KILLED
Runtime Complexity (innermost) proof of /tmp/tmpoefYqL/LPAR_intlist.xml
The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF).
0 CpxTRS
↳1 DecreasingLoopProof (⇔, 492 ms)
↳2 BOUNDS(n^1, INF)
↳3 RenamingProof (⇔, 0 ms)
↳4 CpxRelTRS
↳5 TypeInferenceProof (BOTH BOUNDS(ID, ID), 0 ms)
↳6 typed CpxTrs
↳7 OrderProof (LOWER BOUND(ID), 0 ms)
↳8 typed CpxTrs
(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
intlist(nil) → nil
int(s(x), 0) → nil
int(x, x) → cons(x, nil)
intlist(cons(x, y)) → cons(s(x), intlist(y))
int(s(x), s(y)) → intlist(int(x, y))
int(0, s(y)) → cons(0, int(s(0), s(y)))
intlist(cons(x, nil)) → cons(s(x), nil)
Rewrite Strategy: INNERMOST
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
intlist(cons(x, y)) →+ cons(s(x), intlist(y))
gives rise to a decreasing loop by considering the right hand sides subterm at position [1].
The pumping substitution is [y / cons(x, y)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
intlist(nil) → nil
int(s(x), 0') → nil
int(x, x) → cons(x, nil)
intlist(cons(x, y)) → cons(s(x), intlist(y))
int(s(x), s(y)) → intlist(int(x, y))
int(0', s(y)) → cons(0', int(s(0'), s(y)))
intlist(cons(x, nil)) → cons(s(x), nil)
S is empty.
Rewrite Strategy: INNERMOST
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
Innermost TRS:
Rules:
intlist(nil) → nil
int(s(x), 0') → nil
int(x, x) → cons(x, nil)
intlist(cons(x, y)) → cons(s(x), intlist(y))
int(s(x), s(y)) → intlist(int(x, y))
int(0', s(y)) → cons(0', int(s(0'), s(y)))
intlist(cons(x, nil)) → cons(s(x), nil)
Types:
intlist :: nil:cons → nil:cons
nil :: nil:cons
int :: s:0' → s:0' → nil:cons
s :: s:0' → s:0'
0' :: s:0'
cons :: s:0' → nil:cons → nil:cons
hole_nil:cons1_0 :: nil:cons
hole_s:0'2_0 :: s:0'
gen_nil:cons3_0 :: Nat → nil:cons
gen_s:0'4_0 :: Nat → s:0'
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
intlist, intThey will be analysed ascendingly in the following order:
intlist < int
(8) Obligation:
Innermost TRS:
Rules:
intlist(nil) → nil
int(s(x), 0') → nil
int(x, x) → cons(x, nil)
intlist(cons(x, y)) → cons(s(x), intlist(y))
int(s(x), s(y)) → intlist(int(x, y))
int(0', s(y)) → cons(0', int(s(0'), s(y)))
intlist(cons(x, nil)) → cons(s(x), nil)
Types:
intlist :: nil:cons → nil:cons
nil :: nil:cons
int :: s:0' → s:0' → nil:cons
s :: s:0' → s:0'
0' :: s:0'
cons :: s:0' → nil:cons → nil:cons
hole_nil:cons1_0 :: nil:cons
hole_s:0'2_0 :: s:0'
gen_nil:cons3_0 :: Nat → nil:cons
gen_s:0'4_0 :: Nat → s:0'
Generator Equations:
gen_nil:cons3_0(0) ⇔ nil
gen_nil:cons3_0(+(x, 1)) ⇔ cons(0', gen_nil:cons3_0(x))
gen_s:0'4_0(0) ⇔ 0'
gen_s:0'4_0(+(x, 1)) ⇔ s(gen_s:0'4_0(x))
The following defined symbols remain to be analysed:
intlist, int
They will be analysed ascendingly in the following order:
intlist < int