
check(
x))
check(
no(
x)) →
no(
check(
x))
check(
no(
x)) →
no(
x)
Types:
rec :: bot:up → bot:up
sent :: bot:up → bot:up
no :: bot:up → bot:up
bot :: bot:up
up :: bot:up → bot:up
top :: bot:up → top
check :: bot:up → bot:up
hole_bot:up1_0 :: bot:up
hole_top2_0 :: top
gen_bot:up3_0 :: Nat → bot:up
Generator Equations:
gen_bot:up3_0(0) ⇔ bot
gen_bot:up3_0(+(x, 1)) ⇔ up(gen_bot:up3_0(x))
The following defined symbols remain to be analysed:
sent, rec, no, top, check
They will be analysed ascendingly in the following order:
sent < rec
rec < top
rec < check
sent < check
no < check
check < top
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
sent(
gen_bot:up3_0(
+(
1,
n5_0))) →
*4_0, rt ∈ Ω(n5
0)
Induction Base:
sent(gen_bot:up3_0(+(1, 0)))
Induction Step:
sent(gen_bot:up3_0(+(1, +(n5_0, 1)))) →RΩ(1)
up(sent(gen_bot:up3_0(+(1, n5_0)))) →IH
up(*4_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
Innermost TRS:
Rules:
rec(
rec(
x)) →
sent(
rec(
x))
rec(
sent(
x)) →
sent(
rec(
x))
rec(
no(
x)) →
sent(
rec(
x))
rec(
bot) →
up(
sent(
bot))
rec(
up(
x)) →
up(
rec(
x))
sent(
up(
x)) →
up(
sent(
x))
no(
up(
x)) →
up(
no(
x))
top(
rec(
up(
x))) →
top(
check(
rec(
x)))
top(
sent(
up(
x))) →
top(
check(
rec(
x)))
top(
no(
up(
x))) →
top(
check(
rec(
x)))
check(
up(
x)) →
up(
check(
x))
check(
sent(
x)) →
sent(
check(
x))
check(
rec(
x)) →
rec(
check(
x))
check(
no(
x)) →
no(
check(
x))
check(
no(
x)) →
no(
x)
Types:
rec :: bot:up → bot:up
sent :: bot:up → bot:up
no :: bot:up → bot:up
bot :: bot:up
up :: bot:up → bot:up
top :: bot:up → top
check :: bot:up → bot:up
hole_bot:up1_0 :: bot:up
hole_top2_0 :: top
gen_bot:up3_0 :: Nat → bot:up
Lemmas:
sent(gen_bot:up3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
Generator Equations:
gen_bot:up3_0(0) ⇔ bot
gen_bot:up3_0(+(x, 1)) ⇔ up(gen_bot:up3_0(x))
The following defined symbols remain to be analysed:
rec, no, top, check
They will be analysed ascendingly in the following order:
rec < top
rec < check
no < check
check < top
(10) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
rec(
gen_bot:up3_0(
+(
1,
n203_0))) →
*4_0, rt ∈ Ω(n203
0)
Induction Base:
rec(gen_bot:up3_0(+(1, 0)))
Induction Step:
rec(gen_bot:up3_0(+(1, +(n203_0, 1)))) →RΩ(1)
up(rec(gen_bot:up3_0(+(1, n203_0)))) →IH
up(*4_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(11) Complex Obligation (BEST)
(12) Obligation:
Innermost TRS:
Rules:
rec(
rec(
x)) →
sent(
rec(
x))
rec(
sent(
x)) →
sent(
rec(
x))
rec(
no(
x)) →
sent(
rec(
x))
rec(
bot) →
up(
sent(
bot))
rec(
up(
x)) →
up(
rec(
x))
sent(
up(
x)) →
up(
sent(
x))
no(
up(
x)) →
up(
no(
x))
top(
rec(
up(
x))) →
top(
check(
rec(
x)))
top(
sent(
up(
x))) →
top(
check(
rec(
x)))
top(
no(
up(
x))) →
top(
check(
rec(
x)))
check(
up(
x)) →
up(
check(
x))
check(
sent(
x)) →
sent(
check(
x))
check(
rec(
x)) →
rec(
check(
x))
check(
no(
x)) →
no(
check(
x))
check(
no(
x)) →
no(
x)
Types:
rec :: bot:up → bot:up
sent :: bot:up → bot:up
no :: bot:up → bot:up
bot :: bot:up
up :: bot:up → bot:up
top :: bot:up → top
check :: bot:up → bot:up
hole_bot:up1_0 :: bot:up
hole_top2_0 :: top
gen_bot:up3_0 :: Nat → bot:up
Lemmas:
sent(gen_bot:up3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
rec(gen_bot:up3_0(+(1, n203_0))) → *4_0, rt ∈ Ω(n2030)
Generator Equations:
gen_bot:up3_0(0) ⇔ bot
gen_bot:up3_0(+(x, 1)) ⇔ up(gen_bot:up3_0(x))
The following defined symbols remain to be analysed:
no, top, check
They will be analysed ascendingly in the following order:
no < check
check < top
(13) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
no(
gen_bot:up3_0(
+(
1,
n160409_0))) →
*4_0, rt ∈ Ω(n160409
0)
Induction Base:
no(gen_bot:up3_0(+(1, 0)))
Induction Step:
no(gen_bot:up3_0(+(1, +(n160409_0, 1)))) →RΩ(1)
up(no(gen_bot:up3_0(+(1, n160409_0)))) →IH
up(*4_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(14) Complex Obligation (BEST)
(15) Obligation:
Innermost TRS:
Rules:
rec(
rec(
x)) →
sent(
rec(
x))
rec(
sent(
x)) →
sent(
rec(
x))
rec(
no(
x)) →
sent(
rec(
x))
rec(
bot) →
up(
sent(
bot))
rec(
up(
x)) →
up(
rec(
x))
sent(
up(
x)) →
up(
sent(
x))
no(
up(
x)) →
up(
no(
x))
top(
rec(
up(
x))) →
top(
check(
rec(
x)))
top(
sent(
up(
x))) →
top(
check(
rec(
x)))
top(
no(
up(
x))) →
top(
check(
rec(
x)))
check(
up(
x)) →
up(
check(
x))
check(
sent(
x)) →
sent(
check(
x))
check(
rec(
x)) →
rec(
check(
x))
check(
no(
x)) →
no(
check(
x))
check(
no(
x)) →
no(
x)
Types:
rec :: bot:up → bot:up
sent :: bot:up → bot:up
no :: bot:up → bot:up
bot :: bot:up
up :: bot:up → bot:up
top :: bot:up → top
check :: bot:up → bot:up
hole_bot:up1_0 :: bot:up
hole_top2_0 :: top
gen_bot:up3_0 :: Nat → bot:up
Lemmas:
sent(gen_bot:up3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
rec(gen_bot:up3_0(+(1, n203_0))) → *4_0, rt ∈ Ω(n2030)
no(gen_bot:up3_0(+(1, n160409_0))) → *4_0, rt ∈ Ω(n1604090)
Generator Equations:
gen_bot:up3_0(0) ⇔ bot
gen_bot:up3_0(+(x, 1)) ⇔ up(gen_bot:up3_0(x))
The following defined symbols remain to be analysed:
check, top
They will be analysed ascendingly in the following order:
check < top
(16) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
check(
gen_bot:up3_0(
+(
1,
n160809_0))) →
*4_0, rt ∈ Ω(n160809
0)
Induction Base:
check(gen_bot:up3_0(+(1, 0)))
Induction Step:
check(gen_bot:up3_0(+(1, +(n160809_0, 1)))) →RΩ(1)
up(check(gen_bot:up3_0(+(1, n160809_0)))) →IH
up(*4_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(17) Complex Obligation (BEST)
(18) Obligation:
Innermost TRS:
Rules:
rec(
rec(
x)) →
sent(
rec(
x))
rec(
sent(
x)) →
sent(
rec(
x))
rec(
no(
x)) →
sent(
rec(
x))
rec(
bot) →
up(
sent(
bot))
rec(
up(
x)) →
up(
rec(
x))
sent(
up(
x)) →
up(
sent(
x))
no(
up(
x)) →
up(
no(
x))
top(
rec(
up(
x))) →
top(
check(
rec(
x)))
top(
sent(
up(
x))) →
top(
check(
rec(
x)))
top(
no(
up(
x))) →
top(
check(
rec(
x)))
check(
up(
x)) →
up(
check(
x))
check(
sent(
x)) →
sent(
check(
x))
check(
rec(
x)) →
rec(
check(
x))
check(
no(
x)) →
no(
check(
x))
check(
no(
x)) →
no(
x)
Types:
rec :: bot:up → bot:up
sent :: bot:up → bot:up
no :: bot:up → bot:up
bot :: bot:up
up :: bot:up → bot:up
top :: bot:up → top
check :: bot:up → bot:up
hole_bot:up1_0 :: bot:up
hole_top2_0 :: top
gen_bot:up3_0 :: Nat → bot:up
Lemmas:
sent(gen_bot:up3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
rec(gen_bot:up3_0(+(1, n203_0))) → *4_0, rt ∈ Ω(n2030)
no(gen_bot:up3_0(+(1, n160409_0))) → *4_0, rt ∈ Ω(n1604090)
check(gen_bot:up3_0(+(1, n160809_0))) → *4_0, rt ∈ Ω(n1608090)
Generator Equations:
gen_bot:up3_0(0) ⇔ bot
gen_bot:up3_0(+(x, 1)) ⇔ up(gen_bot:up3_0(x))
The following defined symbols remain to be analysed:
top
(19) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol top.
(20) Obligation:
Innermost TRS:
Rules:
rec(
rec(
x)) →
sent(
rec(
x))
rec(
sent(
x)) →
sent(
rec(
x))
rec(
no(
x)) →
sent(
rec(
x))
rec(
bot) →
up(
sent(
bot))
rec(
up(
x)) →
up(
rec(
x))
sent(
up(
x)) →
up(
sent(
x))
no(
up(
x)) →
up(
no(
x))
top(
rec(
up(
x))) →
top(
check(
rec(
x)))
top(
sent(
up(
x))) →
top(
check(
rec(
x)))
top(
no(
up(
x))) →
top(
check(
rec(
x)))
check(
up(
x)) →
up(
check(
x))
check(
sent(
x)) →
sent(
check(
x))
check(
rec(
x)) →
rec(
check(
x))
check(
no(
x)) →
no(
check(
x))
check(
no(
x)) →
no(
x)
Types:
rec :: bot:up → bot:up
sent :: bot:up → bot:up
no :: bot:up → bot:up
bot :: bot:up
up :: bot:up → bot:up
top :: bot:up → top
check :: bot:up → bot:up
hole_bot:up1_0 :: bot:up
hole_top2_0 :: top
gen_bot:up3_0 :: Nat → bot:up
Lemmas:
sent(gen_bot:up3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
rec(gen_bot:up3_0(+(1, n203_0))) → *4_0, rt ∈ Ω(n2030)
no(gen_bot:up3_0(+(1, n160409_0))) → *4_0, rt ∈ Ω(n1604090)
check(gen_bot:up3_0(+(1, n160809_0))) → *4_0, rt ∈ Ω(n1608090)
Generator Equations:
gen_bot:up3_0(0) ⇔ bot
gen_bot:up3_0(+(x, 1)) ⇔ up(gen_bot:up3_0(x))
No more defined symbols left to analyse.
(21) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
sent(gen_bot:up3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
(22) BOUNDS(n^1, INF)
(23) Obligation:
Innermost TRS:
Rules:
rec(
rec(
x)) →
sent(
rec(
x))
rec(
sent(
x)) →
sent(
rec(
x))
rec(
no(
x)) →
sent(
rec(
x))
rec(
bot) →
up(
sent(
bot))
rec(
up(
x)) →
up(
rec(
x))
sent(
up(
x)) →
up(
sent(
x))
no(
up(
x)) →
up(
no(
x))
top(
rec(
up(
x))) →
top(
check(
rec(
x)))
top(
sent(
up(
x))) →
top(
check(
rec(
x)))
top(
no(
up(
x))) →
top(
check(
rec(
x)))
check(
up(
x)) →
up(
check(
x))
check(
sent(
x)) →
sent(
check(
x))
check(
rec(
x)) →
rec(
check(
x))
check(
no(
x)) →
no(
check(
x))
check(
no(
x)) →
no(
x)
Types:
rec :: bot:up → bot:up
sent :: bot:up → bot:up
no :: bot:up → bot:up
bot :: bot:up
up :: bot:up → bot:up
top :: bot:up → top
check :: bot:up → bot:up
hole_bot:up1_0 :: bot:up
hole_top2_0 :: top
gen_bot:up3_0 :: Nat → bot:up
Lemmas:
sent(gen_bot:up3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
rec(gen_bot:up3_0(+(1, n203_0))) → *4_0, rt ∈ Ω(n2030)
no(gen_bot:up3_0(+(1, n160409_0))) → *4_0, rt ∈ Ω(n1604090)
check(gen_bot:up3_0(+(1, n160809_0))) → *4_0, rt ∈ Ω(n1608090)
Generator Equations:
gen_bot:up3_0(0) ⇔ bot
gen_bot:up3_0(+(x, 1)) ⇔ up(gen_bot:up3_0(x))
No more defined symbols left to analyse.
(24) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
sent(gen_bot:up3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
(25) BOUNDS(n^1, INF)
(26) Obligation:
Innermost TRS:
Rules:
rec(
rec(
x)) →
sent(
rec(
x))
rec(
sent(
x)) →
sent(
rec(
x))
rec(
no(
x)) →
sent(
rec(
x))
rec(
bot) →
up(
sent(
bot))
rec(
up(
x)) →
up(
rec(
x))
sent(
up(
x)) →
up(
sent(
x))
no(
up(
x)) →
up(
no(
x))
top(
rec(
up(
x))) →
top(
check(
rec(
x)))
top(
sent(
up(
x))) →
top(
check(
rec(
x)))
top(
no(
up(
x))) →
top(
check(
rec(
x)))
check(
up(
x)) →
up(
check(
x))
check(
sent(
x)) →
sent(
check(
x))
check(
rec(
x)) →
rec(
check(
x))
check(
no(
x)) →
no(
check(
x))
check(
no(
x)) →
no(
x)
Types:
rec :: bot:up → bot:up
sent :: bot:up → bot:up
no :: bot:up → bot:up
bot :: bot:up
up :: bot:up → bot:up
top :: bot:up → top
check :: bot:up → bot:up
hole_bot:up1_0 :: bot:up
hole_top2_0 :: top
gen_bot:up3_0 :: Nat → bot:up
Lemmas:
sent(gen_bot:up3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
rec(gen_bot:up3_0(+(1, n203_0))) → *4_0, rt ∈ Ω(n2030)
no(gen_bot:up3_0(+(1, n160409_0))) → *4_0, rt ∈ Ω(n1604090)
Generator Equations:
gen_bot:up3_0(0) ⇔ bot
gen_bot:up3_0(+(x, 1)) ⇔ up(gen_bot:up3_0(x))
No more defined symbols left to analyse.
(27) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
sent(gen_bot:up3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
(28) BOUNDS(n^1, INF)
(29) Obligation:
Innermost TRS:
Rules:
rec(
rec(
x)) →
sent(
rec(
x))
rec(
sent(
x)) →
sent(
rec(
x))
rec(
no(
x)) →
sent(
rec(
x))
rec(
bot) →
up(
sent(
bot))
rec(
up(
x)) →
up(
rec(
x))
sent(
up(
x)) →
up(
sent(
x))
no(
up(
x)) →
up(
no(
x))
top(
rec(
up(
x))) →
top(
check(
rec(
x)))
top(
sent(
up(
x))) →
top(
check(
rec(
x)))
top(
no(
up(
x))) →
top(
check(
rec(
x)))
check(
up(
x)) →
up(
check(
x))
check(
sent(
x)) →
sent(
check(
x))
check(
rec(
x)) →
rec(
check(
x))
check(
no(
x)) →
no(
check(
x))
check(
no(
x)) →
no(
x)
Types:
rec :: bot:up → bot:up
sent :: bot:up → bot:up
no :: bot:up → bot:up
bot :: bot:up
up :: bot:up → bot:up
top :: bot:up → top
check :: bot:up → bot:up
hole_bot:up1_0 :: bot:up
hole_top2_0 :: top
gen_bot:up3_0 :: Nat → bot:up
Lemmas:
sent(gen_bot:up3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
rec(gen_bot:up3_0(+(1, n203_0))) → *4_0, rt ∈ Ω(n2030)
Generator Equations:
gen_bot:up3_0(0) ⇔ bot
gen_bot:up3_0(+(x, 1)) ⇔ up(gen_bot:up3_0(x))
No more defined symbols left to analyse.
(30) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
sent(gen_bot:up3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
(31) BOUNDS(n^1, INF)
(32) Obligation:
Innermost TRS:
Rules:
rec(
rec(
x)) →
sent(
rec(
x))
rec(
sent(
x)) →
sent(
rec(
x))
rec(
no(
x)) →
sent(
rec(
x))
rec(
bot) →
up(
sent(
bot))
rec(
up(
x)) →
up(
rec(
x))
sent(
up(
x)) →
up(
sent(
x))
no(
up(
x)) →
up(
no(
x))
top(
rec(
up(
x))) →
top(
check(
rec(
x)))
top(
sent(
up(
x))) →
top(
check(
rec(
x)))
top(
no(
up(
x))) →
top(
check(
rec(
x)))
check(
up(
x)) →
up(
check(
x))
check(
sent(
x)) →
sent(
check(
x))
check(
rec(
x)) →
rec(
check(
x))
check(
no(
x)) →
no(
check(
x))
check(
no(
x)) →
no(
x)
Types:
rec :: bot:up → bot:up
sent :: bot:up → bot:up
no :: bot:up → bot:up
bot :: bot:up
up :: bot:up → bot:up
top :: bot:up → top
check :: bot:up → bot:up
hole_bot:up1_0 :: bot:up
hole_top2_0 :: top
gen_bot:up3_0 :: Nat → bot:up
Lemmas:
sent(gen_bot:up3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
Generator Equations:
gen_bot:up3_0(0) ⇔ bot
gen_bot:up3_0(+(x, 1)) ⇔ up(gen_bot:up3_0(x))
No more defined symbols left to analyse.
(33) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
sent(gen_bot:up3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
(34) BOUNDS(n^1, INF)