*** 1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: check(cons(x,y)) -> cons(x,y) check(cons(x,y)) -> cons(x,check(y)) check(cons(x,y)) -> cons(check(x),y) check(rest(x)) -> rest(check(x)) check(sent(x)) -> sent(check(x)) rest(cons(x,y)) -> sent(y) rest(nil()) -> sent(nil()) top(sent(x)) -> top(check(rest(x))) Weak DP Rules: Weak TRS Rules: Signature: {check/1,rest/1,top/1} / {cons/2,nil/0,sent/1} Obligation: Innermost basic terms: {check,rest,top}/{cons,nil,sent} Applied Processor: DependencyPairs {dpKind_ = DT} Proof: We add the following dependency tuples: Strict DPs check#(cons(x,y)) -> c_1() check#(cons(x,y)) -> c_2(check#(y)) check#(cons(x,y)) -> c_3(check#(x)) check#(rest(x)) -> c_4(rest#(check(x)),check#(x)) check#(sent(x)) -> c_5(check#(x)) rest#(cons(x,y)) -> c_6() rest#(nil()) -> c_7() top#(sent(x)) -> c_8(top#(check(rest(x))),check#(rest(x)),rest#(x)) Weak DPs and mark the set of starting terms. *** 1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: check#(cons(x,y)) -> c_1() check#(cons(x,y)) -> c_2(check#(y)) check#(cons(x,y)) -> c_3(check#(x)) check#(rest(x)) -> c_4(rest#(check(x)),check#(x)) check#(sent(x)) -> c_5(check#(x)) rest#(cons(x,y)) -> c_6() rest#(nil()) -> c_7() top#(sent(x)) -> c_8(top#(check(rest(x))),check#(rest(x)),rest#(x)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: check(cons(x,y)) -> cons(x,y) check(cons(x,y)) -> cons(x,check(y)) check(cons(x,y)) -> cons(check(x),y) check(rest(x)) -> rest(check(x)) check(sent(x)) -> sent(check(x)) rest(cons(x,y)) -> sent(y) rest(nil()) -> sent(nil()) top(sent(x)) -> top(check(rest(x))) Signature: {check/1,rest/1,top/1,check#/1,rest#/1,top#/1} / {cons/2,nil/0,sent/1,c_1/0,c_2/1,c_3/1,c_4/2,c_5/1,c_6/0,c_7/0,c_8/3} Obligation: Innermost basic terms: {check#,rest#,top#}/{cons,nil,sent} Applied Processor: UsableRules Proof: We replace rewrite rules by usable rules: check(cons(x,y)) -> cons(x,y) check(cons(x,y)) -> cons(x,check(y)) check(cons(x,y)) -> cons(check(x),y) check(rest(x)) -> rest(check(x)) check(sent(x)) -> sent(check(x)) rest(cons(x,y)) -> sent(y) rest(nil()) -> sent(nil()) check#(cons(x,y)) -> c_1() check#(cons(x,y)) -> c_2(check#(y)) check#(cons(x,y)) -> c_3(check#(x)) check#(rest(x)) -> c_4(rest#(check(x)),check#(x)) check#(sent(x)) -> c_5(check#(x)) rest#(cons(x,y)) -> c_6() rest#(nil()) -> c_7() top#(sent(x)) -> c_8(top#(check(rest(x))),check#(rest(x)),rest#(x)) *** 1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: check#(cons(x,y)) -> c_1() check#(cons(x,y)) -> c_2(check#(y)) check#(cons(x,y)) -> c_3(check#(x)) check#(rest(x)) -> c_4(rest#(check(x)),check#(x)) check#(sent(x)) -> c_5(check#(x)) rest#(cons(x,y)) -> c_6() rest#(nil()) -> c_7() top#(sent(x)) -> c_8(top#(check(rest(x))),check#(rest(x)),rest#(x)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: check(cons(x,y)) -> cons(x,y) check(cons(x,y)) -> cons(x,check(y)) check(cons(x,y)) -> cons(check(x),y) check(rest(x)) -> rest(check(x)) check(sent(x)) -> sent(check(x)) rest(cons(x,y)) -> sent(y) rest(nil()) -> sent(nil()) Signature: {check/1,rest/1,top/1,check#/1,rest#/1,top#/1} / {cons/2,nil/0,sent/1,c_1/0,c_2/1,c_3/1,c_4/2,c_5/1,c_6/0,c_7/0,c_8/3} Obligation: Innermost basic terms: {check#,rest#,top#}/{cons,nil,sent} Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} Proof: We estimate the number of application of {1,6,7} by application of Pre({1,6,7}) = {2,3,4,5,8}. Here rules are labelled as follows: 1: check#(cons(x,y)) -> c_1() 2: check#(cons(x,y)) -> c_2(check#(y)) 3: check#(cons(x,y)) -> c_3(check#(x)) 4: check#(rest(x)) -> c_4(rest#(check(x)),check#(x)) 5: check#(sent(x)) -> c_5(check#(x)) 6: rest#(cons(x,y)) -> c_6() 7: rest#(nil()) -> c_7() 8: top#(sent(x)) -> c_8(top#(check(rest(x))) ,check#(rest(x)) ,rest#(x)) *** 1.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: check#(cons(x,y)) -> c_2(check#(y)) check#(cons(x,y)) -> c_3(check#(x)) check#(rest(x)) -> c_4(rest#(check(x)),check#(x)) check#(sent(x)) -> c_5(check#(x)) top#(sent(x)) -> c_8(top#(check(rest(x))),check#(rest(x)),rest#(x)) Strict TRS Rules: Weak DP Rules: check#(cons(x,y)) -> c_1() rest#(cons(x,y)) -> c_6() rest#(nil()) -> c_7() Weak TRS Rules: check(cons(x,y)) -> cons(x,y) check(cons(x,y)) -> cons(x,check(y)) check(cons(x,y)) -> cons(check(x),y) check(rest(x)) -> rest(check(x)) check(sent(x)) -> sent(check(x)) rest(cons(x,y)) -> sent(y) rest(nil()) -> sent(nil()) Signature: {check/1,rest/1,top/1,check#/1,rest#/1,top#/1} / {cons/2,nil/0,sent/1,c_1/0,c_2/1,c_3/1,c_4/2,c_5/1,c_6/0,c_7/0,c_8/3} Obligation: Innermost basic terms: {check#,rest#,top#}/{cons,nil,sent} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:check#(cons(x,y)) -> c_2(check#(y)) -->_1 check#(sent(x)) -> c_5(check#(x)):4 -->_1 check#(rest(x)) -> c_4(rest#(check(x)),check#(x)):3 -->_1 check#(cons(x,y)) -> c_3(check#(x)):2 -->_1 check#(cons(x,y)) -> c_1():6 -->_1 check#(cons(x,y)) -> c_2(check#(y)):1 2:S:check#(cons(x,y)) -> c_3(check#(x)) -->_1 check#(sent(x)) -> c_5(check#(x)):4 -->_1 check#(rest(x)) -> c_4(rest#(check(x)),check#(x)):3 -->_1 check#(cons(x,y)) -> c_1():6 -->_1 check#(cons(x,y)) -> c_3(check#(x)):2 -->_1 check#(cons(x,y)) -> c_2(check#(y)):1 3:S:check#(rest(x)) -> c_4(rest#(check(x)),check#(x)) -->_2 check#(sent(x)) -> c_5(check#(x)):4 -->_1 rest#(nil()) -> c_7():8 -->_1 rest#(cons(x,y)) -> c_6():7 -->_2 check#(cons(x,y)) -> c_1():6 -->_2 check#(rest(x)) -> c_4(rest#(check(x)),check#(x)):3 -->_2 check#(cons(x,y)) -> c_3(check#(x)):2 -->_2 check#(cons(x,y)) -> c_2(check#(y)):1 4:S:check#(sent(x)) -> c_5(check#(x)) -->_1 check#(cons(x,y)) -> c_1():6 -->_1 check#(sent(x)) -> c_5(check#(x)):4 -->_1 check#(rest(x)) -> c_4(rest#(check(x)),check#(x)):3 -->_1 check#(cons(x,y)) -> c_3(check#(x)):2 -->_1 check#(cons(x,y)) -> c_2(check#(y)):1 5:S:top#(sent(x)) -> c_8(top#(check(rest(x))),check#(rest(x)),rest#(x)) -->_3 rest#(nil()) -> c_7():8 -->_3 rest#(cons(x,y)) -> c_6():7 -->_2 check#(cons(x,y)) -> c_1():6 -->_1 top#(sent(x)) -> c_8(top#(check(rest(x))),check#(rest(x)),rest#(x)):5 -->_2 check#(sent(x)) -> c_5(check#(x)):4 -->_2 check#(rest(x)) -> c_4(rest#(check(x)),check#(x)):3 -->_2 check#(cons(x,y)) -> c_3(check#(x)):2 -->_2 check#(cons(x,y)) -> c_2(check#(y)):1 6:W:check#(cons(x,y)) -> c_1() 7:W:rest#(cons(x,y)) -> c_6() 8:W:rest#(nil()) -> c_7() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 7: rest#(cons(x,y)) -> c_6() 8: rest#(nil()) -> c_7() 6: check#(cons(x,y)) -> c_1() *** 1.1.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: check#(cons(x,y)) -> c_2(check#(y)) check#(cons(x,y)) -> c_3(check#(x)) check#(rest(x)) -> c_4(rest#(check(x)),check#(x)) check#(sent(x)) -> c_5(check#(x)) top#(sent(x)) -> c_8(top#(check(rest(x))),check#(rest(x)),rest#(x)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: check(cons(x,y)) -> cons(x,y) check(cons(x,y)) -> cons(x,check(y)) check(cons(x,y)) -> cons(check(x),y) check(rest(x)) -> rest(check(x)) check(sent(x)) -> sent(check(x)) rest(cons(x,y)) -> sent(y) rest(nil()) -> sent(nil()) Signature: {check/1,rest/1,top/1,check#/1,rest#/1,top#/1} / {cons/2,nil/0,sent/1,c_1/0,c_2/1,c_3/1,c_4/2,c_5/1,c_6/0,c_7/0,c_8/3} Obligation: Innermost basic terms: {check#,rest#,top#}/{cons,nil,sent} Applied Processor: SimplifyRHS Proof: Consider the dependency graph 1:S:check#(cons(x,y)) -> c_2(check#(y)) -->_1 check#(sent(x)) -> c_5(check#(x)):4 -->_1 check#(rest(x)) -> c_4(rest#(check(x)),check#(x)):3 -->_1 check#(cons(x,y)) -> c_3(check#(x)):2 -->_1 check#(cons(x,y)) -> c_2(check#(y)):1 2:S:check#(cons(x,y)) -> c_3(check#(x)) -->_1 check#(sent(x)) -> c_5(check#(x)):4 -->_1 check#(rest(x)) -> c_4(rest#(check(x)),check#(x)):3 -->_1 check#(cons(x,y)) -> c_3(check#(x)):2 -->_1 check#(cons(x,y)) -> c_2(check#(y)):1 3:S:check#(rest(x)) -> c_4(rest#(check(x)),check#(x)) -->_2 check#(sent(x)) -> c_5(check#(x)):4 -->_2 check#(rest(x)) -> c_4(rest#(check(x)),check#(x)):3 -->_2 check#(cons(x,y)) -> c_3(check#(x)):2 -->_2 check#(cons(x,y)) -> c_2(check#(y)):1 4:S:check#(sent(x)) -> c_5(check#(x)) -->_1 check#(sent(x)) -> c_5(check#(x)):4 -->_1 check#(rest(x)) -> c_4(rest#(check(x)),check#(x)):3 -->_1 check#(cons(x,y)) -> c_3(check#(x)):2 -->_1 check#(cons(x,y)) -> c_2(check#(y)):1 5:S:top#(sent(x)) -> c_8(top#(check(rest(x))),check#(rest(x)),rest#(x)) -->_1 top#(sent(x)) -> c_8(top#(check(rest(x))),check#(rest(x)),rest#(x)):5 -->_2 check#(sent(x)) -> c_5(check#(x)):4 -->_2 check#(rest(x)) -> c_4(rest#(check(x)),check#(x)):3 -->_2 check#(cons(x,y)) -> c_3(check#(x)):2 -->_2 check#(cons(x,y)) -> c_2(check#(y)):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: check#(rest(x)) -> c_4(check#(x)) top#(sent(x)) -> c_8(top#(check(rest(x))),check#(rest(x))) *** 1.1.1.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: check#(cons(x,y)) -> c_2(check#(y)) check#(cons(x,y)) -> c_3(check#(x)) check#(rest(x)) -> c_4(check#(x)) check#(sent(x)) -> c_5(check#(x)) top#(sent(x)) -> c_8(top#(check(rest(x))),check#(rest(x))) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: check(cons(x,y)) -> cons(x,y) check(cons(x,y)) -> cons(x,check(y)) check(cons(x,y)) -> cons(check(x),y) check(rest(x)) -> rest(check(x)) check(sent(x)) -> sent(check(x)) rest(cons(x,y)) -> sent(y) rest(nil()) -> sent(nil()) Signature: {check/1,rest/1,top/1,check#/1,rest#/1,top#/1} / {cons/2,nil/0,sent/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/0,c_7/0,c_8/2} Obligation: Innermost basic terms: {check#,rest#,top#}/{cons,nil,sent} Applied Processor: Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd} Proof: We analyse the complexity of following sub-problems (R) and (S). Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component. Problem (R) Strict DP Rules: check#(cons(x,y)) -> c_2(check#(y)) check#(cons(x,y)) -> c_3(check#(x)) check#(rest(x)) -> c_4(check#(x)) check#(sent(x)) -> c_5(check#(x)) Strict TRS Rules: Weak DP Rules: top#(sent(x)) -> c_8(top#(check(rest(x))),check#(rest(x))) Weak TRS Rules: check(cons(x,y)) -> cons(x,y) check(cons(x,y)) -> cons(x,check(y)) check(cons(x,y)) -> cons(check(x),y) check(rest(x)) -> rest(check(x)) check(sent(x)) -> sent(check(x)) rest(cons(x,y)) -> sent(y) rest(nil()) -> sent(nil()) Signature: {check/1,rest/1,top/1,check#/1,rest#/1,top#/1} / {cons/2,nil/0,sent/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/0,c_7/0,c_8/2} Obligation: Innermost basic terms: {check#,rest#,top#}/{cons,nil,sent} Problem (S) Strict DP Rules: top#(sent(x)) -> c_8(top#(check(rest(x))),check#(rest(x))) Strict TRS Rules: Weak DP Rules: check#(cons(x,y)) -> c_2(check#(y)) check#(cons(x,y)) -> c_3(check#(x)) check#(rest(x)) -> c_4(check#(x)) check#(sent(x)) -> c_5(check#(x)) Weak TRS Rules: check(cons(x,y)) -> cons(x,y) check(cons(x,y)) -> cons(x,check(y)) check(cons(x,y)) -> cons(check(x),y) check(rest(x)) -> rest(check(x)) check(sent(x)) -> sent(check(x)) rest(cons(x,y)) -> sent(y) rest(nil()) -> sent(nil()) Signature: {check/1,rest/1,top/1,check#/1,rest#/1,top#/1} / {cons/2,nil/0,sent/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/0,c_7/0,c_8/2} Obligation: Innermost basic terms: {check#,rest#,top#}/{cons,nil,sent} *** 1.1.1.1.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: check#(cons(x,y)) -> c_2(check#(y)) check#(cons(x,y)) -> c_3(check#(x)) check#(rest(x)) -> c_4(check#(x)) check#(sent(x)) -> c_5(check#(x)) Strict TRS Rules: Weak DP Rules: top#(sent(x)) -> c_8(top#(check(rest(x))),check#(rest(x))) Weak TRS Rules: check(cons(x,y)) -> cons(x,y) check(cons(x,y)) -> cons(x,check(y)) check(cons(x,y)) -> cons(check(x),y) check(rest(x)) -> rest(check(x)) check(sent(x)) -> sent(check(x)) rest(cons(x,y)) -> sent(y) rest(nil()) -> sent(nil()) Signature: {check/1,rest/1,top/1,check#/1,rest#/1,top#/1} / {cons/2,nil/0,sent/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/0,c_7/0,c_8/2} Obligation: Innermost basic terms: {check#,rest#,top#}/{cons,nil,sent} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: check#(cons(x,y)) -> c_2(check#(y)) 2: check#(cons(x,y)) -> c_3(check#(x)) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: check#(cons(x,y)) -> c_2(check#(y)) check#(cons(x,y)) -> c_3(check#(x)) check#(rest(x)) -> c_4(check#(x)) check#(sent(x)) -> c_5(check#(x)) Strict TRS Rules: Weak DP Rules: top#(sent(x)) -> c_8(top#(check(rest(x))),check#(rest(x))) Weak TRS Rules: check(cons(x,y)) -> cons(x,y) check(cons(x,y)) -> cons(x,check(y)) check(cons(x,y)) -> cons(check(x),y) check(rest(x)) -> rest(check(x)) check(sent(x)) -> sent(check(x)) rest(cons(x,y)) -> sent(y) rest(nil()) -> sent(nil()) Signature: {check/1,rest/1,top/1,check#/1,rest#/1,top#/1} / {cons/2,nil/0,sent/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/0,c_7/0,c_8/2} Obligation: Innermost basic terms: {check#,rest#,top#}/{cons,nil,sent} Applied Processor: NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_2) = {1}, uargs(c_3) = {1}, uargs(c_4) = {1}, uargs(c_5) = {1}, uargs(c_8) = {1,2} Following symbols are considered usable: {check,rest,check#,rest#,top#} TcT has computed the following interpretation: p(check) = [1 0] x1 + [0] [0 1] [0] p(cons) = [0 0] x1 + [1 4] x2 + [0] [0 1] [0 1] [2] p(nil) = [0] [0] p(rest) = [1 0] x1 + [1] [0 4] [0] p(sent) = [1 4] x1 + [1] [0 1] [0] p(top) = [0 2] x1 + [1] [1 0] [0] p(check#) = [0 1] x1 + [0] [0 2] [0] p(rest#) = [2 0] x1 + [2] [0 0] [1] p(top#) = [1 0] x1 + [3] [2 2] [6] p(c_1) = [4] [1] p(c_2) = [1 0] x1 + [0] [0 1] [4] p(c_3) = [1 0] x1 + [0] [0 0] [0] p(c_4) = [1 1] x1 + [0] [6 0] [0] p(c_5) = [1 0] x1 + [0] [2 0] [0] p(c_6) = [1] [0] p(c_7) = [0] [0] p(c_8) = [1 0] x1 + [1 0] x2 + [0] [2 0] [0 0] [0] Following rules are strictly oriented: check#(cons(x,y)) = [0 1] x + [0 1] y + [2] [0 2] [0 2] [4] > [0 1] y + [0] [0 2] [4] = c_2(check#(y)) check#(cons(x,y)) = [0 1] x + [0 1] y + [2] [0 2] [0 2] [4] > [0 1] x + [0] [0 0] [0] = c_3(check#(x)) Following rules are (at-least) weakly oriented: check#(rest(x)) = [0 4] x + [0] [0 8] [0] >= [0 3] x + [0] [0 6] [0] = c_4(check#(x)) check#(sent(x)) = [0 1] x + [0] [0 2] [0] >= [0 1] x + [0] [0 2] [0] = c_5(check#(x)) top#(sent(x)) = [1 4] x + [4] [2 10] [8] >= [1 4] x + [4] [2 0] [8] = c_8(top#(check(rest(x))) ,check#(rest(x))) check(cons(x,y)) = [0 0] x + [1 4] y + [0] [0 1] [0 1] [2] >= [0 0] x + [1 4] y + [0] [0 1] [0 1] [2] = cons(x,y) check(cons(x,y)) = [0 0] x + [1 4] y + [0] [0 1] [0 1] [2] >= [0 0] x + [1 4] y + [0] [0 1] [0 1] [2] = cons(x,check(y)) check(cons(x,y)) = [0 0] x + [1 4] y + [0] [0 1] [0 1] [2] >= [0 0] x + [1 4] y + [0] [0 1] [0 1] [2] = cons(check(x),y) check(rest(x)) = [1 0] x + [1] [0 4] [0] >= [1 0] x + [1] [0 4] [0] = rest(check(x)) check(sent(x)) = [1 4] x + [1] [0 1] [0] >= [1 4] x + [1] [0 1] [0] = sent(check(x)) rest(cons(x,y)) = [0 0] x + [1 4] y + [1] [0 4] [0 4] [8] >= [1 4] y + [1] [0 1] [0] = sent(y) rest(nil()) = [1] [0] >= [1] [0] = sent(nil()) *** 1.1.1.1.1.1.1.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: check#(rest(x)) -> c_4(check#(x)) check#(sent(x)) -> c_5(check#(x)) Strict TRS Rules: Weak DP Rules: check#(cons(x,y)) -> c_2(check#(y)) check#(cons(x,y)) -> c_3(check#(x)) top#(sent(x)) -> c_8(top#(check(rest(x))),check#(rest(x))) Weak TRS Rules: check(cons(x,y)) -> cons(x,y) check(cons(x,y)) -> cons(x,check(y)) check(cons(x,y)) -> cons(check(x),y) check(rest(x)) -> rest(check(x)) check(sent(x)) -> sent(check(x)) rest(cons(x,y)) -> sent(y) rest(nil()) -> sent(nil()) Signature: {check/1,rest/1,top/1,check#/1,rest#/1,top#/1} / {cons/2,nil/0,sent/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/0,c_7/0,c_8/2} Obligation: Innermost basic terms: {check#,rest#,top#}/{cons,nil,sent} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.1.2 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: check#(rest(x)) -> c_4(check#(x)) check#(sent(x)) -> c_5(check#(x)) Strict TRS Rules: Weak DP Rules: check#(cons(x,y)) -> c_2(check#(y)) check#(cons(x,y)) -> c_3(check#(x)) top#(sent(x)) -> c_8(top#(check(rest(x))),check#(rest(x))) Weak TRS Rules: check(cons(x,y)) -> cons(x,y) check(cons(x,y)) -> cons(x,check(y)) check(cons(x,y)) -> cons(check(x),y) check(rest(x)) -> rest(check(x)) check(sent(x)) -> sent(check(x)) rest(cons(x,y)) -> sent(y) rest(nil()) -> sent(nil()) Signature: {check/1,rest/1,top/1,check#/1,rest#/1,top#/1} / {cons/2,nil/0,sent/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/0,c_7/0,c_8/2} Obligation: Innermost basic terms: {check#,rest#,top#}/{cons,nil,sent} Applied Processor: DecomposeDG {onSelection = all below first cut in WDG, onUpper = Just someStrategy, onLower = Nothing} Proof: We decompose the input problem according to the dependency graph into the upper component top#(sent(x)) -> c_8(top#(check(rest(x))),check#(rest(x))) and a lower component check#(cons(x,y)) -> c_2(check#(y)) check#(cons(x,y)) -> c_3(check#(x)) check#(rest(x)) -> c_4(check#(x)) check#(sent(x)) -> c_5(check#(x)) Further, following extension rules are added to the lower component. top#(sent(x)) -> check#(rest(x)) top#(sent(x)) -> top#(check(rest(x))) *** 1.1.1.1.1.1.1.2.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: top#(sent(x)) -> c_8(top#(check(rest(x))),check#(rest(x))) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: check(cons(x,y)) -> cons(x,y) check(cons(x,y)) -> cons(x,check(y)) check(cons(x,y)) -> cons(check(x),y) check(rest(x)) -> rest(check(x)) check(sent(x)) -> sent(check(x)) rest(cons(x,y)) -> sent(y) rest(nil()) -> sent(nil()) Signature: {check/1,rest/1,top/1,check#/1,rest#/1,top#/1} / {cons/2,nil/0,sent/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/0,c_7/0,c_8/2} Obligation: Innermost basic terms: {check#,rest#,top#}/{cons,nil,sent} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 3, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 3, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: top#(sent(x)) -> c_8(top#(check(rest(x))) ,check#(rest(x))) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.1.1.2.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: top#(sent(x)) -> c_8(top#(check(rest(x))),check#(rest(x))) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: check(cons(x,y)) -> cons(x,y) check(cons(x,y)) -> cons(x,check(y)) check(cons(x,y)) -> cons(check(x),y) check(rest(x)) -> rest(check(x)) check(sent(x)) -> sent(check(x)) rest(cons(x,y)) -> sent(y) rest(nil()) -> sent(nil()) Signature: {check/1,rest/1,top/1,check#/1,rest#/1,top#/1} / {cons/2,nil/0,sent/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/0,c_7/0,c_8/2} Obligation: Innermost basic terms: {check#,rest#,top#}/{cons,nil,sent} Applied Processor: NaturalMI {miDimension = 3, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 2 non-zero interpretation-entries in the diagonal of the component-wise maxima): The following argument positions are considered usable: uargs(c_8) = {1,2} Following symbols are considered usable: {check,rest,check#,rest#,top#} TcT has computed the following interpretation: p(check) = [0 2 0] [0] [0 1 0] x1 + [0] [0 0 0] [0] p(cons) = [0 0 0] [0 2 0] [0] [0 0 3] x1 + [0 1 2] x2 + [2] [0 0 0] [0 0 0] [0] p(nil) = [0] [0] [2] p(rest) = [0 2 3] [0] [0 1 1] x1 + [0] [0 0 0] [0] p(sent) = [0 2 2] [1] [0 1 0] x1 + [2] [0 0 0] [0] p(top) = [0 2 0] [1] [2 1 0] x1 + [1] [0 1 0] [0] p(check#) = [0 0 0] [0] [0 2 0] x1 + [1] [0 0 0] [0] p(rest#) = [0] [0] [2] p(top#) = [2 0 0] [0] [0 0 0] x1 + [0] [2 0 0] [0] p(c_1) = [1] [2] [1] p(c_2) = [0] [1] [2] p(c_3) = [0 0 0] [0] [0 0 0] x1 + [0] [0 2 2] [2] p(c_4) = [0] [0] [1] p(c_5) = [0 0 0] [0] [0 0 0] x1 + [2] [0 0 1] [0] p(c_6) = [1] [0] [1] p(c_7) = [0] [0] [2] p(c_8) = [1 0 0] [1 0 0] [1] [0 0 0] x1 + [0 0 1] x2 + [0] [0 0 0] [1 2 2] [0] Following rules are strictly oriented: top#(sent(x)) = [0 4 4] [2] [0 0 0] x + [0] [0 4 4] [2] > [0 4 4] [1] [0 0 0] x + [0] [0 4 4] [2] = c_8(top#(check(rest(x))) ,check#(rest(x))) Following rules are (at-least) weakly oriented: check(cons(x,y)) = [0 0 6] [0 2 4] [4] [0 0 3] x + [0 1 2] y + [2] [0 0 0] [0 0 0] [0] >= [0 0 0] [0 2 0] [0] [0 0 3] x + [0 1 2] y + [2] [0 0 0] [0 0 0] [0] = cons(x,y) check(cons(x,y)) = [0 0 6] [0 2 4] [4] [0 0 3] x + [0 1 2] y + [2] [0 0 0] [0 0 0] [0] >= [0 0 0] [0 2 0] [0] [0 0 3] x + [0 1 0] y + [2] [0 0 0] [0 0 0] [0] = cons(x,check(y)) check(cons(x,y)) = [0 0 6] [0 2 4] [4] [0 0 3] x + [0 1 2] y + [2] [0 0 0] [0 0 0] [0] >= [0 2 0] [0] [0 1 2] y + [2] [0 0 0] [0] = cons(check(x),y) check(rest(x)) = [0 2 2] [0] [0 1 1] x + [0] [0 0 0] [0] >= [0 2 0] [0] [0 1 0] x + [0] [0 0 0] [0] = rest(check(x)) check(sent(x)) = [0 2 0] [4] [0 1 0] x + [2] [0 0 0] [0] >= [0 2 0] [1] [0 1 0] x + [2] [0 0 0] [0] = sent(check(x)) rest(cons(x,y)) = [0 0 6] [0 2 4] [4] [0 0 3] x + [0 1 2] y + [2] [0 0 0] [0 0 0] [0] >= [0 2 2] [1] [0 1 0] y + [2] [0 0 0] [0] = sent(y) rest(nil()) = [6] [2] [0] >= [5] [2] [0] = sent(nil()) *** 1.1.1.1.1.1.1.2.1.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: top#(sent(x)) -> c_8(top#(check(rest(x))),check#(rest(x))) Weak TRS Rules: check(cons(x,y)) -> cons(x,y) check(cons(x,y)) -> cons(x,check(y)) check(cons(x,y)) -> cons(check(x),y) check(rest(x)) -> rest(check(x)) check(sent(x)) -> sent(check(x)) rest(cons(x,y)) -> sent(y) rest(nil()) -> sent(nil()) Signature: {check/1,rest/1,top/1,check#/1,rest#/1,top#/1} / {cons/2,nil/0,sent/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/0,c_7/0,c_8/2} Obligation: Innermost basic terms: {check#,rest#,top#}/{cons,nil,sent} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.1.2.1.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: top#(sent(x)) -> c_8(top#(check(rest(x))),check#(rest(x))) Weak TRS Rules: check(cons(x,y)) -> cons(x,y) check(cons(x,y)) -> cons(x,check(y)) check(cons(x,y)) -> cons(check(x),y) check(rest(x)) -> rest(check(x)) check(sent(x)) -> sent(check(x)) rest(cons(x,y)) -> sent(y) rest(nil()) -> sent(nil()) Signature: {check/1,rest/1,top/1,check#/1,rest#/1,top#/1} / {cons/2,nil/0,sent/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/0,c_7/0,c_8/2} Obligation: Innermost basic terms: {check#,rest#,top#}/{cons,nil,sent} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:top#(sent(x)) -> c_8(top#(check(rest(x))),check#(rest(x))) -->_1 top#(sent(x)) -> c_8(top#(check(rest(x))),check#(rest(x))):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: top#(sent(x)) -> c_8(top#(check(rest(x))) ,check#(rest(x))) *** 1.1.1.1.1.1.1.2.1.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: check(cons(x,y)) -> cons(x,y) check(cons(x,y)) -> cons(x,check(y)) check(cons(x,y)) -> cons(check(x),y) check(rest(x)) -> rest(check(x)) check(sent(x)) -> sent(check(x)) rest(cons(x,y)) -> sent(y) rest(nil()) -> sent(nil()) Signature: {check/1,rest/1,top/1,check#/1,rest#/1,top#/1} / {cons/2,nil/0,sent/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/0,c_7/0,c_8/2} Obligation: Innermost basic terms: {check#,rest#,top#}/{cons,nil,sent} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1). *** 1.1.1.1.1.1.1.2.2 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: check#(rest(x)) -> c_4(check#(x)) check#(sent(x)) -> c_5(check#(x)) Strict TRS Rules: Weak DP Rules: check#(cons(x,y)) -> c_2(check#(y)) check#(cons(x,y)) -> c_3(check#(x)) top#(sent(x)) -> check#(rest(x)) top#(sent(x)) -> top#(check(rest(x))) Weak TRS Rules: check(cons(x,y)) -> cons(x,y) check(cons(x,y)) -> cons(x,check(y)) check(cons(x,y)) -> cons(check(x),y) check(rest(x)) -> rest(check(x)) check(sent(x)) -> sent(check(x)) rest(cons(x,y)) -> sent(y) rest(nil()) -> sent(nil()) Signature: {check/1,rest/1,top/1,check#/1,rest#/1,top#/1} / {cons/2,nil/0,sent/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/0,c_7/0,c_8/2} Obligation: Innermost basic terms: {check#,rest#,top#}/{cons,nil,sent} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: check#(rest(x)) -> c_4(check#(x)) 2: check#(sent(x)) -> c_5(check#(x)) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.1.1.2.2.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: check#(rest(x)) -> c_4(check#(x)) check#(sent(x)) -> c_5(check#(x)) Strict TRS Rules: Weak DP Rules: check#(cons(x,y)) -> c_2(check#(y)) check#(cons(x,y)) -> c_3(check#(x)) top#(sent(x)) -> check#(rest(x)) top#(sent(x)) -> top#(check(rest(x))) Weak TRS Rules: check(cons(x,y)) -> cons(x,y) check(cons(x,y)) -> cons(x,check(y)) check(cons(x,y)) -> cons(check(x),y) check(rest(x)) -> rest(check(x)) check(sent(x)) -> sent(check(x)) rest(cons(x,y)) -> sent(y) rest(nil()) -> sent(nil()) Signature: {check/1,rest/1,top/1,check#/1,rest#/1,top#/1} / {cons/2,nil/0,sent/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/0,c_7/0,c_8/2} Obligation: Innermost basic terms: {check#,rest#,top#}/{cons,nil,sent} Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_2) = {1}, uargs(c_3) = {1}, uargs(c_4) = {1}, uargs(c_5) = {1} Following symbols are considered usable: {check,rest,check#,rest#,top#} TcT has computed the following interpretation: p(check) = [1] x1 + [0] p(cons) = [1] x1 + [1] x2 + [0] p(nil) = [1] p(rest) = [1] x1 + [2] p(sent) = [1] x1 + [2] p(top) = [0] p(check#) = [8] x1 + [0] p(rest#) = [1] x1 + [2] p(top#) = [8] x1 + [7] p(c_1) = [4] p(c_2) = [1] x1 + [0] p(c_3) = [1] x1 + [0] p(c_4) = [1] x1 + [6] p(c_5) = [1] x1 + [9] p(c_6) = [2] p(c_7) = [0] p(c_8) = [2] x1 + [1] x2 + [2] Following rules are strictly oriented: check#(rest(x)) = [8] x + [16] > [8] x + [6] = c_4(check#(x)) check#(sent(x)) = [8] x + [16] > [8] x + [9] = c_5(check#(x)) Following rules are (at-least) weakly oriented: check#(cons(x,y)) = [8] x + [8] y + [0] >= [8] y + [0] = c_2(check#(y)) check#(cons(x,y)) = [8] x + [8] y + [0] >= [8] x + [0] = c_3(check#(x)) top#(sent(x)) = [8] x + [23] >= [8] x + [16] = check#(rest(x)) top#(sent(x)) = [8] x + [23] >= [8] x + [23] = top#(check(rest(x))) check(cons(x,y)) = [1] x + [1] y + [0] >= [1] x + [1] y + [0] = cons(x,y) check(cons(x,y)) = [1] x + [1] y + [0] >= [1] x + [1] y + [0] = cons(x,check(y)) check(cons(x,y)) = [1] x + [1] y + [0] >= [1] x + [1] y + [0] = cons(check(x),y) check(rest(x)) = [1] x + [2] >= [1] x + [2] = rest(check(x)) check(sent(x)) = [1] x + [2] >= [1] x + [2] = sent(check(x)) rest(cons(x,y)) = [1] x + [1] y + [2] >= [1] y + [2] = sent(y) rest(nil()) = [3] >= [3] = sent(nil()) *** 1.1.1.1.1.1.1.2.2.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: check#(cons(x,y)) -> c_2(check#(y)) check#(cons(x,y)) -> c_3(check#(x)) check#(rest(x)) -> c_4(check#(x)) check#(sent(x)) -> c_5(check#(x)) top#(sent(x)) -> check#(rest(x)) top#(sent(x)) -> top#(check(rest(x))) Weak TRS Rules: check(cons(x,y)) -> cons(x,y) check(cons(x,y)) -> cons(x,check(y)) check(cons(x,y)) -> cons(check(x),y) check(rest(x)) -> rest(check(x)) check(sent(x)) -> sent(check(x)) rest(cons(x,y)) -> sent(y) rest(nil()) -> sent(nil()) Signature: {check/1,rest/1,top/1,check#/1,rest#/1,top#/1} / {cons/2,nil/0,sent/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/0,c_7/0,c_8/2} Obligation: Innermost basic terms: {check#,rest#,top#}/{cons,nil,sent} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.1.2.2.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: check#(cons(x,y)) -> c_2(check#(y)) check#(cons(x,y)) -> c_3(check#(x)) check#(rest(x)) -> c_4(check#(x)) check#(sent(x)) -> c_5(check#(x)) top#(sent(x)) -> check#(rest(x)) top#(sent(x)) -> top#(check(rest(x))) Weak TRS Rules: check(cons(x,y)) -> cons(x,y) check(cons(x,y)) -> cons(x,check(y)) check(cons(x,y)) -> cons(check(x),y) check(rest(x)) -> rest(check(x)) check(sent(x)) -> sent(check(x)) rest(cons(x,y)) -> sent(y) rest(nil()) -> sent(nil()) Signature: {check/1,rest/1,top/1,check#/1,rest#/1,top#/1} / {cons/2,nil/0,sent/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/0,c_7/0,c_8/2} Obligation: Innermost basic terms: {check#,rest#,top#}/{cons,nil,sent} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:check#(cons(x,y)) -> c_2(check#(y)) -->_1 check#(sent(x)) -> c_5(check#(x)):4 -->_1 check#(rest(x)) -> c_4(check#(x)):3 -->_1 check#(cons(x,y)) -> c_3(check#(x)):2 -->_1 check#(cons(x,y)) -> c_2(check#(y)):1 2:W:check#(cons(x,y)) -> c_3(check#(x)) -->_1 check#(sent(x)) -> c_5(check#(x)):4 -->_1 check#(rest(x)) -> c_4(check#(x)):3 -->_1 check#(cons(x,y)) -> c_3(check#(x)):2 -->_1 check#(cons(x,y)) -> c_2(check#(y)):1 3:W:check#(rest(x)) -> c_4(check#(x)) -->_1 check#(sent(x)) -> c_5(check#(x)):4 -->_1 check#(rest(x)) -> c_4(check#(x)):3 -->_1 check#(cons(x,y)) -> c_3(check#(x)):2 -->_1 check#(cons(x,y)) -> c_2(check#(y)):1 4:W:check#(sent(x)) -> c_5(check#(x)) -->_1 check#(sent(x)) -> c_5(check#(x)):4 -->_1 check#(rest(x)) -> c_4(check#(x)):3 -->_1 check#(cons(x,y)) -> c_3(check#(x)):2 -->_1 check#(cons(x,y)) -> c_2(check#(y)):1 5:W:top#(sent(x)) -> check#(rest(x)) -->_1 check#(sent(x)) -> c_5(check#(x)):4 -->_1 check#(rest(x)) -> c_4(check#(x)):3 -->_1 check#(cons(x,y)) -> c_3(check#(x)):2 -->_1 check#(cons(x,y)) -> c_2(check#(y)):1 6:W:top#(sent(x)) -> top#(check(rest(x))) -->_1 top#(sent(x)) -> top#(check(rest(x))):6 -->_1 top#(sent(x)) -> check#(rest(x)):5 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 6: top#(sent(x)) -> top#(check(rest(x))) 5: top#(sent(x)) -> check#(rest(x)) 1: check#(cons(x,y)) -> c_2(check#(y)) 4: check#(sent(x)) -> c_5(check#(x)) 3: check#(rest(x)) -> c_4(check#(x)) 2: check#(cons(x,y)) -> c_3(check#(x)) *** 1.1.1.1.1.1.1.2.2.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: check(cons(x,y)) -> cons(x,y) check(cons(x,y)) -> cons(x,check(y)) check(cons(x,y)) -> cons(check(x),y) check(rest(x)) -> rest(check(x)) check(sent(x)) -> sent(check(x)) rest(cons(x,y)) -> sent(y) rest(nil()) -> sent(nil()) Signature: {check/1,rest/1,top/1,check#/1,rest#/1,top#/1} / {cons/2,nil/0,sent/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/0,c_7/0,c_8/2} Obligation: Innermost basic terms: {check#,rest#,top#}/{cons,nil,sent} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1). *** 1.1.1.1.1.1.2 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: top#(sent(x)) -> c_8(top#(check(rest(x))),check#(rest(x))) Strict TRS Rules: Weak DP Rules: check#(cons(x,y)) -> c_2(check#(y)) check#(cons(x,y)) -> c_3(check#(x)) check#(rest(x)) -> c_4(check#(x)) check#(sent(x)) -> c_5(check#(x)) Weak TRS Rules: check(cons(x,y)) -> cons(x,y) check(cons(x,y)) -> cons(x,check(y)) check(cons(x,y)) -> cons(check(x),y) check(rest(x)) -> rest(check(x)) check(sent(x)) -> sent(check(x)) rest(cons(x,y)) -> sent(y) rest(nil()) -> sent(nil()) Signature: {check/1,rest/1,top/1,check#/1,rest#/1,top#/1} / {cons/2,nil/0,sent/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/0,c_7/0,c_8/2} Obligation: Innermost basic terms: {check#,rest#,top#}/{cons,nil,sent} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:top#(sent(x)) -> c_8(top#(check(rest(x))),check#(rest(x))) -->_2 check#(sent(x)) -> c_5(check#(x)):5 -->_2 check#(rest(x)) -> c_4(check#(x)):4 -->_2 check#(cons(x,y)) -> c_3(check#(x)):3 -->_2 check#(cons(x,y)) -> c_2(check#(y)):2 -->_1 top#(sent(x)) -> c_8(top#(check(rest(x))),check#(rest(x))):1 2:W:check#(cons(x,y)) -> c_2(check#(y)) -->_1 check#(sent(x)) -> c_5(check#(x)):5 -->_1 check#(rest(x)) -> c_4(check#(x)):4 -->_1 check#(cons(x,y)) -> c_3(check#(x)):3 -->_1 check#(cons(x,y)) -> c_2(check#(y)):2 3:W:check#(cons(x,y)) -> c_3(check#(x)) -->_1 check#(sent(x)) -> c_5(check#(x)):5 -->_1 check#(rest(x)) -> c_4(check#(x)):4 -->_1 check#(cons(x,y)) -> c_3(check#(x)):3 -->_1 check#(cons(x,y)) -> c_2(check#(y)):2 4:W:check#(rest(x)) -> c_4(check#(x)) -->_1 check#(sent(x)) -> c_5(check#(x)):5 -->_1 check#(rest(x)) -> c_4(check#(x)):4 -->_1 check#(cons(x,y)) -> c_3(check#(x)):3 -->_1 check#(cons(x,y)) -> c_2(check#(y)):2 5:W:check#(sent(x)) -> c_5(check#(x)) -->_1 check#(sent(x)) -> c_5(check#(x)):5 -->_1 check#(rest(x)) -> c_4(check#(x)):4 -->_1 check#(cons(x,y)) -> c_3(check#(x)):3 -->_1 check#(cons(x,y)) -> c_2(check#(y)):2 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 5: check#(sent(x)) -> c_5(check#(x)) 4: check#(rest(x)) -> c_4(check#(x)) 3: check#(cons(x,y)) -> c_3(check#(x)) 2: check#(cons(x,y)) -> c_2(check#(y)) *** 1.1.1.1.1.1.2.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: top#(sent(x)) -> c_8(top#(check(rest(x))),check#(rest(x))) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: check(cons(x,y)) -> cons(x,y) check(cons(x,y)) -> cons(x,check(y)) check(cons(x,y)) -> cons(check(x),y) check(rest(x)) -> rest(check(x)) check(sent(x)) -> sent(check(x)) rest(cons(x,y)) -> sent(y) rest(nil()) -> sent(nil()) Signature: {check/1,rest/1,top/1,check#/1,rest#/1,top#/1} / {cons/2,nil/0,sent/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/0,c_7/0,c_8/2} Obligation: Innermost basic terms: {check#,rest#,top#}/{cons,nil,sent} Applied Processor: SimplifyRHS Proof: Consider the dependency graph 1:S:top#(sent(x)) -> c_8(top#(check(rest(x))),check#(rest(x))) -->_1 top#(sent(x)) -> c_8(top#(check(rest(x))),check#(rest(x))):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: top#(sent(x)) -> c_8(top#(check(rest(x)))) *** 1.1.1.1.1.1.2.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: top#(sent(x)) -> c_8(top#(check(rest(x)))) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: check(cons(x,y)) -> cons(x,y) check(cons(x,y)) -> cons(x,check(y)) check(cons(x,y)) -> cons(check(x),y) check(rest(x)) -> rest(check(x)) check(sent(x)) -> sent(check(x)) rest(cons(x,y)) -> sent(y) rest(nil()) -> sent(nil()) Signature: {check/1,rest/1,top/1,check#/1,rest#/1,top#/1} / {cons/2,nil/0,sent/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/0,c_7/0,c_8/1} Obligation: Innermost basic terms: {check#,rest#,top#}/{cons,nil,sent} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 3, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 3, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: top#(sent(x)) -> c_8(top#(check(rest(x)))) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.1.2.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: top#(sent(x)) -> c_8(top#(check(rest(x)))) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: check(cons(x,y)) -> cons(x,y) check(cons(x,y)) -> cons(x,check(y)) check(cons(x,y)) -> cons(check(x),y) check(rest(x)) -> rest(check(x)) check(sent(x)) -> sent(check(x)) rest(cons(x,y)) -> sent(y) rest(nil()) -> sent(nil()) Signature: {check/1,rest/1,top/1,check#/1,rest#/1,top#/1} / {cons/2,nil/0,sent/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/0,c_7/0,c_8/1} Obligation: Innermost basic terms: {check#,rest#,top#}/{cons,nil,sent} Applied Processor: NaturalMI {miDimension = 3, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 2 non-zero interpretation-entries in the diagonal of the component-wise maxima): The following argument positions are considered usable: uargs(c_8) = {1} Following symbols are considered usable: {check,rest,check#,rest#,top#} TcT has computed the following interpretation: p(check) = [0 2 0] [0] [0 1 0] x1 + [0] [0 0 0] [0] p(cons) = [0 2 2] [0 2 3] [0] [0 1 1] x1 + [0 1 2] x2 + [2] [0 0 0] [0 0 0] [0] p(nil) = [2] [0] [2] p(rest) = [1 0 2] [0] [0 1 1] x1 + [0] [0 0 0] [0] p(sent) = [0 2 3] [0] [0 1 0] x1 + [2] [0 0 0] [0] p(top) = [0 1 0] [1] [1 0 0] x1 + [0] [1 1 0] [1] p(check#) = [0 0 2] [0] [0 0 0] x1 + [1] [0 2 2] [0] p(rest#) = [0 2 0] [2] [0 2 0] x1 + [2] [1 0 2] [0] p(top#) = [1 1 0] [0] [0 1 2] x1 + [1] [2 0 1] [3] p(c_1) = [0] [1] [1] p(c_2) = [1 0 2] [0] [2 1 1] x1 + [2] [1 1 0] [1] p(c_3) = [1 0 0] [0] [0 2 2] x1 + [2] [2 0 0] [0] p(c_4) = [0 0 0] [2] [0 0 0] x1 + [2] [0 0 1] [1] p(c_5) = [0 0 0] [2] [0 0 0] x1 + [2] [0 1 0] [0] p(c_6) = [2] [0] [2] p(c_7) = [1] [0] [0] p(c_8) = [1 0 0] [0] [0 0 0] x1 + [1] [1 1 0] [2] Following rules are strictly oriented: top#(sent(x)) = [0 3 3] [2] [0 1 0] x + [3] [0 4 6] [3] > [0 3 3] [0] [0 0 0] x + [1] [0 4 4] [3] = c_8(top#(check(rest(x)))) Following rules are (at-least) weakly oriented: check(cons(x,y)) = [0 2 2] [0 2 4] [4] [0 1 1] x + [0 1 2] y + [2] [0 0 0] [0 0 0] [0] >= [0 2 2] [0 2 3] [0] [0 1 1] x + [0 1 2] y + [2] [0 0 0] [0 0 0] [0] = cons(x,y) check(cons(x,y)) = [0 2 2] [0 2 4] [4] [0 1 1] x + [0 1 2] y + [2] [0 0 0] [0 0 0] [0] >= [0 2 2] [0 2 0] [0] [0 1 1] x + [0 1 0] y + [2] [0 0 0] [0 0 0] [0] = cons(x,check(y)) check(cons(x,y)) = [0 2 2] [0 2 4] [4] [0 1 1] x + [0 1 2] y + [2] [0 0 0] [0 0 0] [0] >= [0 2 0] [0 2 3] [0] [0 1 0] x + [0 1 2] y + [2] [0 0 0] [0 0 0] [0] = cons(check(x),y) check(rest(x)) = [0 2 2] [0] [0 1 1] x + [0] [0 0 0] [0] >= [0 2 0] [0] [0 1 0] x + [0] [0 0 0] [0] = rest(check(x)) check(sent(x)) = [0 2 0] [4] [0 1 0] x + [2] [0 0 0] [0] >= [0 2 0] [0] [0 1 0] x + [2] [0 0 0] [0] = sent(check(x)) rest(cons(x,y)) = [0 2 2] [0 2 3] [0] [0 1 1] x + [0 1 2] y + [2] [0 0 0] [0 0 0] [0] >= [0 2 3] [0] [0 1 0] y + [2] [0 0 0] [0] = sent(y) rest(nil()) = [6] [2] [0] >= [6] [2] [0] = sent(nil()) *** 1.1.1.1.1.1.2.1.1.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: top#(sent(x)) -> c_8(top#(check(rest(x)))) Weak TRS Rules: check(cons(x,y)) -> cons(x,y) check(cons(x,y)) -> cons(x,check(y)) check(cons(x,y)) -> cons(check(x),y) check(rest(x)) -> rest(check(x)) check(sent(x)) -> sent(check(x)) rest(cons(x,y)) -> sent(y) rest(nil()) -> sent(nil()) Signature: {check/1,rest/1,top/1,check#/1,rest#/1,top#/1} / {cons/2,nil/0,sent/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/0,c_7/0,c_8/1} Obligation: Innermost basic terms: {check#,rest#,top#}/{cons,nil,sent} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.2.1.1.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: top#(sent(x)) -> c_8(top#(check(rest(x)))) Weak TRS Rules: check(cons(x,y)) -> cons(x,y) check(cons(x,y)) -> cons(x,check(y)) check(cons(x,y)) -> cons(check(x),y) check(rest(x)) -> rest(check(x)) check(sent(x)) -> sent(check(x)) rest(cons(x,y)) -> sent(y) rest(nil()) -> sent(nil()) Signature: {check/1,rest/1,top/1,check#/1,rest#/1,top#/1} / {cons/2,nil/0,sent/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/0,c_7/0,c_8/1} Obligation: Innermost basic terms: {check#,rest#,top#}/{cons,nil,sent} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:top#(sent(x)) -> c_8(top#(check(rest(x)))) -->_1 top#(sent(x)) -> c_8(top#(check(rest(x)))):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: top#(sent(x)) -> c_8(top#(check(rest(x)))) *** 1.1.1.1.1.1.2.1.1.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: check(cons(x,y)) -> cons(x,y) check(cons(x,y)) -> cons(x,check(y)) check(cons(x,y)) -> cons(check(x),y) check(rest(x)) -> rest(check(x)) check(sent(x)) -> sent(check(x)) rest(cons(x,y)) -> sent(y) rest(nil()) -> sent(nil()) Signature: {check/1,rest/1,top/1,check#/1,rest#/1,top#/1} / {cons/2,nil/0,sent/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/0,c_7/0,c_8/1} Obligation: Innermost basic terms: {check#,rest#,top#}/{cons,nil,sent} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1).