*** 1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: div(x,y) -> quot(x,y,y) div(0(),y) -> 0() div(div(x,y),z) -> div(x,times(y,z)) plus(x,0()) -> x plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) quot(x,0(),s(z)) -> s(div(x,s(z))) quot(0(),s(y),z) -> 0() quot(s(x),s(y),z) -> quot(x,y,z) times(0(),y) -> 0() times(s(x),y) -> plus(y,times(x,y)) times(s(0()),y) -> y Weak DP Rules: Weak TRS Rules: Signature: {div/2,plus/2,quot/3,times/2} / {0/0,s/1} Obligation: Innermost basic terms: {div,plus,quot,times}/{0,s} Applied Processor: InnermostRuleRemoval Proof: Arguments of following rules are not normal-forms. div(div(x,y),z) -> div(x,times(y,z)) All above mentioned rules can be savely removed. *** 1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: div(x,y) -> quot(x,y,y) div(0(),y) -> 0() plus(x,0()) -> x plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) quot(x,0(),s(z)) -> s(div(x,s(z))) quot(0(),s(y),z) -> 0() quot(s(x),s(y),z) -> quot(x,y,z) times(0(),y) -> 0() times(s(x),y) -> plus(y,times(x,y)) times(s(0()),y) -> y Weak DP Rules: Weak TRS Rules: Signature: {div/2,plus/2,quot/3,times/2} / {0/0,s/1} Obligation: Innermost basic terms: {div,plus,quot,times}/{0,s} Applied Processor: DependencyPairs {dpKind_ = DT} Proof: We add the following dependency tuples: Strict DPs div#(x,y) -> c_1(quot#(x,y,y)) div#(0(),y) -> c_2() plus#(x,0()) -> c_3() plus#(0(),y) -> c_4() plus#(s(x),y) -> c_5(plus#(x,y)) quot#(x,0(),s(z)) -> c_6(div#(x,s(z))) quot#(0(),s(y),z) -> c_7() quot#(s(x),s(y),z) -> c_8(quot#(x,y,z)) times#(0(),y) -> c_9() times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y)) times#(s(0()),y) -> c_11() Weak DPs and mark the set of starting terms. *** 1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: div#(x,y) -> c_1(quot#(x,y,y)) div#(0(),y) -> c_2() plus#(x,0()) -> c_3() plus#(0(),y) -> c_4() plus#(s(x),y) -> c_5(plus#(x,y)) quot#(x,0(),s(z)) -> c_6(div#(x,s(z))) quot#(0(),s(y),z) -> c_7() quot#(s(x),s(y),z) -> c_8(quot#(x,y,z)) times#(0(),y) -> c_9() times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y)) times#(s(0()),y) -> c_11() Strict TRS Rules: Weak DP Rules: Weak TRS Rules: div(x,y) -> quot(x,y,y) div(0(),y) -> 0() plus(x,0()) -> x plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) quot(x,0(),s(z)) -> s(div(x,s(z))) quot(0(),s(y),z) -> 0() quot(s(x),s(y),z) -> quot(x,y,z) times(0(),y) -> 0() times(s(x),y) -> plus(y,times(x,y)) times(s(0()),y) -> y Signature: {div/2,plus/2,quot/3,times/2,div#/2,plus#/2,quot#/3,times#/2} / {0/0,s/1,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/2,c_11/0} Obligation: Innermost basic terms: {div#,plus#,quot#,times#}/{0,s} Applied Processor: UsableRules Proof: We replace rewrite rules by usable rules: plus(x,0()) -> x plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) times(0(),y) -> 0() times(s(x),y) -> plus(y,times(x,y)) times(s(0()),y) -> y div#(x,y) -> c_1(quot#(x,y,y)) div#(0(),y) -> c_2() plus#(x,0()) -> c_3() plus#(0(),y) -> c_4() plus#(s(x),y) -> c_5(plus#(x,y)) quot#(x,0(),s(z)) -> c_6(div#(x,s(z))) quot#(0(),s(y),z) -> c_7() quot#(s(x),s(y),z) -> c_8(quot#(x,y,z)) times#(0(),y) -> c_9() times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y)) times#(s(0()),y) -> c_11() *** 1.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: div#(x,y) -> c_1(quot#(x,y,y)) div#(0(),y) -> c_2() plus#(x,0()) -> c_3() plus#(0(),y) -> c_4() plus#(s(x),y) -> c_5(plus#(x,y)) quot#(x,0(),s(z)) -> c_6(div#(x,s(z))) quot#(0(),s(y),z) -> c_7() quot#(s(x),s(y),z) -> c_8(quot#(x,y,z)) times#(0(),y) -> c_9() times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y)) times#(s(0()),y) -> c_11() Strict TRS Rules: Weak DP Rules: Weak TRS Rules: plus(x,0()) -> x plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) times(0(),y) -> 0() times(s(x),y) -> plus(y,times(x,y)) times(s(0()),y) -> y Signature: {div/2,plus/2,quot/3,times/2,div#/2,plus#/2,quot#/3,times#/2} / {0/0,s/1,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/2,c_11/0} Obligation: Innermost basic terms: {div#,plus#,quot#,times#}/{0,s} Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} Proof: We estimate the number of application of {2,3,4,7,9,11} by application of Pre({2,3,4,7,9,11}) = {1,5,6,8,10}. Here rules are labelled as follows: 1: div#(x,y) -> c_1(quot#(x,y,y)) 2: div#(0(),y) -> c_2() 3: plus#(x,0()) -> c_3() 4: plus#(0(),y) -> c_4() 5: plus#(s(x),y) -> c_5(plus#(x,y)) 6: quot#(x,0(),s(z)) -> c_6(div#(x ,s(z))) 7: quot#(0(),s(y),z) -> c_7() 8: quot#(s(x),s(y),z) -> c_8(quot#(x,y,z)) 9: times#(0(),y) -> c_9() 10: times#(s(x),y) -> c_10(plus#(y ,times(x,y)) ,times#(x,y)) 11: times#(s(0()),y) -> c_11() *** 1.1.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: div#(x,y) -> c_1(quot#(x,y,y)) plus#(s(x),y) -> c_5(plus#(x,y)) quot#(x,0(),s(z)) -> c_6(div#(x,s(z))) quot#(s(x),s(y),z) -> c_8(quot#(x,y,z)) times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y)) Strict TRS Rules: Weak DP Rules: div#(0(),y) -> c_2() plus#(x,0()) -> c_3() plus#(0(),y) -> c_4() quot#(0(),s(y),z) -> c_7() times#(0(),y) -> c_9() times#(s(0()),y) -> c_11() Weak TRS Rules: plus(x,0()) -> x plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) times(0(),y) -> 0() times(s(x),y) -> plus(y,times(x,y)) times(s(0()),y) -> y Signature: {div/2,plus/2,quot/3,times/2,div#/2,plus#/2,quot#/3,times#/2} / {0/0,s/1,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/2,c_11/0} Obligation: Innermost basic terms: {div#,plus#,quot#,times#}/{0,s} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:div#(x,y) -> c_1(quot#(x,y,y)) -->_1 quot#(s(x),s(y),z) -> c_8(quot#(x,y,z)):4 -->_1 quot#(0(),s(y),z) -> c_7():9 2:S:plus#(s(x),y) -> c_5(plus#(x,y)) -->_1 plus#(0(),y) -> c_4():8 -->_1 plus#(x,0()) -> c_3():7 -->_1 plus#(s(x),y) -> c_5(plus#(x,y)):2 3:S:quot#(x,0(),s(z)) -> c_6(div#(x,s(z))) -->_1 div#(0(),y) -> c_2():6 -->_1 div#(x,y) -> c_1(quot#(x,y,y)):1 4:S:quot#(s(x),s(y),z) -> c_8(quot#(x,y,z)) -->_1 quot#(0(),s(y),z) -> c_7():9 -->_1 quot#(s(x),s(y),z) -> c_8(quot#(x,y,z)):4 -->_1 quot#(x,0(),s(z)) -> c_6(div#(x,s(z))):3 5:S:times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y)) -->_2 times#(s(0()),y) -> c_11():11 -->_2 times#(0(),y) -> c_9():10 -->_1 plus#(0(),y) -> c_4():8 -->_1 plus#(x,0()) -> c_3():7 -->_2 times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y)):5 -->_1 plus#(s(x),y) -> c_5(plus#(x,y)):2 6:W:div#(0(),y) -> c_2() 7:W:plus#(x,0()) -> c_3() 8:W:plus#(0(),y) -> c_4() 9:W:quot#(0(),s(y),z) -> c_7() 10:W:times#(0(),y) -> c_9() 11:W:times#(s(0()),y) -> c_11() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 10: times#(0(),y) -> c_9() 11: times#(s(0()),y) -> c_11() 7: plus#(x,0()) -> c_3() 8: plus#(0(),y) -> c_4() 6: div#(0(),y) -> c_2() 9: quot#(0(),s(y),z) -> c_7() *** 1.1.1.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: div#(x,y) -> c_1(quot#(x,y,y)) plus#(s(x),y) -> c_5(plus#(x,y)) quot#(x,0(),s(z)) -> c_6(div#(x,s(z))) quot#(s(x),s(y),z) -> c_8(quot#(x,y,z)) times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: plus(x,0()) -> x plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) times(0(),y) -> 0() times(s(x),y) -> plus(y,times(x,y)) times(s(0()),y) -> y Signature: {div/2,plus/2,quot/3,times/2,div#/2,plus#/2,quot#/3,times#/2} / {0/0,s/1,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/2,c_11/0} Obligation: Innermost basic terms: {div#,plus#,quot#,times#}/{0,s} Applied Processor: Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd} Proof: We analyse the complexity of following sub-problems (R) and (S). Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component. Problem (R) Strict DP Rules: div#(x,y) -> c_1(quot#(x,y,y)) quot#(x,0(),s(z)) -> c_6(div#(x,s(z))) quot#(s(x),s(y),z) -> c_8(quot#(x,y,z)) Strict TRS Rules: Weak DP Rules: plus#(s(x),y) -> c_5(plus#(x,y)) times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y)) Weak TRS Rules: plus(x,0()) -> x plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) times(0(),y) -> 0() times(s(x),y) -> plus(y,times(x,y)) times(s(0()),y) -> y Signature: {div/2,plus/2,quot/3,times/2,div#/2,plus#/2,quot#/3,times#/2} / {0/0,s/1,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/2,c_11/0} Obligation: Innermost basic terms: {div#,plus#,quot#,times#}/{0,s} Problem (S) Strict DP Rules: plus#(s(x),y) -> c_5(plus#(x,y)) times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y)) Strict TRS Rules: Weak DP Rules: div#(x,y) -> c_1(quot#(x,y,y)) quot#(x,0(),s(z)) -> c_6(div#(x,s(z))) quot#(s(x),s(y),z) -> c_8(quot#(x,y,z)) Weak TRS Rules: plus(x,0()) -> x plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) times(0(),y) -> 0() times(s(x),y) -> plus(y,times(x,y)) times(s(0()),y) -> y Signature: {div/2,plus/2,quot/3,times/2,div#/2,plus#/2,quot#/3,times#/2} / {0/0,s/1,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/2,c_11/0} Obligation: Innermost basic terms: {div#,plus#,quot#,times#}/{0,s} *** 1.1.1.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: div#(x,y) -> c_1(quot#(x,y,y)) quot#(x,0(),s(z)) -> c_6(div#(x,s(z))) quot#(s(x),s(y),z) -> c_8(quot#(x,y,z)) Strict TRS Rules: Weak DP Rules: plus#(s(x),y) -> c_5(plus#(x,y)) times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y)) Weak TRS Rules: plus(x,0()) -> x plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) times(0(),y) -> 0() times(s(x),y) -> plus(y,times(x,y)) times(s(0()),y) -> y Signature: {div/2,plus/2,quot/3,times/2,div#/2,plus#/2,quot#/3,times#/2} / {0/0,s/1,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/2,c_11/0} Obligation: Innermost basic terms: {div#,plus#,quot#,times#}/{0,s} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:div#(x,y) -> c_1(quot#(x,y,y)) -->_1 quot#(s(x),s(y),z) -> c_8(quot#(x,y,z)):4 2:W:plus#(s(x),y) -> c_5(plus#(x,y)) -->_1 plus#(s(x),y) -> c_5(plus#(x,y)):2 3:S:quot#(x,0(),s(z)) -> c_6(div#(x,s(z))) -->_1 div#(x,y) -> c_1(quot#(x,y,y)):1 4:S:quot#(s(x),s(y),z) -> c_8(quot#(x,y,z)) -->_1 quot#(x,0(),s(z)) -> c_6(div#(x,s(z))):3 -->_1 quot#(s(x),s(y),z) -> c_8(quot#(x,y,z)):4 5:W:times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y)) -->_1 plus#(s(x),y) -> c_5(plus#(x,y)):2 -->_2 times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y)):5 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 5: times#(s(x),y) -> c_10(plus#(y ,times(x,y)) ,times#(x,y)) 2: plus#(s(x),y) -> c_5(plus#(x,y)) *** 1.1.1.1.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: div#(x,y) -> c_1(quot#(x,y,y)) quot#(x,0(),s(z)) -> c_6(div#(x,s(z))) quot#(s(x),s(y),z) -> c_8(quot#(x,y,z)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: plus(x,0()) -> x plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) times(0(),y) -> 0() times(s(x),y) -> plus(y,times(x,y)) times(s(0()),y) -> y Signature: {div/2,plus/2,quot/3,times/2,div#/2,plus#/2,quot#/3,times#/2} / {0/0,s/1,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/2,c_11/0} Obligation: Innermost basic terms: {div#,plus#,quot#,times#}/{0,s} Applied Processor: UsableRules Proof: We replace rewrite rules by usable rules: div#(x,y) -> c_1(quot#(x,y,y)) quot#(x,0(),s(z)) -> c_6(div#(x,s(z))) quot#(s(x),s(y),z) -> c_8(quot#(x,y,z)) *** 1.1.1.1.1.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: div#(x,y) -> c_1(quot#(x,y,y)) quot#(x,0(),s(z)) -> c_6(div#(x,s(z))) quot#(s(x),s(y),z) -> c_8(quot#(x,y,z)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {div/2,plus/2,quot/3,times/2,div#/2,plus#/2,quot#/3,times#/2} / {0/0,s/1,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/2,c_11/0} Obligation: Innermost basic terms: {div#,plus#,quot#,times#}/{0,s} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 3: quot#(s(x),s(y),z) -> c_8(quot#(x,y,z)) Consider the set of all dependency pairs 1: div#(x,y) -> c_1(quot#(x,y,y)) 2: quot#(x,0(),s(z)) -> c_6(div#(x ,s(z))) 3: quot#(s(x),s(y),z) -> c_8(quot#(x,y,z)) Processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}induces the complexity certificateTIME (?,O(n^1)) SPACE(?,?)on application of the dependency pairs {3} These cover all (indirect) predecessors of dependency pairs {1,2,3} their number of applications is equally bounded. The dependency pairs are shifted into the weak component. *** 1.1.1.1.1.1.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: div#(x,y) -> c_1(quot#(x,y,y)) quot#(x,0(),s(z)) -> c_6(div#(x,s(z))) quot#(s(x),s(y),z) -> c_8(quot#(x,y,z)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {div/2,plus/2,quot/3,times/2,div#/2,plus#/2,quot#/3,times#/2} / {0/0,s/1,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/2,c_11/0} Obligation: Innermost basic terms: {div#,plus#,quot#,times#}/{0,s} Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_1) = {1}, uargs(c_6) = {1}, uargs(c_8) = {1} Following symbols are considered usable: {div#,plus#,quot#,times#} TcT has computed the following interpretation: p(0) = [1] p(div) = [2] x1 + [2] x2 + [1] p(plus) = [1] x1 + [1] x2 + [0] p(quot) = [2] x1 + [1] p(s) = [1] x1 + [8] p(times) = [8] x1 + [1] x2 + [8] p(div#) = [1] x1 + [0] p(plus#) = [1] x2 + [2] p(quot#) = [1] x1 + [0] p(times#) = [1] x1 + [4] p(c_1) = [1] x1 + [0] p(c_2) = [4] p(c_3) = [0] p(c_4) = [1] p(c_5) = [2] x1 + [0] p(c_6) = [1] x1 + [0] p(c_7) = [2] p(c_8) = [1] x1 + [4] p(c_9) = [2] p(c_10) = [2] x2 + [1] p(c_11) = [2] Following rules are strictly oriented: quot#(s(x),s(y),z) = [1] x + [8] > [1] x + [4] = c_8(quot#(x,y,z)) Following rules are (at-least) weakly oriented: div#(x,y) = [1] x + [0] >= [1] x + [0] = c_1(quot#(x,y,y)) quot#(x,0(),s(z)) = [1] x + [0] >= [1] x + [0] = c_6(div#(x,s(z))) *** 1.1.1.1.1.1.1.1.1.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: div#(x,y) -> c_1(quot#(x,y,y)) quot#(x,0(),s(z)) -> c_6(div#(x,s(z))) Strict TRS Rules: Weak DP Rules: quot#(s(x),s(y),z) -> c_8(quot#(x,y,z)) Weak TRS Rules: Signature: {div/2,plus/2,quot/3,times/2,div#/2,plus#/2,quot#/3,times#/2} / {0/0,s/1,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/2,c_11/0} Obligation: Innermost basic terms: {div#,plus#,quot#,times#}/{0,s} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.1.1.1.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: div#(x,y) -> c_1(quot#(x,y,y)) quot#(x,0(),s(z)) -> c_6(div#(x,s(z))) quot#(s(x),s(y),z) -> c_8(quot#(x,y,z)) Weak TRS Rules: Signature: {div/2,plus/2,quot/3,times/2,div#/2,plus#/2,quot#/3,times#/2} / {0/0,s/1,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/2,c_11/0} Obligation: Innermost basic terms: {div#,plus#,quot#,times#}/{0,s} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:div#(x,y) -> c_1(quot#(x,y,y)) -->_1 quot#(s(x),s(y),z) -> c_8(quot#(x,y,z)):3 2:W:quot#(x,0(),s(z)) -> c_6(div#(x,s(z))) -->_1 div#(x,y) -> c_1(quot#(x,y,y)):1 3:W:quot#(s(x),s(y),z) -> c_8(quot#(x,y,z)) -->_1 quot#(s(x),s(y),z) -> c_8(quot#(x,y,z)):3 -->_1 quot#(x,0(),s(z)) -> c_6(div#(x,s(z))):2 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: div#(x,y) -> c_1(quot#(x,y,y)) 2: quot#(x,0(),s(z)) -> c_6(div#(x ,s(z))) 3: quot#(s(x),s(y),z) -> c_8(quot#(x,y,z)) *** 1.1.1.1.1.1.1.1.1.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {div/2,plus/2,quot/3,times/2,div#/2,plus#/2,quot#/3,times#/2} / {0/0,s/1,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/2,c_11/0} Obligation: Innermost basic terms: {div#,plus#,quot#,times#}/{0,s} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1). *** 1.1.1.1.1.1.2 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: plus#(s(x),y) -> c_5(plus#(x,y)) times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y)) Strict TRS Rules: Weak DP Rules: div#(x,y) -> c_1(quot#(x,y,y)) quot#(x,0(),s(z)) -> c_6(div#(x,s(z))) quot#(s(x),s(y),z) -> c_8(quot#(x,y,z)) Weak TRS Rules: plus(x,0()) -> x plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) times(0(),y) -> 0() times(s(x),y) -> plus(y,times(x,y)) times(s(0()),y) -> y Signature: {div/2,plus/2,quot/3,times/2,div#/2,plus#/2,quot#/3,times#/2} / {0/0,s/1,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/2,c_11/0} Obligation: Innermost basic terms: {div#,plus#,quot#,times#}/{0,s} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:plus#(s(x),y) -> c_5(plus#(x,y)) -->_1 plus#(s(x),y) -> c_5(plus#(x,y)):1 2:S:times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y)) -->_2 times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y)):2 -->_1 plus#(s(x),y) -> c_5(plus#(x,y)):1 3:W:div#(x,y) -> c_1(quot#(x,y,y)) -->_1 quot#(s(x),s(y),z) -> c_8(quot#(x,y,z)):5 4:W:quot#(x,0(),s(z)) -> c_6(div#(x,s(z))) -->_1 div#(x,y) -> c_1(quot#(x,y,y)):3 5:W:quot#(s(x),s(y),z) -> c_8(quot#(x,y,z)) -->_1 quot#(s(x),s(y),z) -> c_8(quot#(x,y,z)):5 -->_1 quot#(x,0(),s(z)) -> c_6(div#(x,s(z))):4 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 3: div#(x,y) -> c_1(quot#(x,y,y)) 4: quot#(x,0(),s(z)) -> c_6(div#(x ,s(z))) 5: quot#(s(x),s(y),z) -> c_8(quot#(x,y,z)) *** 1.1.1.1.1.1.2.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: plus#(s(x),y) -> c_5(plus#(x,y)) times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: plus(x,0()) -> x plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) times(0(),y) -> 0() times(s(x),y) -> plus(y,times(x,y)) times(s(0()),y) -> y Signature: {div/2,plus/2,quot/3,times/2,div#/2,plus#/2,quot#/3,times#/2} / {0/0,s/1,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/2,c_11/0} Obligation: Innermost basic terms: {div#,plus#,quot#,times#}/{0,s} Applied Processor: Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd} Proof: We analyse the complexity of following sub-problems (R) and (S). Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component. Problem (R) Strict DP Rules: plus#(s(x),y) -> c_5(plus#(x,y)) Strict TRS Rules: Weak DP Rules: times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y)) Weak TRS Rules: plus(x,0()) -> x plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) times(0(),y) -> 0() times(s(x),y) -> plus(y,times(x,y)) times(s(0()),y) -> y Signature: {div/2,plus/2,quot/3,times/2,div#/2,plus#/2,quot#/3,times#/2} / {0/0,s/1,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/2,c_11/0} Obligation: Innermost basic terms: {div#,plus#,quot#,times#}/{0,s} Problem (S) Strict DP Rules: times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y)) Strict TRS Rules: Weak DP Rules: plus#(s(x),y) -> c_5(plus#(x,y)) Weak TRS Rules: plus(x,0()) -> x plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) times(0(),y) -> 0() times(s(x),y) -> plus(y,times(x,y)) times(s(0()),y) -> y Signature: {div/2,plus/2,quot/3,times/2,div#/2,plus#/2,quot#/3,times#/2} / {0/0,s/1,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/2,c_11/0} Obligation: Innermost basic terms: {div#,plus#,quot#,times#}/{0,s} *** 1.1.1.1.1.1.2.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: plus#(s(x),y) -> c_5(plus#(x,y)) Strict TRS Rules: Weak DP Rules: times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y)) Weak TRS Rules: plus(x,0()) -> x plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) times(0(),y) -> 0() times(s(x),y) -> plus(y,times(x,y)) times(s(0()),y) -> y Signature: {div/2,plus/2,quot/3,times/2,div#/2,plus#/2,quot#/3,times#/2} / {0/0,s/1,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/2,c_11/0} Obligation: Innermost basic terms: {div#,plus#,quot#,times#}/{0,s} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: plus#(s(x),y) -> c_5(plus#(x,y)) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.1.2.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: plus#(s(x),y) -> c_5(plus#(x,y)) Strict TRS Rules: Weak DP Rules: times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y)) Weak TRS Rules: plus(x,0()) -> x plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) times(0(),y) -> 0() times(s(x),y) -> plus(y,times(x,y)) times(s(0()),y) -> y Signature: {div/2,plus/2,quot/3,times/2,div#/2,plus#/2,quot#/3,times#/2} / {0/0,s/1,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/2,c_11/0} Obligation: Innermost basic terms: {div#,plus#,quot#,times#}/{0,s} Applied Processor: NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a polynomial interpretation of kind constructor-based(mixed(2)): The following argument positions are considered usable: uargs(c_5) = {1}, uargs(c_10) = {1,2} Following symbols are considered usable: {div#,plus#,quot#,times#} TcT has computed the following interpretation: p(0) = 0 p(div) = 0 p(plus) = 2 + 2*x1 + 2*x1*x2 + 2*x2 + x2^2 p(quot) = 0 p(s) = 1 + x1 p(times) = 0 p(div#) = 0 p(plus#) = 2*x1 p(quot#) = x1 + x1^2 + x2^2 p(times#) = 7*x1*x2 + x2 + x2^2 p(c_1) = 0 p(c_2) = 1 p(c_3) = 0 p(c_4) = 0 p(c_5) = 1 + x1 p(c_6) = 1 + x1 p(c_7) = 0 p(c_8) = 0 p(c_9) = 0 p(c_10) = x1 + x2 p(c_11) = 0 Following rules are strictly oriented: plus#(s(x),y) = 2 + 2*x > 1 + 2*x = c_5(plus#(x,y)) Following rules are (at-least) weakly oriented: times#(s(x),y) = 7*x*y + 8*y + y^2 >= 7*x*y + 3*y + y^2 = c_10(plus#(y,times(x,y)) ,times#(x,y)) *** 1.1.1.1.1.1.2.1.1.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: plus#(s(x),y) -> c_5(plus#(x,y)) times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y)) Weak TRS Rules: plus(x,0()) -> x plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) times(0(),y) -> 0() times(s(x),y) -> plus(y,times(x,y)) times(s(0()),y) -> y Signature: {div/2,plus/2,quot/3,times/2,div#/2,plus#/2,quot#/3,times#/2} / {0/0,s/1,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/2,c_11/0} Obligation: Innermost basic terms: {div#,plus#,quot#,times#}/{0,s} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.2.1.1.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: plus#(s(x),y) -> c_5(plus#(x,y)) times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y)) Weak TRS Rules: plus(x,0()) -> x plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) times(0(),y) -> 0() times(s(x),y) -> plus(y,times(x,y)) times(s(0()),y) -> y Signature: {div/2,plus/2,quot/3,times/2,div#/2,plus#/2,quot#/3,times#/2} / {0/0,s/1,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/2,c_11/0} Obligation: Innermost basic terms: {div#,plus#,quot#,times#}/{0,s} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:plus#(s(x),y) -> c_5(plus#(x,y)) -->_1 plus#(s(x),y) -> c_5(plus#(x,y)):1 2:W:times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y)) -->_2 times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y)):2 -->_1 plus#(s(x),y) -> c_5(plus#(x,y)):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 2: times#(s(x),y) -> c_10(plus#(y ,times(x,y)) ,times#(x,y)) 1: plus#(s(x),y) -> c_5(plus#(x,y)) *** 1.1.1.1.1.1.2.1.1.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: plus(x,0()) -> x plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) times(0(),y) -> 0() times(s(x),y) -> plus(y,times(x,y)) times(s(0()),y) -> y Signature: {div/2,plus/2,quot/3,times/2,div#/2,plus#/2,quot#/3,times#/2} / {0/0,s/1,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/2,c_11/0} Obligation: Innermost basic terms: {div#,plus#,quot#,times#}/{0,s} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1). *** 1.1.1.1.1.1.2.1.2 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y)) Strict TRS Rules: Weak DP Rules: plus#(s(x),y) -> c_5(plus#(x,y)) Weak TRS Rules: plus(x,0()) -> x plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) times(0(),y) -> 0() times(s(x),y) -> plus(y,times(x,y)) times(s(0()),y) -> y Signature: {div/2,plus/2,quot/3,times/2,div#/2,plus#/2,quot#/3,times#/2} / {0/0,s/1,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/2,c_11/0} Obligation: Innermost basic terms: {div#,plus#,quot#,times#}/{0,s} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y)) -->_1 plus#(s(x),y) -> c_5(plus#(x,y)):2 -->_2 times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y)):1 2:W:plus#(s(x),y) -> c_5(plus#(x,y)) -->_1 plus#(s(x),y) -> c_5(plus#(x,y)):2 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 2: plus#(s(x),y) -> c_5(plus#(x,y)) *** 1.1.1.1.1.1.2.1.2.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: plus(x,0()) -> x plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) times(0(),y) -> 0() times(s(x),y) -> plus(y,times(x,y)) times(s(0()),y) -> y Signature: {div/2,plus/2,quot/3,times/2,div#/2,plus#/2,quot#/3,times#/2} / {0/0,s/1,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/2,c_11/0} Obligation: Innermost basic terms: {div#,plus#,quot#,times#}/{0,s} Applied Processor: SimplifyRHS Proof: Consider the dependency graph 1:S:times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y)) -->_2 times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y)):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: times#(s(x),y) -> c_10(times#(x,y)) *** 1.1.1.1.1.1.2.1.2.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: times#(s(x),y) -> c_10(times#(x,y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: plus(x,0()) -> x plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) times(0(),y) -> 0() times(s(x),y) -> plus(y,times(x,y)) times(s(0()),y) -> y Signature: {div/2,plus/2,quot/3,times/2,div#/2,plus#/2,quot#/3,times#/2} / {0/0,s/1,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/1,c_11/0} Obligation: Innermost basic terms: {div#,plus#,quot#,times#}/{0,s} Applied Processor: UsableRules Proof: We replace rewrite rules by usable rules: times#(s(x),y) -> c_10(times#(x,y)) *** 1.1.1.1.1.1.2.1.2.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: times#(s(x),y) -> c_10(times#(x,y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {div/2,plus/2,quot/3,times/2,div#/2,plus#/2,quot#/3,times#/2} / {0/0,s/1,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/1,c_11/0} Obligation: Innermost basic terms: {div#,plus#,quot#,times#}/{0,s} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: times#(s(x),y) -> c_10(times#(x ,y)) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.1.2.1.2.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: times#(s(x),y) -> c_10(times#(x,y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {div/2,plus/2,quot/3,times/2,div#/2,plus#/2,quot#/3,times#/2} / {0/0,s/1,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/1,c_11/0} Obligation: Innermost basic terms: {div#,plus#,quot#,times#}/{0,s} Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_10) = {1} Following symbols are considered usable: {div#,plus#,quot#,times#} TcT has computed the following interpretation: p(0) = [2] p(div) = [2] x1 + [4] x2 + [0] p(plus) = [1] x2 + [2] p(quot) = [2] p(s) = [1] x1 + [1] p(times) = [0] p(div#) = [0] p(plus#) = [1] x2 + [0] p(quot#) = [1] x2 + [1] x3 + [1] p(times#) = [2] x1 + [8] x2 + [0] p(c_1) = [2] p(c_2) = [1] p(c_3) = [1] p(c_4) = [0] p(c_5) = [1] x1 + [4] p(c_6) = [1] p(c_7) = [4] p(c_8) = [1] x1 + [0] p(c_9) = [8] p(c_10) = [1] x1 + [0] p(c_11) = [1] Following rules are strictly oriented: times#(s(x),y) = [2] x + [8] y + [2] > [2] x + [8] y + [0] = c_10(times#(x,y)) Following rules are (at-least) weakly oriented: *** 1.1.1.1.1.1.2.1.2.1.1.1.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: times#(s(x),y) -> c_10(times#(x,y)) Weak TRS Rules: Signature: {div/2,plus/2,quot/3,times/2,div#/2,plus#/2,quot#/3,times#/2} / {0/0,s/1,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/1,c_11/0} Obligation: Innermost basic terms: {div#,plus#,quot#,times#}/{0,s} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.2.1.2.1.1.1.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: times#(s(x),y) -> c_10(times#(x,y)) Weak TRS Rules: Signature: {div/2,plus/2,quot/3,times/2,div#/2,plus#/2,quot#/3,times#/2} / {0/0,s/1,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/1,c_11/0} Obligation: Innermost basic terms: {div#,plus#,quot#,times#}/{0,s} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:times#(s(x),y) -> c_10(times#(x,y)) -->_1 times#(s(x),y) -> c_10(times#(x,y)):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: times#(s(x),y) -> c_10(times#(x ,y)) *** 1.1.1.1.1.1.2.1.2.1.1.1.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {div/2,plus/2,quot/3,times/2,div#/2,plus#/2,quot#/3,times#/2} / {0/0,s/1,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/1,c_11/0} Obligation: Innermost basic terms: {div#,plus#,quot#,times#}/{0,s} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1).