*** 1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        div(x,y) -> quot(x,y,y)
        div(0(),y) -> 0()
        div(div(x,y),z) -> div(x,times(y,z))
        plus(x,0()) -> x
        plus(0(),y) -> y
        plus(s(x),y) -> s(plus(x,y))
        quot(x,0(),s(z)) -> s(div(x,s(z)))
        quot(0(),s(y),z) -> 0()
        quot(s(x),s(y),z) -> quot(x,y,z)
        times(0(),y) -> 0()
        times(s(x),y) -> plus(y,times(x,y))
        times(s(0()),y) -> y
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {div/2,plus/2,quot/3,times/2} / {0/0,s/1}
      Obligation:
        Innermost
        basic terms: {div,plus,quot,times}/{0,s}
    Applied Processor:
      InnermostRuleRemoval
    Proof:
      Arguments of following rules are not normal-forms.
        div(div(x,y),z) -> div(x,times(y,z))
      All above mentioned rules can be savely removed.
*** 1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        div(x,y) -> quot(x,y,y)
        div(0(),y) -> 0()
        plus(x,0()) -> x
        plus(0(),y) -> y
        plus(s(x),y) -> s(plus(x,y))
        quot(x,0(),s(z)) -> s(div(x,s(z)))
        quot(0(),s(y),z) -> 0()
        quot(s(x),s(y),z) -> quot(x,y,z)
        times(0(),y) -> 0()
        times(s(x),y) -> plus(y,times(x,y))
        times(s(0()),y) -> y
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {div/2,plus/2,quot/3,times/2} / {0/0,s/1}
      Obligation:
        Innermost
        basic terms: {div,plus,quot,times}/{0,s}
    Applied Processor:
      DependencyPairs {dpKind_ = DT}
    Proof:
      We add the following dependency tuples:
      
      Strict DPs
        div#(x,y) -> c_1(quot#(x,y,y))
        div#(0(),y) -> c_2()
        plus#(x,0()) -> c_3()
        plus#(0(),y) -> c_4()
        plus#(s(x),y) -> c_5(plus#(x,y))
        quot#(x,0(),s(z)) -> c_6(div#(x,s(z)))
        quot#(0(),s(y),z) -> c_7()
        quot#(s(x),s(y),z) -> c_8(quot#(x,y,z))
        times#(0(),y) -> c_9()
        times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y))
        times#(s(0()),y) -> c_11()
      Weak DPs
        
      
      and mark the set of starting terms.
*** 1.1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        div#(x,y) -> c_1(quot#(x,y,y))
        div#(0(),y) -> c_2()
        plus#(x,0()) -> c_3()
        plus#(0(),y) -> c_4()
        plus#(s(x),y) -> c_5(plus#(x,y))
        quot#(x,0(),s(z)) -> c_6(div#(x,s(z)))
        quot#(0(),s(y),z) -> c_7()
        quot#(s(x),s(y),z) -> c_8(quot#(x,y,z))
        times#(0(),y) -> c_9()
        times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y))
        times#(s(0()),y) -> c_11()
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        div(x,y) -> quot(x,y,y)
        div(0(),y) -> 0()
        plus(x,0()) -> x
        plus(0(),y) -> y
        plus(s(x),y) -> s(plus(x,y))
        quot(x,0(),s(z)) -> s(div(x,s(z)))
        quot(0(),s(y),z) -> 0()
        quot(s(x),s(y),z) -> quot(x,y,z)
        times(0(),y) -> 0()
        times(s(x),y) -> plus(y,times(x,y))
        times(s(0()),y) -> y
      Signature:
        {div/2,plus/2,quot/3,times/2,div#/2,plus#/2,quot#/3,times#/2} / {0/0,s/1,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/2,c_11/0}
      Obligation:
        Innermost
        basic terms: {div#,plus#,quot#,times#}/{0,s}
    Applied Processor:
      UsableRules
    Proof:
      We replace rewrite rules by usable rules:
        plus(x,0()) -> x
        plus(0(),y) -> y
        plus(s(x),y) -> s(plus(x,y))
        times(0(),y) -> 0()
        times(s(x),y) -> plus(y,times(x,y))
        times(s(0()),y) -> y
        div#(x,y) -> c_1(quot#(x,y,y))
        div#(0(),y) -> c_2()
        plus#(x,0()) -> c_3()
        plus#(0(),y) -> c_4()
        plus#(s(x),y) -> c_5(plus#(x,y))
        quot#(x,0(),s(z)) -> c_6(div#(x,s(z)))
        quot#(0(),s(y),z) -> c_7()
        quot#(s(x),s(y),z) -> c_8(quot#(x,y,z))
        times#(0(),y) -> c_9()
        times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y))
        times#(s(0()),y) -> c_11()
*** 1.1.1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        div#(x,y) -> c_1(quot#(x,y,y))
        div#(0(),y) -> c_2()
        plus#(x,0()) -> c_3()
        plus#(0(),y) -> c_4()
        plus#(s(x),y) -> c_5(plus#(x,y))
        quot#(x,0(),s(z)) -> c_6(div#(x,s(z)))
        quot#(0(),s(y),z) -> c_7()
        quot#(s(x),s(y),z) -> c_8(quot#(x,y,z))
        times#(0(),y) -> c_9()
        times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y))
        times#(s(0()),y) -> c_11()
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        plus(x,0()) -> x
        plus(0(),y) -> y
        plus(s(x),y) -> s(plus(x,y))
        times(0(),y) -> 0()
        times(s(x),y) -> plus(y,times(x,y))
        times(s(0()),y) -> y
      Signature:
        {div/2,plus/2,quot/3,times/2,div#/2,plus#/2,quot#/3,times#/2} / {0/0,s/1,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/2,c_11/0}
      Obligation:
        Innermost
        basic terms: {div#,plus#,quot#,times#}/{0,s}
    Applied Processor:
      PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    Proof:
      We estimate the number of application of
        {2,3,4,7,9,11}
      by application of
        Pre({2,3,4,7,9,11}) = {1,5,6,8,10}.
      Here rules are labelled as follows:
        1:  div#(x,y) -> c_1(quot#(x,y,y))          
        2:  div#(0(),y) -> c_2()                    
        3:  plus#(x,0()) -> c_3()                   
        4:  plus#(0(),y) -> c_4()                   
        5:  plus#(s(x),y) -> c_5(plus#(x,y))        
        6:  quot#(x,0(),s(z)) -> c_6(div#(x         
                                         ,s(z)))    
        7:  quot#(0(),s(y),z) -> c_7()              
        8:  quot#(s(x),s(y),z) ->                   
              c_8(quot#(x,y,z))                     
        9:  times#(0(),y) -> c_9()                  
        10: times#(s(x),y) -> c_10(plus#(y          
                                        ,times(x,y))
                                  ,times#(x,y))     
        11: times#(s(0()),y) -> c_11()              
*** 1.1.1.1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        div#(x,y) -> c_1(quot#(x,y,y))
        plus#(s(x),y) -> c_5(plus#(x,y))
        quot#(x,0(),s(z)) -> c_6(div#(x,s(z)))
        quot#(s(x),s(y),z) -> c_8(quot#(x,y,z))
        times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y))
      Strict TRS Rules:
        
      Weak DP Rules:
        div#(0(),y) -> c_2()
        plus#(x,0()) -> c_3()
        plus#(0(),y) -> c_4()
        quot#(0(),s(y),z) -> c_7()
        times#(0(),y) -> c_9()
        times#(s(0()),y) -> c_11()
      Weak TRS Rules:
        plus(x,0()) -> x
        plus(0(),y) -> y
        plus(s(x),y) -> s(plus(x,y))
        times(0(),y) -> 0()
        times(s(x),y) -> plus(y,times(x,y))
        times(s(0()),y) -> y
      Signature:
        {div/2,plus/2,quot/3,times/2,div#/2,plus#/2,quot#/3,times#/2} / {0/0,s/1,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/2,c_11/0}
      Obligation:
        Innermost
        basic terms: {div#,plus#,quot#,times#}/{0,s}
    Applied Processor:
      RemoveWeakSuffixes
    Proof:
      Consider the dependency graph
        1:S:div#(x,y) -> c_1(quot#(x,y,y))
           -->_1 quot#(s(x),s(y),z) -> c_8(quot#(x,y,z)):4
           -->_1 quot#(0(),s(y),z) -> c_7():9
        
        2:S:plus#(s(x),y) -> c_5(plus#(x,y))
           -->_1 plus#(0(),y) -> c_4():8
           -->_1 plus#(x,0()) -> c_3():7
           -->_1 plus#(s(x),y) -> c_5(plus#(x,y)):2
        
        3:S:quot#(x,0(),s(z)) -> c_6(div#(x,s(z)))
           -->_1 div#(0(),y) -> c_2():6
           -->_1 div#(x,y) -> c_1(quot#(x,y,y)):1
        
        4:S:quot#(s(x),s(y),z) -> c_8(quot#(x,y,z))
           -->_1 quot#(0(),s(y),z) -> c_7():9
           -->_1 quot#(s(x),s(y),z) -> c_8(quot#(x,y,z)):4
           -->_1 quot#(x,0(),s(z)) -> c_6(div#(x,s(z))):3
        
        5:S:times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y))
           -->_2 times#(s(0()),y) -> c_11():11
           -->_2 times#(0(),y) -> c_9():10
           -->_1 plus#(0(),y) -> c_4():8
           -->_1 plus#(x,0()) -> c_3():7
           -->_2 times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y)):5
           -->_1 plus#(s(x),y) -> c_5(plus#(x,y)):2
        
        6:W:div#(0(),y) -> c_2()
           
        
        7:W:plus#(x,0()) -> c_3()
           
        
        8:W:plus#(0(),y) -> c_4()
           
        
        9:W:quot#(0(),s(y),z) -> c_7()
           
        
        10:W:times#(0(),y) -> c_9()
           
        
        11:W:times#(s(0()),y) -> c_11()
           
        
      The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
        10: times#(0(),y) -> c_9()    
        11: times#(s(0()),y) -> c_11()
        7:  plus#(x,0()) -> c_3()     
        8:  plus#(0(),y) -> c_4()     
        6:  div#(0(),y) -> c_2()      
        9:  quot#(0(),s(y),z) -> c_7()
*** 1.1.1.1.1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        div#(x,y) -> c_1(quot#(x,y,y))
        plus#(s(x),y) -> c_5(plus#(x,y))
        quot#(x,0(),s(z)) -> c_6(div#(x,s(z)))
        quot#(s(x),s(y),z) -> c_8(quot#(x,y,z))
        times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y))
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        plus(x,0()) -> x
        plus(0(),y) -> y
        plus(s(x),y) -> s(plus(x,y))
        times(0(),y) -> 0()
        times(s(x),y) -> plus(y,times(x,y))
        times(s(0()),y) -> y
      Signature:
        {div/2,plus/2,quot/3,times/2,div#/2,plus#/2,quot#/3,times#/2} / {0/0,s/1,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/2,c_11/0}
      Obligation:
        Innermost
        basic terms: {div#,plus#,quot#,times#}/{0,s}
    Applied Processor:
      Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd}
    Proof:
      We analyse the complexity of following sub-problems (R) and (S).
      Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component.
      
      Problem (R)
        Strict DP Rules:
          div#(x,y) -> c_1(quot#(x,y,y))
          quot#(x,0(),s(z)) -> c_6(div#(x,s(z)))
          quot#(s(x),s(y),z) -> c_8(quot#(x,y,z))
        Strict TRS Rules:
          
        Weak DP Rules:
          plus#(s(x),y) -> c_5(plus#(x,y))
          times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y))
        Weak TRS Rules:
          plus(x,0()) -> x
          plus(0(),y) -> y
          plus(s(x),y) -> s(plus(x,y))
          times(0(),y) -> 0()
          times(s(x),y) -> plus(y,times(x,y))
          times(s(0()),y) -> y
        Signature:
          {div/2,plus/2,quot/3,times/2,div#/2,plus#/2,quot#/3,times#/2} / {0/0,s/1,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/2,c_11/0}
        Obligation:
          Innermost
          basic terms: {div#,plus#,quot#,times#}/{0,s}
      
      Problem (S)
        Strict DP Rules:
          plus#(s(x),y) -> c_5(plus#(x,y))
          times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y))
        Strict TRS Rules:
          
        Weak DP Rules:
          div#(x,y) -> c_1(quot#(x,y,y))
          quot#(x,0(),s(z)) -> c_6(div#(x,s(z)))
          quot#(s(x),s(y),z) -> c_8(quot#(x,y,z))
        Weak TRS Rules:
          plus(x,0()) -> x
          plus(0(),y) -> y
          plus(s(x),y) -> s(plus(x,y))
          times(0(),y) -> 0()
          times(s(x),y) -> plus(y,times(x,y))
          times(s(0()),y) -> y
        Signature:
          {div/2,plus/2,quot/3,times/2,div#/2,plus#/2,quot#/3,times#/2} / {0/0,s/1,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/2,c_11/0}
        Obligation:
          Innermost
          basic terms: {div#,plus#,quot#,times#}/{0,s}
  *** 1.1.1.1.1.1.1 Progress [(?,O(n^1))]  ***
      Considered Problem:
        Strict DP Rules:
          div#(x,y) -> c_1(quot#(x,y,y))
          quot#(x,0(),s(z)) -> c_6(div#(x,s(z)))
          quot#(s(x),s(y),z) -> c_8(quot#(x,y,z))
        Strict TRS Rules:
          
        Weak DP Rules:
          plus#(s(x),y) -> c_5(plus#(x,y))
          times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y))
        Weak TRS Rules:
          plus(x,0()) -> x
          plus(0(),y) -> y
          plus(s(x),y) -> s(plus(x,y))
          times(0(),y) -> 0()
          times(s(x),y) -> plus(y,times(x,y))
          times(s(0()),y) -> y
        Signature:
          {div/2,plus/2,quot/3,times/2,div#/2,plus#/2,quot#/3,times#/2} / {0/0,s/1,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/2,c_11/0}
        Obligation:
          Innermost
          basic terms: {div#,plus#,quot#,times#}/{0,s}
      Applied Processor:
        RemoveWeakSuffixes
      Proof:
        Consider the dependency graph
          1:S:div#(x,y) -> c_1(quot#(x,y,y))
             -->_1 quot#(s(x),s(y),z) -> c_8(quot#(x,y,z)):4
          
          2:W:plus#(s(x),y) -> c_5(plus#(x,y))
             -->_1 plus#(s(x),y) -> c_5(plus#(x,y)):2
          
          3:S:quot#(x,0(),s(z)) -> c_6(div#(x,s(z)))
             -->_1 div#(x,y) -> c_1(quot#(x,y,y)):1
          
          4:S:quot#(s(x),s(y),z) -> c_8(quot#(x,y,z))
             -->_1 quot#(x,0(),s(z)) -> c_6(div#(x,s(z))):3
             -->_1 quot#(s(x),s(y),z) -> c_8(quot#(x,y,z)):4
          
          5:W:times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y))
             -->_1 plus#(s(x),y) -> c_5(plus#(x,y)):2
             -->_2 times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y)):5
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          5: times#(s(x),y) -> c_10(plus#(y          
                                         ,times(x,y))
                                   ,times#(x,y))     
          2: plus#(s(x),y) -> c_5(plus#(x,y))        
  *** 1.1.1.1.1.1.1.1 Progress [(?,O(n^1))]  ***
      Considered Problem:
        Strict DP Rules:
          div#(x,y) -> c_1(quot#(x,y,y))
          quot#(x,0(),s(z)) -> c_6(div#(x,s(z)))
          quot#(s(x),s(y),z) -> c_8(quot#(x,y,z))
        Strict TRS Rules:
          
        Weak DP Rules:
          
        Weak TRS Rules:
          plus(x,0()) -> x
          plus(0(),y) -> y
          plus(s(x),y) -> s(plus(x,y))
          times(0(),y) -> 0()
          times(s(x),y) -> plus(y,times(x,y))
          times(s(0()),y) -> y
        Signature:
          {div/2,plus/2,quot/3,times/2,div#/2,plus#/2,quot#/3,times#/2} / {0/0,s/1,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/2,c_11/0}
        Obligation:
          Innermost
          basic terms: {div#,plus#,quot#,times#}/{0,s}
      Applied Processor:
        UsableRules
      Proof:
        We replace rewrite rules by usable rules:
          div#(x,y) -> c_1(quot#(x,y,y))
          quot#(x,0(),s(z)) -> c_6(div#(x,s(z)))
          quot#(s(x),s(y),z) -> c_8(quot#(x,y,z))
  *** 1.1.1.1.1.1.1.1.1 Progress [(?,O(n^1))]  ***
      Considered Problem:
        Strict DP Rules:
          div#(x,y) -> c_1(quot#(x,y,y))
          quot#(x,0(),s(z)) -> c_6(div#(x,s(z)))
          quot#(s(x),s(y),z) -> c_8(quot#(x,y,z))
        Strict TRS Rules:
          
        Weak DP Rules:
          
        Weak TRS Rules:
          
        Signature:
          {div/2,plus/2,quot/3,times/2,div#/2,plus#/2,quot#/3,times#/2} / {0/0,s/1,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/2,c_11/0}
        Obligation:
          Innermost
          basic terms: {div#,plus#,quot#,times#}/{0,s}
      Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
      Proof:
        We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
          3: quot#(s(x),s(y),z) ->
               c_8(quot#(x,y,z))  
          
        Consider the set of all dependency pairs
          1: div#(x,y) -> c_1(quot#(x,y,y))      
          2: quot#(x,0(),s(z)) -> c_6(div#(x     
                                          ,s(z)))
          3: quot#(s(x),s(y),z) ->               
               c_8(quot#(x,y,z))                 
        Processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}induces the complexity certificateTIME (?,O(n^1))
        SPACE(?,?)on application of the dependency pairs
          {3}
        These cover all (indirect) predecessors of dependency pairs
          {1,2,3}
        their number of applications is equally bounded.
        The dependency pairs are shifted into the weak component.
    *** 1.1.1.1.1.1.1.1.1.1 Progress [(?,O(n^1))]  ***
        Considered Problem:
          Strict DP Rules:
            div#(x,y) -> c_1(quot#(x,y,y))
            quot#(x,0(),s(z)) -> c_6(div#(x,s(z)))
            quot#(s(x),s(y),z) -> c_8(quot#(x,y,z))
          Strict TRS Rules:
            
          Weak DP Rules:
            
          Weak TRS Rules:
            
          Signature:
            {div/2,plus/2,quot/3,times/2,div#/2,plus#/2,quot#/3,times#/2} / {0/0,s/1,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/2,c_11/0}
          Obligation:
            Innermost
            basic terms: {div#,plus#,quot#,times#}/{0,s}
        Applied Processor:
          NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
        Proof:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(c_1) = {1},
            uargs(c_6) = {1},
            uargs(c_8) = {1}
          
          Following symbols are considered usable:
            {div#,plus#,quot#,times#}
          TcT has computed the following interpretation:
                 p(0) = [1]                  
               p(div) = [2] x1 + [2] x2 + [1]
              p(plus) = [1] x1 + [1] x2 + [0]
              p(quot) = [2] x1 + [1]         
                 p(s) = [1] x1 + [8]         
             p(times) = [8] x1 + [1] x2 + [8]
              p(div#) = [1] x1 + [0]         
             p(plus#) = [1] x2 + [2]         
             p(quot#) = [1] x1 + [0]         
            p(times#) = [1] x1 + [4]         
               p(c_1) = [1] x1 + [0]         
               p(c_2) = [4]                  
               p(c_3) = [0]                  
               p(c_4) = [1]                  
               p(c_5) = [2] x1 + [0]         
               p(c_6) = [1] x1 + [0]         
               p(c_7) = [2]                  
               p(c_8) = [1] x1 + [4]         
               p(c_9) = [2]                  
              p(c_10) = [2] x2 + [1]         
              p(c_11) = [2]                  
          
          Following rules are strictly oriented:
          quot#(s(x),s(y),z) = [1] x + [8]      
                             > [1] x + [4]      
                             = c_8(quot#(x,y,z))
          
          
          Following rules are (at-least) weakly oriented:
                  div#(x,y) =  [1] x + [0]      
                            >= [1] x + [0]      
                            =  c_1(quot#(x,y,y))
          
          quot#(x,0(),s(z)) =  [1] x + [0]      
                            >= [1] x + [0]      
                            =  c_6(div#(x,s(z)))
          
    *** 1.1.1.1.1.1.1.1.1.1.1 Progress [(?,O(1))]  ***
        Considered Problem:
          Strict DP Rules:
            div#(x,y) -> c_1(quot#(x,y,y))
            quot#(x,0(),s(z)) -> c_6(div#(x,s(z)))
          Strict TRS Rules:
            
          Weak DP Rules:
            quot#(s(x),s(y),z) -> c_8(quot#(x,y,z))
          Weak TRS Rules:
            
          Signature:
            {div/2,plus/2,quot/3,times/2,div#/2,plus#/2,quot#/3,times#/2} / {0/0,s/1,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/2,c_11/0}
          Obligation:
            Innermost
            basic terms: {div#,plus#,quot#,times#}/{0,s}
        Applied Processor:
          Assumption
        Proof:
          ()
    
    *** 1.1.1.1.1.1.1.1.1.2 Progress [(O(1),O(1))]  ***
        Considered Problem:
          Strict DP Rules:
            
          Strict TRS Rules:
            
          Weak DP Rules:
            div#(x,y) -> c_1(quot#(x,y,y))
            quot#(x,0(),s(z)) -> c_6(div#(x,s(z)))
            quot#(s(x),s(y),z) -> c_8(quot#(x,y,z))
          Weak TRS Rules:
            
          Signature:
            {div/2,plus/2,quot/3,times/2,div#/2,plus#/2,quot#/3,times#/2} / {0/0,s/1,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/2,c_11/0}
          Obligation:
            Innermost
            basic terms: {div#,plus#,quot#,times#}/{0,s}
        Applied Processor:
          RemoveWeakSuffixes
        Proof:
          Consider the dependency graph
            1:W:div#(x,y) -> c_1(quot#(x,y,y))
               -->_1 quot#(s(x),s(y),z) -> c_8(quot#(x,y,z)):3
            
            2:W:quot#(x,0(),s(z)) -> c_6(div#(x,s(z)))
               -->_1 div#(x,y) -> c_1(quot#(x,y,y)):1
            
            3:W:quot#(s(x),s(y),z) -> c_8(quot#(x,y,z))
               -->_1 quot#(s(x),s(y),z) -> c_8(quot#(x,y,z)):3
               -->_1 quot#(x,0(),s(z)) -> c_6(div#(x,s(z))):2
            
          The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
            1: div#(x,y) -> c_1(quot#(x,y,y))      
            2: quot#(x,0(),s(z)) -> c_6(div#(x     
                                            ,s(z)))
            3: quot#(s(x),s(y),z) ->               
                 c_8(quot#(x,y,z))                 
    *** 1.1.1.1.1.1.1.1.1.2.1 Progress [(O(1),O(1))]  ***
        Considered Problem:
          Strict DP Rules:
            
          Strict TRS Rules:
            
          Weak DP Rules:
            
          Weak TRS Rules:
            
          Signature:
            {div/2,plus/2,quot/3,times/2,div#/2,plus#/2,quot#/3,times#/2} / {0/0,s/1,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/2,c_11/0}
          Obligation:
            Innermost
            basic terms: {div#,plus#,quot#,times#}/{0,s}
        Applied Processor:
          EmptyProcessor
        Proof:
          The problem is already closed. The intended complexity is O(1).
    
  *** 1.1.1.1.1.1.2 Progress [(?,O(n^2))]  ***
      Considered Problem:
        Strict DP Rules:
          plus#(s(x),y) -> c_5(plus#(x,y))
          times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y))
        Strict TRS Rules:
          
        Weak DP Rules:
          div#(x,y) -> c_1(quot#(x,y,y))
          quot#(x,0(),s(z)) -> c_6(div#(x,s(z)))
          quot#(s(x),s(y),z) -> c_8(quot#(x,y,z))
        Weak TRS Rules:
          plus(x,0()) -> x
          plus(0(),y) -> y
          plus(s(x),y) -> s(plus(x,y))
          times(0(),y) -> 0()
          times(s(x),y) -> plus(y,times(x,y))
          times(s(0()),y) -> y
        Signature:
          {div/2,plus/2,quot/3,times/2,div#/2,plus#/2,quot#/3,times#/2} / {0/0,s/1,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/2,c_11/0}
        Obligation:
          Innermost
          basic terms: {div#,plus#,quot#,times#}/{0,s}
      Applied Processor:
        RemoveWeakSuffixes
      Proof:
        Consider the dependency graph
          1:S:plus#(s(x),y) -> c_5(plus#(x,y))
             -->_1 plus#(s(x),y) -> c_5(plus#(x,y)):1
          
          2:S:times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y))
             -->_2 times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y)):2
             -->_1 plus#(s(x),y) -> c_5(plus#(x,y)):1
          
          3:W:div#(x,y) -> c_1(quot#(x,y,y))
             -->_1 quot#(s(x),s(y),z) -> c_8(quot#(x,y,z)):5
          
          4:W:quot#(x,0(),s(z)) -> c_6(div#(x,s(z)))
             -->_1 div#(x,y) -> c_1(quot#(x,y,y)):3
          
          5:W:quot#(s(x),s(y),z) -> c_8(quot#(x,y,z))
             -->_1 quot#(s(x),s(y),z) -> c_8(quot#(x,y,z)):5
             -->_1 quot#(x,0(),s(z)) -> c_6(div#(x,s(z))):4
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          3: div#(x,y) -> c_1(quot#(x,y,y))      
          4: quot#(x,0(),s(z)) -> c_6(div#(x     
                                          ,s(z)))
          5: quot#(s(x),s(y),z) ->               
               c_8(quot#(x,y,z))                 
  *** 1.1.1.1.1.1.2.1 Progress [(?,O(n^2))]  ***
      Considered Problem:
        Strict DP Rules:
          plus#(s(x),y) -> c_5(plus#(x,y))
          times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y))
        Strict TRS Rules:
          
        Weak DP Rules:
          
        Weak TRS Rules:
          plus(x,0()) -> x
          plus(0(),y) -> y
          plus(s(x),y) -> s(plus(x,y))
          times(0(),y) -> 0()
          times(s(x),y) -> plus(y,times(x,y))
          times(s(0()),y) -> y
        Signature:
          {div/2,plus/2,quot/3,times/2,div#/2,plus#/2,quot#/3,times#/2} / {0/0,s/1,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/2,c_11/0}
        Obligation:
          Innermost
          basic terms: {div#,plus#,quot#,times#}/{0,s}
      Applied Processor:
        Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd}
      Proof:
        We analyse the complexity of following sub-problems (R) and (S).
        Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component.
        
        Problem (R)
          Strict DP Rules:
            plus#(s(x),y) -> c_5(plus#(x,y))
          Strict TRS Rules:
            
          Weak DP Rules:
            times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y))
          Weak TRS Rules:
            plus(x,0()) -> x
            plus(0(),y) -> y
            plus(s(x),y) -> s(plus(x,y))
            times(0(),y) -> 0()
            times(s(x),y) -> plus(y,times(x,y))
            times(s(0()),y) -> y
          Signature:
            {div/2,plus/2,quot/3,times/2,div#/2,plus#/2,quot#/3,times#/2} / {0/0,s/1,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/2,c_11/0}
          Obligation:
            Innermost
            basic terms: {div#,plus#,quot#,times#}/{0,s}
        
        Problem (S)
          Strict DP Rules:
            times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y))
          Strict TRS Rules:
            
          Weak DP Rules:
            plus#(s(x),y) -> c_5(plus#(x,y))
          Weak TRS Rules:
            plus(x,0()) -> x
            plus(0(),y) -> y
            plus(s(x),y) -> s(plus(x,y))
            times(0(),y) -> 0()
            times(s(x),y) -> plus(y,times(x,y))
            times(s(0()),y) -> y
          Signature:
            {div/2,plus/2,quot/3,times/2,div#/2,plus#/2,quot#/3,times#/2} / {0/0,s/1,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/2,c_11/0}
          Obligation:
            Innermost
            basic terms: {div#,plus#,quot#,times#}/{0,s}
    *** 1.1.1.1.1.1.2.1.1 Progress [(?,O(n^2))]  ***
        Considered Problem:
          Strict DP Rules:
            plus#(s(x),y) -> c_5(plus#(x,y))
          Strict TRS Rules:
            
          Weak DP Rules:
            times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y))
          Weak TRS Rules:
            plus(x,0()) -> x
            plus(0(),y) -> y
            plus(s(x),y) -> s(plus(x,y))
            times(0(),y) -> 0()
            times(s(x),y) -> plus(y,times(x,y))
            times(s(0()),y) -> y
          Signature:
            {div/2,plus/2,quot/3,times/2,div#/2,plus#/2,quot#/3,times#/2} / {0/0,s/1,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/2,c_11/0}
          Obligation:
            Innermost
            basic terms: {div#,plus#,quot#,times#}/{0,s}
        Applied Processor:
          PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
        Proof:
          We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
            1: plus#(s(x),y) -> c_5(plus#(x,y))
            
          The strictly oriented rules are moved into the weak component.
      *** 1.1.1.1.1.1.2.1.1.1 Progress [(?,O(n^2))]  ***
          Considered Problem:
            Strict DP Rules:
              plus#(s(x),y) -> c_5(plus#(x,y))
            Strict TRS Rules:
              
            Weak DP Rules:
              times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y))
            Weak TRS Rules:
              plus(x,0()) -> x
              plus(0(),y) -> y
              plus(s(x),y) -> s(plus(x,y))
              times(0(),y) -> 0()
              times(s(x),y) -> plus(y,times(x,y))
              times(s(0()),y) -> y
            Signature:
              {div/2,plus/2,quot/3,times/2,div#/2,plus#/2,quot#/3,times#/2} / {0/0,s/1,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/2,c_11/0}
            Obligation:
              Innermost
              basic terms: {div#,plus#,quot#,times#}/{0,s}
          Applied Processor:
            NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
          Proof:
            We apply a polynomial interpretation of kind constructor-based(mixed(2)):
            The following argument positions are considered usable:
              uargs(c_5) = {1},
              uargs(c_10) = {1,2}
            
            Following symbols are considered usable:
              {div#,plus#,quot#,times#}
            TcT has computed the following interpretation:
                   p(0) = 0                               
                 p(div) = 0                               
                p(plus) = 2 + 2*x1 + 2*x1*x2 + 2*x2 + x2^2
                p(quot) = 0                               
                   p(s) = 1 + x1                          
               p(times) = 0                               
                p(div#) = 0                               
               p(plus#) = 2*x1                            
               p(quot#) = x1 + x1^2 + x2^2                
              p(times#) = 7*x1*x2 + x2 + x2^2             
                 p(c_1) = 0                               
                 p(c_2) = 1                               
                 p(c_3) = 0                               
                 p(c_4) = 0                               
                 p(c_5) = 1 + x1                          
                 p(c_6) = 1 + x1                          
                 p(c_7) = 0                               
                 p(c_8) = 0                               
                 p(c_9) = 0                               
                p(c_10) = x1 + x2                         
                p(c_11) = 0                               
            
            Following rules are strictly oriented:
            plus#(s(x),y) = 2 + 2*x        
                          > 1 + 2*x        
                          = c_5(plus#(x,y))
            
            
            Following rules are (at-least) weakly oriented:
            times#(s(x),y) =  7*x*y + 8*y + y^2       
                           >= 7*x*y + 3*y + y^2       
                           =  c_10(plus#(y,times(x,y))
                                  ,times#(x,y))       
            
      *** 1.1.1.1.1.1.2.1.1.1.1 Progress [(?,O(1))]  ***
          Considered Problem:
            Strict DP Rules:
              
            Strict TRS Rules:
              
            Weak DP Rules:
              plus#(s(x),y) -> c_5(plus#(x,y))
              times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y))
            Weak TRS Rules:
              plus(x,0()) -> x
              plus(0(),y) -> y
              plus(s(x),y) -> s(plus(x,y))
              times(0(),y) -> 0()
              times(s(x),y) -> plus(y,times(x,y))
              times(s(0()),y) -> y
            Signature:
              {div/2,plus/2,quot/3,times/2,div#/2,plus#/2,quot#/3,times#/2} / {0/0,s/1,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/2,c_11/0}
            Obligation:
              Innermost
              basic terms: {div#,plus#,quot#,times#}/{0,s}
          Applied Processor:
            Assumption
          Proof:
            ()
      
      *** 1.1.1.1.1.1.2.1.1.2 Progress [(O(1),O(1))]  ***
          Considered Problem:
            Strict DP Rules:
              
            Strict TRS Rules:
              
            Weak DP Rules:
              plus#(s(x),y) -> c_5(plus#(x,y))
              times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y))
            Weak TRS Rules:
              plus(x,0()) -> x
              plus(0(),y) -> y
              plus(s(x),y) -> s(plus(x,y))
              times(0(),y) -> 0()
              times(s(x),y) -> plus(y,times(x,y))
              times(s(0()),y) -> y
            Signature:
              {div/2,plus/2,quot/3,times/2,div#/2,plus#/2,quot#/3,times#/2} / {0/0,s/1,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/2,c_11/0}
            Obligation:
              Innermost
              basic terms: {div#,plus#,quot#,times#}/{0,s}
          Applied Processor:
            RemoveWeakSuffixes
          Proof:
            Consider the dependency graph
              1:W:plus#(s(x),y) -> c_5(plus#(x,y))
                 -->_1 plus#(s(x),y) -> c_5(plus#(x,y)):1
              
              2:W:times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y))
                 -->_2 times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y)):2
                 -->_1 plus#(s(x),y) -> c_5(plus#(x,y)):1
              
            The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
              2: times#(s(x),y) -> c_10(plus#(y          
                                             ,times(x,y))
                                       ,times#(x,y))     
              1: plus#(s(x),y) -> c_5(plus#(x,y))        
      *** 1.1.1.1.1.1.2.1.1.2.1 Progress [(O(1),O(1))]  ***
          Considered Problem:
            Strict DP Rules:
              
            Strict TRS Rules:
              
            Weak DP Rules:
              
            Weak TRS Rules:
              plus(x,0()) -> x
              plus(0(),y) -> y
              plus(s(x),y) -> s(plus(x,y))
              times(0(),y) -> 0()
              times(s(x),y) -> plus(y,times(x,y))
              times(s(0()),y) -> y
            Signature:
              {div/2,plus/2,quot/3,times/2,div#/2,plus#/2,quot#/3,times#/2} / {0/0,s/1,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/2,c_11/0}
            Obligation:
              Innermost
              basic terms: {div#,plus#,quot#,times#}/{0,s}
          Applied Processor:
            EmptyProcessor
          Proof:
            The problem is already closed. The intended complexity is O(1).
      
    *** 1.1.1.1.1.1.2.1.2 Progress [(?,O(n^1))]  ***
        Considered Problem:
          Strict DP Rules:
            times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y))
          Strict TRS Rules:
            
          Weak DP Rules:
            plus#(s(x),y) -> c_5(plus#(x,y))
          Weak TRS Rules:
            plus(x,0()) -> x
            plus(0(),y) -> y
            plus(s(x),y) -> s(plus(x,y))
            times(0(),y) -> 0()
            times(s(x),y) -> plus(y,times(x,y))
            times(s(0()),y) -> y
          Signature:
            {div/2,plus/2,quot/3,times/2,div#/2,plus#/2,quot#/3,times#/2} / {0/0,s/1,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/2,c_11/0}
          Obligation:
            Innermost
            basic terms: {div#,plus#,quot#,times#}/{0,s}
        Applied Processor:
          RemoveWeakSuffixes
        Proof:
          Consider the dependency graph
            1:S:times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y))
               -->_1 plus#(s(x),y) -> c_5(plus#(x,y)):2
               -->_2 times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y)):1
            
            2:W:plus#(s(x),y) -> c_5(plus#(x,y))
               -->_1 plus#(s(x),y) -> c_5(plus#(x,y)):2
            
          The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
            2: plus#(s(x),y) -> c_5(plus#(x,y))
    *** 1.1.1.1.1.1.2.1.2.1 Progress [(?,O(n^1))]  ***
        Considered Problem:
          Strict DP Rules:
            times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y))
          Strict TRS Rules:
            
          Weak DP Rules:
            
          Weak TRS Rules:
            plus(x,0()) -> x
            plus(0(),y) -> y
            plus(s(x),y) -> s(plus(x,y))
            times(0(),y) -> 0()
            times(s(x),y) -> plus(y,times(x,y))
            times(s(0()),y) -> y
          Signature:
            {div/2,plus/2,quot/3,times/2,div#/2,plus#/2,quot#/3,times#/2} / {0/0,s/1,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/2,c_11/0}
          Obligation:
            Innermost
            basic terms: {div#,plus#,quot#,times#}/{0,s}
        Applied Processor:
          SimplifyRHS
        Proof:
          Consider the dependency graph
            1:S:times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y))
               -->_2 times#(s(x),y) -> c_10(plus#(y,times(x,y)),times#(x,y)):1
            
          Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
            times#(s(x),y) -> c_10(times#(x,y))
    *** 1.1.1.1.1.1.2.1.2.1.1 Progress [(?,O(n^1))]  ***
        Considered Problem:
          Strict DP Rules:
            times#(s(x),y) -> c_10(times#(x,y))
          Strict TRS Rules:
            
          Weak DP Rules:
            
          Weak TRS Rules:
            plus(x,0()) -> x
            plus(0(),y) -> y
            plus(s(x),y) -> s(plus(x,y))
            times(0(),y) -> 0()
            times(s(x),y) -> plus(y,times(x,y))
            times(s(0()),y) -> y
          Signature:
            {div/2,plus/2,quot/3,times/2,div#/2,plus#/2,quot#/3,times#/2} / {0/0,s/1,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/1,c_11/0}
          Obligation:
            Innermost
            basic terms: {div#,plus#,quot#,times#}/{0,s}
        Applied Processor:
          UsableRules
        Proof:
          We replace rewrite rules by usable rules:
            times#(s(x),y) -> c_10(times#(x,y))
    *** 1.1.1.1.1.1.2.1.2.1.1.1 Progress [(?,O(n^1))]  ***
        Considered Problem:
          Strict DP Rules:
            times#(s(x),y) -> c_10(times#(x,y))
          Strict TRS Rules:
            
          Weak DP Rules:
            
          Weak TRS Rules:
            
          Signature:
            {div/2,plus/2,quot/3,times/2,div#/2,plus#/2,quot#/3,times#/2} / {0/0,s/1,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/1,c_11/0}
          Obligation:
            Innermost
            basic terms: {div#,plus#,quot#,times#}/{0,s}
        Applied Processor:
          PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
        Proof:
          We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
            1: times#(s(x),y) -> c_10(times#(x  
                                            ,y))
            
          The strictly oriented rules are moved into the weak component.
      *** 1.1.1.1.1.1.2.1.2.1.1.1.1 Progress [(?,O(n^1))]  ***
          Considered Problem:
            Strict DP Rules:
              times#(s(x),y) -> c_10(times#(x,y))
            Strict TRS Rules:
              
            Weak DP Rules:
              
            Weak TRS Rules:
              
            Signature:
              {div/2,plus/2,quot/3,times/2,div#/2,plus#/2,quot#/3,times#/2} / {0/0,s/1,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/1,c_11/0}
            Obligation:
              Innermost
              basic terms: {div#,plus#,quot#,times#}/{0,s}
          Applied Processor:
            NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
          Proof:
            We apply a matrix interpretation of kind constructor based matrix interpretation:
            The following argument positions are considered usable:
              uargs(c_10) = {1}
            
            Following symbols are considered usable:
              {div#,plus#,quot#,times#}
            TcT has computed the following interpretation:
                   p(0) = [2]                  
                 p(div) = [2] x1 + [4] x2 + [0]
                p(plus) = [1] x2 + [2]         
                p(quot) = [2]                  
                   p(s) = [1] x1 + [1]         
               p(times) = [0]                  
                p(div#) = [0]                  
               p(plus#) = [1] x2 + [0]         
               p(quot#) = [1] x2 + [1] x3 + [1]
              p(times#) = [2] x1 + [8] x2 + [0]
                 p(c_1) = [2]                  
                 p(c_2) = [1]                  
                 p(c_3) = [1]                  
                 p(c_4) = [0]                  
                 p(c_5) = [1] x1 + [4]         
                 p(c_6) = [1]                  
                 p(c_7) = [4]                  
                 p(c_8) = [1] x1 + [0]         
                 p(c_9) = [8]                  
                p(c_10) = [1] x1 + [0]         
                p(c_11) = [1]                  
            
            Following rules are strictly oriented:
            times#(s(x),y) = [2] x + [8] y + [2]
                           > [2] x + [8] y + [0]
                           = c_10(times#(x,y))  
            
            
            Following rules are (at-least) weakly oriented:
            
      *** 1.1.1.1.1.1.2.1.2.1.1.1.1.1 Progress [(?,O(1))]  ***
          Considered Problem:
            Strict DP Rules:
              
            Strict TRS Rules:
              
            Weak DP Rules:
              times#(s(x),y) -> c_10(times#(x,y))
            Weak TRS Rules:
              
            Signature:
              {div/2,plus/2,quot/3,times/2,div#/2,plus#/2,quot#/3,times#/2} / {0/0,s/1,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/1,c_11/0}
            Obligation:
              Innermost
              basic terms: {div#,plus#,quot#,times#}/{0,s}
          Applied Processor:
            Assumption
          Proof:
            ()
      
      *** 1.1.1.1.1.1.2.1.2.1.1.1.2 Progress [(O(1),O(1))]  ***
          Considered Problem:
            Strict DP Rules:
              
            Strict TRS Rules:
              
            Weak DP Rules:
              times#(s(x),y) -> c_10(times#(x,y))
            Weak TRS Rules:
              
            Signature:
              {div/2,plus/2,quot/3,times/2,div#/2,plus#/2,quot#/3,times#/2} / {0/0,s/1,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/1,c_11/0}
            Obligation:
              Innermost
              basic terms: {div#,plus#,quot#,times#}/{0,s}
          Applied Processor:
            RemoveWeakSuffixes
          Proof:
            Consider the dependency graph
              1:W:times#(s(x),y) -> c_10(times#(x,y))
                 -->_1 times#(s(x),y) -> c_10(times#(x,y)):1
              
            The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
              1: times#(s(x),y) -> c_10(times#(x  
                                              ,y))
      *** 1.1.1.1.1.1.2.1.2.1.1.1.2.1 Progress [(O(1),O(1))]  ***
          Considered Problem:
            Strict DP Rules:
              
            Strict TRS Rules:
              
            Weak DP Rules:
              
            Weak TRS Rules:
              
            Signature:
              {div/2,plus/2,quot/3,times/2,div#/2,plus#/2,quot#/3,times#/2} / {0/0,s/1,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/1,c_11/0}
            Obligation:
              Innermost
              basic terms: {div#,plus#,quot#,times#}/{0,s}
          Applied Processor:
            EmptyProcessor
          Proof:
            The problem is already closed. The intended complexity is O(1).