(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
minus_active(0, y) → 0
mark(0) → 0
minus_active(s(x), s(y)) → minus_active(x, y)
mark(s(x)) → s(mark(x))
ge_active(x, 0) → true
mark(minus(x, y)) → minus_active(x, y)
ge_active(0, s(y)) → false
mark(ge(x, y)) → ge_active(x, y)
ge_active(s(x), s(y)) → ge_active(x, y)
mark(div(x, y)) → div_active(mark(x), y)
div_active(0, s(y)) → 0
mark(if(x, y, z)) → if_active(mark(x), y, z)
div_active(s(x), s(y)) → if_active(ge_active(x, y), s(div(minus(x, y), s(y))), 0)
if_active(true, x, y) → mark(x)
minus_active(x, y) → minus(x, y)
if_active(false, x, y) → mark(y)
ge_active(x, y) → ge(x, y)
if_active(x, y, z) → if(x, y, z)
div_active(x, y) → div(x, y)
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
minus_active(0', y) → 0'
mark(0') → 0'
minus_active(s(x), s(y)) → minus_active(x, y)
mark(s(x)) → s(mark(x))
ge_active(x, 0') → true
mark(minus(x, y)) → minus_active(x, y)
ge_active(0', s(y)) → false
mark(ge(x, y)) → ge_active(x, y)
ge_active(s(x), s(y)) → ge_active(x, y)
mark(div(x, y)) → div_active(mark(x), y)
div_active(0', s(y)) → 0'
mark(if(x, y, z)) → if_active(mark(x), y, z)
div_active(s(x), s(y)) → if_active(ge_active(x, y), s(div(minus(x, y), s(y))), 0')
if_active(true, x, y) → mark(x)
minus_active(x, y) → minus(x, y)
if_active(false, x, y) → mark(y)
ge_active(x, y) → ge(x, y)
if_active(x, y, z) → if(x, y, z)
div_active(x, y) → div(x, y)
S is empty.
Rewrite Strategy: INNERMOST
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
Innermost TRS:
Rules:
minus_active(0', y) → 0'
mark(0') → 0'
minus_active(s(x), s(y)) → minus_active(x, y)
mark(s(x)) → s(mark(x))
ge_active(x, 0') → true
mark(minus(x, y)) → minus_active(x, y)
ge_active(0', s(y)) → false
mark(ge(x, y)) → ge_active(x, y)
ge_active(s(x), s(y)) → ge_active(x, y)
mark(div(x, y)) → div_active(mark(x), y)
div_active(0', s(y)) → 0'
mark(if(x, y, z)) → if_active(mark(x), y, z)
div_active(s(x), s(y)) → if_active(ge_active(x, y), s(div(minus(x, y), s(y))), 0')
if_active(true, x, y) → mark(x)
minus_active(x, y) → minus(x, y)
if_active(false, x, y) → mark(y)
ge_active(x, y) → ge(x, y)
if_active(x, y, z) → if(x, y, z)
div_active(x, y) → div(x, y)
Types:
minus_active :: 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if
0' :: 0':s:true:minus:false:ge:div:if
mark :: 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if
s :: 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if
ge_active :: 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if
true :: 0':s:true:minus:false:ge:div:if
minus :: 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if
false :: 0':s:true:minus:false:ge:div:if
ge :: 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if
div :: 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if
div_active :: 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if
if :: 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if
if_active :: 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if
hole_0':s:true:minus:false:ge:div:if1_0 :: 0':s:true:minus:false:ge:div:if
gen_0':s:true:minus:false:ge:div:if2_0 :: Nat → 0':s:true:minus:false:ge:div:if
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
minus_active,
mark,
ge_activeThey will be analysed ascendingly in the following order:
minus_active < mark
ge_active < mark
(6) Obligation:
Innermost TRS:
Rules:
minus_active(
0',
y) →
0'mark(
0') →
0'minus_active(
s(
x),
s(
y)) →
minus_active(
x,
y)
mark(
s(
x)) →
s(
mark(
x))
ge_active(
x,
0') →
truemark(
minus(
x,
y)) →
minus_active(
x,
y)
ge_active(
0',
s(
y)) →
falsemark(
ge(
x,
y)) →
ge_active(
x,
y)
ge_active(
s(
x),
s(
y)) →
ge_active(
x,
y)
mark(
div(
x,
y)) →
div_active(
mark(
x),
y)
div_active(
0',
s(
y)) →
0'mark(
if(
x,
y,
z)) →
if_active(
mark(
x),
y,
z)
div_active(
s(
x),
s(
y)) →
if_active(
ge_active(
x,
y),
s(
div(
minus(
x,
y),
s(
y))),
0')
if_active(
true,
x,
y) →
mark(
x)
minus_active(
x,
y) →
minus(
x,
y)
if_active(
false,
x,
y) →
mark(
y)
ge_active(
x,
y) →
ge(
x,
y)
if_active(
x,
y,
z) →
if(
x,
y,
z)
div_active(
x,
y) →
div(
x,
y)
Types:
minus_active :: 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if
0' :: 0':s:true:minus:false:ge:div:if
mark :: 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if
s :: 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if
ge_active :: 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if
true :: 0':s:true:minus:false:ge:div:if
minus :: 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if
false :: 0':s:true:minus:false:ge:div:if
ge :: 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if
div :: 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if
div_active :: 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if
if :: 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if
if_active :: 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if
hole_0':s:true:minus:false:ge:div:if1_0 :: 0':s:true:minus:false:ge:div:if
gen_0':s:true:minus:false:ge:div:if2_0 :: Nat → 0':s:true:minus:false:ge:div:if
Generator Equations:
gen_0':s:true:minus:false:ge:div:if2_0(0) ⇔ 0'
gen_0':s:true:minus:false:ge:div:if2_0(+(x, 1)) ⇔ s(gen_0':s:true:minus:false:ge:div:if2_0(x))
The following defined symbols remain to be analysed:
minus_active, mark, ge_active
They will be analysed ascendingly in the following order:
minus_active < mark
ge_active < mark
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
minus_active(
gen_0':s:true:minus:false:ge:div:if2_0(
n4_0),
gen_0':s:true:minus:false:ge:div:if2_0(
n4_0)) →
gen_0':s:true:minus:false:ge:div:if2_0(
0), rt ∈ Ω(1 + n4
0)
Induction Base:
minus_active(gen_0':s:true:minus:false:ge:div:if2_0(0), gen_0':s:true:minus:false:ge:div:if2_0(0)) →RΩ(1)
0'
Induction Step:
minus_active(gen_0':s:true:minus:false:ge:div:if2_0(+(n4_0, 1)), gen_0':s:true:minus:false:ge:div:if2_0(+(n4_0, 1))) →RΩ(1)
minus_active(gen_0':s:true:minus:false:ge:div:if2_0(n4_0), gen_0':s:true:minus:false:ge:div:if2_0(n4_0)) →IH
gen_0':s:true:minus:false:ge:div:if2_0(0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
Innermost TRS:
Rules:
minus_active(
0',
y) →
0'mark(
0') →
0'minus_active(
s(
x),
s(
y)) →
minus_active(
x,
y)
mark(
s(
x)) →
s(
mark(
x))
ge_active(
x,
0') →
truemark(
minus(
x,
y)) →
minus_active(
x,
y)
ge_active(
0',
s(
y)) →
falsemark(
ge(
x,
y)) →
ge_active(
x,
y)
ge_active(
s(
x),
s(
y)) →
ge_active(
x,
y)
mark(
div(
x,
y)) →
div_active(
mark(
x),
y)
div_active(
0',
s(
y)) →
0'mark(
if(
x,
y,
z)) →
if_active(
mark(
x),
y,
z)
div_active(
s(
x),
s(
y)) →
if_active(
ge_active(
x,
y),
s(
div(
minus(
x,
y),
s(
y))),
0')
if_active(
true,
x,
y) →
mark(
x)
minus_active(
x,
y) →
minus(
x,
y)
if_active(
false,
x,
y) →
mark(
y)
ge_active(
x,
y) →
ge(
x,
y)
if_active(
x,
y,
z) →
if(
x,
y,
z)
div_active(
x,
y) →
div(
x,
y)
Types:
minus_active :: 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if
0' :: 0':s:true:minus:false:ge:div:if
mark :: 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if
s :: 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if
ge_active :: 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if
true :: 0':s:true:minus:false:ge:div:if
minus :: 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if
false :: 0':s:true:minus:false:ge:div:if
ge :: 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if
div :: 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if
div_active :: 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if
if :: 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if
if_active :: 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if
hole_0':s:true:minus:false:ge:div:if1_0 :: 0':s:true:minus:false:ge:div:if
gen_0':s:true:minus:false:ge:div:if2_0 :: Nat → 0':s:true:minus:false:ge:div:if
Lemmas:
minus_active(gen_0':s:true:minus:false:ge:div:if2_0(n4_0), gen_0':s:true:minus:false:ge:div:if2_0(n4_0)) → gen_0':s:true:minus:false:ge:div:if2_0(0), rt ∈ Ω(1 + n40)
Generator Equations:
gen_0':s:true:minus:false:ge:div:if2_0(0) ⇔ 0'
gen_0':s:true:minus:false:ge:div:if2_0(+(x, 1)) ⇔ s(gen_0':s:true:minus:false:ge:div:if2_0(x))
The following defined symbols remain to be analysed:
ge_active, mark
They will be analysed ascendingly in the following order:
ge_active < mark
(10) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
ge_active(
gen_0':s:true:minus:false:ge:div:if2_0(
n712_0),
gen_0':s:true:minus:false:ge:div:if2_0(
n712_0)) →
true, rt ∈ Ω(1 + n712
0)
Induction Base:
ge_active(gen_0':s:true:minus:false:ge:div:if2_0(0), gen_0':s:true:minus:false:ge:div:if2_0(0)) →RΩ(1)
true
Induction Step:
ge_active(gen_0':s:true:minus:false:ge:div:if2_0(+(n712_0, 1)), gen_0':s:true:minus:false:ge:div:if2_0(+(n712_0, 1))) →RΩ(1)
ge_active(gen_0':s:true:minus:false:ge:div:if2_0(n712_0), gen_0':s:true:minus:false:ge:div:if2_0(n712_0)) →IH
true
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(11) Complex Obligation (BEST)
(12) Obligation:
Innermost TRS:
Rules:
minus_active(
0',
y) →
0'mark(
0') →
0'minus_active(
s(
x),
s(
y)) →
minus_active(
x,
y)
mark(
s(
x)) →
s(
mark(
x))
ge_active(
x,
0') →
truemark(
minus(
x,
y)) →
minus_active(
x,
y)
ge_active(
0',
s(
y)) →
falsemark(
ge(
x,
y)) →
ge_active(
x,
y)
ge_active(
s(
x),
s(
y)) →
ge_active(
x,
y)
mark(
div(
x,
y)) →
div_active(
mark(
x),
y)
div_active(
0',
s(
y)) →
0'mark(
if(
x,
y,
z)) →
if_active(
mark(
x),
y,
z)
div_active(
s(
x),
s(
y)) →
if_active(
ge_active(
x,
y),
s(
div(
minus(
x,
y),
s(
y))),
0')
if_active(
true,
x,
y) →
mark(
x)
minus_active(
x,
y) →
minus(
x,
y)
if_active(
false,
x,
y) →
mark(
y)
ge_active(
x,
y) →
ge(
x,
y)
if_active(
x,
y,
z) →
if(
x,
y,
z)
div_active(
x,
y) →
div(
x,
y)
Types:
minus_active :: 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if
0' :: 0':s:true:minus:false:ge:div:if
mark :: 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if
s :: 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if
ge_active :: 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if
true :: 0':s:true:minus:false:ge:div:if
minus :: 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if
false :: 0':s:true:minus:false:ge:div:if
ge :: 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if
div :: 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if
div_active :: 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if
if :: 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if
if_active :: 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if
hole_0':s:true:minus:false:ge:div:if1_0 :: 0':s:true:minus:false:ge:div:if
gen_0':s:true:minus:false:ge:div:if2_0 :: Nat → 0':s:true:minus:false:ge:div:if
Lemmas:
minus_active(gen_0':s:true:minus:false:ge:div:if2_0(n4_0), gen_0':s:true:minus:false:ge:div:if2_0(n4_0)) → gen_0':s:true:minus:false:ge:div:if2_0(0), rt ∈ Ω(1 + n40)
ge_active(gen_0':s:true:minus:false:ge:div:if2_0(n712_0), gen_0':s:true:minus:false:ge:div:if2_0(n712_0)) → true, rt ∈ Ω(1 + n7120)
Generator Equations:
gen_0':s:true:minus:false:ge:div:if2_0(0) ⇔ 0'
gen_0':s:true:minus:false:ge:div:if2_0(+(x, 1)) ⇔ s(gen_0':s:true:minus:false:ge:div:if2_0(x))
The following defined symbols remain to be analysed:
mark
(13) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
mark(
gen_0':s:true:minus:false:ge:div:if2_0(
n1529_0)) →
gen_0':s:true:minus:false:ge:div:if2_0(
n1529_0), rt ∈ Ω(1 + n1529
0)
Induction Base:
mark(gen_0':s:true:minus:false:ge:div:if2_0(0)) →RΩ(1)
0'
Induction Step:
mark(gen_0':s:true:minus:false:ge:div:if2_0(+(n1529_0, 1))) →RΩ(1)
s(mark(gen_0':s:true:minus:false:ge:div:if2_0(n1529_0))) →IH
s(gen_0':s:true:minus:false:ge:div:if2_0(c1530_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(14) Complex Obligation (BEST)
(15) Obligation:
Innermost TRS:
Rules:
minus_active(
0',
y) →
0'mark(
0') →
0'minus_active(
s(
x),
s(
y)) →
minus_active(
x,
y)
mark(
s(
x)) →
s(
mark(
x))
ge_active(
x,
0') →
truemark(
minus(
x,
y)) →
minus_active(
x,
y)
ge_active(
0',
s(
y)) →
falsemark(
ge(
x,
y)) →
ge_active(
x,
y)
ge_active(
s(
x),
s(
y)) →
ge_active(
x,
y)
mark(
div(
x,
y)) →
div_active(
mark(
x),
y)
div_active(
0',
s(
y)) →
0'mark(
if(
x,
y,
z)) →
if_active(
mark(
x),
y,
z)
div_active(
s(
x),
s(
y)) →
if_active(
ge_active(
x,
y),
s(
div(
minus(
x,
y),
s(
y))),
0')
if_active(
true,
x,
y) →
mark(
x)
minus_active(
x,
y) →
minus(
x,
y)
if_active(
false,
x,
y) →
mark(
y)
ge_active(
x,
y) →
ge(
x,
y)
if_active(
x,
y,
z) →
if(
x,
y,
z)
div_active(
x,
y) →
div(
x,
y)
Types:
minus_active :: 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if
0' :: 0':s:true:minus:false:ge:div:if
mark :: 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if
s :: 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if
ge_active :: 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if
true :: 0':s:true:minus:false:ge:div:if
minus :: 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if
false :: 0':s:true:minus:false:ge:div:if
ge :: 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if
div :: 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if
div_active :: 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if
if :: 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if
if_active :: 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if
hole_0':s:true:minus:false:ge:div:if1_0 :: 0':s:true:minus:false:ge:div:if
gen_0':s:true:minus:false:ge:div:if2_0 :: Nat → 0':s:true:minus:false:ge:div:if
Lemmas:
minus_active(gen_0':s:true:minus:false:ge:div:if2_0(n4_0), gen_0':s:true:minus:false:ge:div:if2_0(n4_0)) → gen_0':s:true:minus:false:ge:div:if2_0(0), rt ∈ Ω(1 + n40)
ge_active(gen_0':s:true:minus:false:ge:div:if2_0(n712_0), gen_0':s:true:minus:false:ge:div:if2_0(n712_0)) → true, rt ∈ Ω(1 + n7120)
mark(gen_0':s:true:minus:false:ge:div:if2_0(n1529_0)) → gen_0':s:true:minus:false:ge:div:if2_0(n1529_0), rt ∈ Ω(1 + n15290)
Generator Equations:
gen_0':s:true:minus:false:ge:div:if2_0(0) ⇔ 0'
gen_0':s:true:minus:false:ge:div:if2_0(+(x, 1)) ⇔ s(gen_0':s:true:minus:false:ge:div:if2_0(x))
No more defined symbols left to analyse.
(16) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
minus_active(gen_0':s:true:minus:false:ge:div:if2_0(n4_0), gen_0':s:true:minus:false:ge:div:if2_0(n4_0)) → gen_0':s:true:minus:false:ge:div:if2_0(0), rt ∈ Ω(1 + n40)
(17) BOUNDS(n^1, INF)
(18) Obligation:
Innermost TRS:
Rules:
minus_active(
0',
y) →
0'mark(
0') →
0'minus_active(
s(
x),
s(
y)) →
minus_active(
x,
y)
mark(
s(
x)) →
s(
mark(
x))
ge_active(
x,
0') →
truemark(
minus(
x,
y)) →
minus_active(
x,
y)
ge_active(
0',
s(
y)) →
falsemark(
ge(
x,
y)) →
ge_active(
x,
y)
ge_active(
s(
x),
s(
y)) →
ge_active(
x,
y)
mark(
div(
x,
y)) →
div_active(
mark(
x),
y)
div_active(
0',
s(
y)) →
0'mark(
if(
x,
y,
z)) →
if_active(
mark(
x),
y,
z)
div_active(
s(
x),
s(
y)) →
if_active(
ge_active(
x,
y),
s(
div(
minus(
x,
y),
s(
y))),
0')
if_active(
true,
x,
y) →
mark(
x)
minus_active(
x,
y) →
minus(
x,
y)
if_active(
false,
x,
y) →
mark(
y)
ge_active(
x,
y) →
ge(
x,
y)
if_active(
x,
y,
z) →
if(
x,
y,
z)
div_active(
x,
y) →
div(
x,
y)
Types:
minus_active :: 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if
0' :: 0':s:true:minus:false:ge:div:if
mark :: 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if
s :: 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if
ge_active :: 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if
true :: 0':s:true:minus:false:ge:div:if
minus :: 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if
false :: 0':s:true:minus:false:ge:div:if
ge :: 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if
div :: 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if
div_active :: 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if
if :: 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if
if_active :: 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if
hole_0':s:true:minus:false:ge:div:if1_0 :: 0':s:true:minus:false:ge:div:if
gen_0':s:true:minus:false:ge:div:if2_0 :: Nat → 0':s:true:minus:false:ge:div:if
Lemmas:
minus_active(gen_0':s:true:minus:false:ge:div:if2_0(n4_0), gen_0':s:true:minus:false:ge:div:if2_0(n4_0)) → gen_0':s:true:minus:false:ge:div:if2_0(0), rt ∈ Ω(1 + n40)
ge_active(gen_0':s:true:minus:false:ge:div:if2_0(n712_0), gen_0':s:true:minus:false:ge:div:if2_0(n712_0)) → true, rt ∈ Ω(1 + n7120)
mark(gen_0':s:true:minus:false:ge:div:if2_0(n1529_0)) → gen_0':s:true:minus:false:ge:div:if2_0(n1529_0), rt ∈ Ω(1 + n15290)
Generator Equations:
gen_0':s:true:minus:false:ge:div:if2_0(0) ⇔ 0'
gen_0':s:true:minus:false:ge:div:if2_0(+(x, 1)) ⇔ s(gen_0':s:true:minus:false:ge:div:if2_0(x))
No more defined symbols left to analyse.
(19) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
minus_active(gen_0':s:true:minus:false:ge:div:if2_0(n4_0), gen_0':s:true:minus:false:ge:div:if2_0(n4_0)) → gen_0':s:true:minus:false:ge:div:if2_0(0), rt ∈ Ω(1 + n40)
(20) BOUNDS(n^1, INF)
(21) Obligation:
Innermost TRS:
Rules:
minus_active(
0',
y) →
0'mark(
0') →
0'minus_active(
s(
x),
s(
y)) →
minus_active(
x,
y)
mark(
s(
x)) →
s(
mark(
x))
ge_active(
x,
0') →
truemark(
minus(
x,
y)) →
minus_active(
x,
y)
ge_active(
0',
s(
y)) →
falsemark(
ge(
x,
y)) →
ge_active(
x,
y)
ge_active(
s(
x),
s(
y)) →
ge_active(
x,
y)
mark(
div(
x,
y)) →
div_active(
mark(
x),
y)
div_active(
0',
s(
y)) →
0'mark(
if(
x,
y,
z)) →
if_active(
mark(
x),
y,
z)
div_active(
s(
x),
s(
y)) →
if_active(
ge_active(
x,
y),
s(
div(
minus(
x,
y),
s(
y))),
0')
if_active(
true,
x,
y) →
mark(
x)
minus_active(
x,
y) →
minus(
x,
y)
if_active(
false,
x,
y) →
mark(
y)
ge_active(
x,
y) →
ge(
x,
y)
if_active(
x,
y,
z) →
if(
x,
y,
z)
div_active(
x,
y) →
div(
x,
y)
Types:
minus_active :: 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if
0' :: 0':s:true:minus:false:ge:div:if
mark :: 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if
s :: 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if
ge_active :: 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if
true :: 0':s:true:minus:false:ge:div:if
minus :: 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if
false :: 0':s:true:minus:false:ge:div:if
ge :: 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if
div :: 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if
div_active :: 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if
if :: 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if
if_active :: 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if
hole_0':s:true:minus:false:ge:div:if1_0 :: 0':s:true:minus:false:ge:div:if
gen_0':s:true:minus:false:ge:div:if2_0 :: Nat → 0':s:true:minus:false:ge:div:if
Lemmas:
minus_active(gen_0':s:true:minus:false:ge:div:if2_0(n4_0), gen_0':s:true:minus:false:ge:div:if2_0(n4_0)) → gen_0':s:true:minus:false:ge:div:if2_0(0), rt ∈ Ω(1 + n40)
ge_active(gen_0':s:true:minus:false:ge:div:if2_0(n712_0), gen_0':s:true:minus:false:ge:div:if2_0(n712_0)) → true, rt ∈ Ω(1 + n7120)
Generator Equations:
gen_0':s:true:minus:false:ge:div:if2_0(0) ⇔ 0'
gen_0':s:true:minus:false:ge:div:if2_0(+(x, 1)) ⇔ s(gen_0':s:true:minus:false:ge:div:if2_0(x))
No more defined symbols left to analyse.
(22) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
minus_active(gen_0':s:true:minus:false:ge:div:if2_0(n4_0), gen_0':s:true:minus:false:ge:div:if2_0(n4_0)) → gen_0':s:true:minus:false:ge:div:if2_0(0), rt ∈ Ω(1 + n40)
(23) BOUNDS(n^1, INF)
(24) Obligation:
Innermost TRS:
Rules:
minus_active(
0',
y) →
0'mark(
0') →
0'minus_active(
s(
x),
s(
y)) →
minus_active(
x,
y)
mark(
s(
x)) →
s(
mark(
x))
ge_active(
x,
0') →
truemark(
minus(
x,
y)) →
minus_active(
x,
y)
ge_active(
0',
s(
y)) →
falsemark(
ge(
x,
y)) →
ge_active(
x,
y)
ge_active(
s(
x),
s(
y)) →
ge_active(
x,
y)
mark(
div(
x,
y)) →
div_active(
mark(
x),
y)
div_active(
0',
s(
y)) →
0'mark(
if(
x,
y,
z)) →
if_active(
mark(
x),
y,
z)
div_active(
s(
x),
s(
y)) →
if_active(
ge_active(
x,
y),
s(
div(
minus(
x,
y),
s(
y))),
0')
if_active(
true,
x,
y) →
mark(
x)
minus_active(
x,
y) →
minus(
x,
y)
if_active(
false,
x,
y) →
mark(
y)
ge_active(
x,
y) →
ge(
x,
y)
if_active(
x,
y,
z) →
if(
x,
y,
z)
div_active(
x,
y) →
div(
x,
y)
Types:
minus_active :: 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if
0' :: 0':s:true:minus:false:ge:div:if
mark :: 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if
s :: 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if
ge_active :: 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if
true :: 0':s:true:minus:false:ge:div:if
minus :: 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if
false :: 0':s:true:minus:false:ge:div:if
ge :: 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if
div :: 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if
div_active :: 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if
if :: 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if
if_active :: 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if → 0':s:true:minus:false:ge:div:if
hole_0':s:true:minus:false:ge:div:if1_0 :: 0':s:true:minus:false:ge:div:if
gen_0':s:true:minus:false:ge:div:if2_0 :: Nat → 0':s:true:minus:false:ge:div:if
Lemmas:
minus_active(gen_0':s:true:minus:false:ge:div:if2_0(n4_0), gen_0':s:true:minus:false:ge:div:if2_0(n4_0)) → gen_0':s:true:minus:false:ge:div:if2_0(0), rt ∈ Ω(1 + n40)
Generator Equations:
gen_0':s:true:minus:false:ge:div:if2_0(0) ⇔ 0'
gen_0':s:true:minus:false:ge:div:if2_0(+(x, 1)) ⇔ s(gen_0':s:true:minus:false:ge:div:if2_0(x))
No more defined symbols left to analyse.
(25) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
minus_active(gen_0':s:true:minus:false:ge:div:if2_0(n4_0), gen_0':s:true:minus:false:ge:div:if2_0(n4_0)) → gen_0':s:true:minus:false:ge:div:if2_0(0), rt ∈ Ω(1 + n40)
(26) BOUNDS(n^1, INF)