We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^2)). Strict Trs: { plus(x, 0()) -> x , plus(0(), y) -> y , plus(s(x), y) -> s(plus(x, y)) , times(0(), y) -> 0() , times(s(x), y) -> plus(y, times(x, y)) , times(s(0()), y) -> y , div(x, y) -> quot(x, y, y) , div(0(), y) -> 0() , div(div(x, y), z) -> div(x, times(y, z)) , quot(x, 0(), s(z)) -> s(div(x, s(z))) , quot(0(), s(y), z) -> 0() , quot(s(x), s(y), z) -> quot(x, y, z) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^2)) Arguments of following rules are not normal-forms: { div(div(x, y), z) -> div(x, times(y, z)) } All above mentioned rules can be savely removed. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^2)). Strict Trs: { plus(x, 0()) -> x , plus(0(), y) -> y , plus(s(x), y) -> s(plus(x, y)) , times(0(), y) -> 0() , times(s(x), y) -> plus(y, times(x, y)) , times(s(0()), y) -> y , div(x, y) -> quot(x, y, y) , div(0(), y) -> 0() , quot(x, 0(), s(z)) -> s(div(x, s(z))) , quot(0(), s(y), z) -> 0() , quot(s(x), s(y), z) -> quot(x, y, z) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^2)) We add the following dependency tuples: Strict DPs: { plus^#(x, 0()) -> c_1() , plus^#(0(), y) -> c_2() , plus^#(s(x), y) -> c_3(plus^#(x, y)) , times^#(0(), y) -> c_4() , times^#(s(x), y) -> c_5(plus^#(y, times(x, y)), times^#(x, y)) , times^#(s(0()), y) -> c_6() , div^#(x, y) -> c_7(quot^#(x, y, y)) , div^#(0(), y) -> c_8() , quot^#(x, 0(), s(z)) -> c_9(div^#(x, s(z))) , quot^#(0(), s(y), z) -> c_10() , quot^#(s(x), s(y), z) -> c_11(quot^#(x, y, z)) } and mark the set of starting terms. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^2)). Strict DPs: { plus^#(x, 0()) -> c_1() , plus^#(0(), y) -> c_2() , plus^#(s(x), y) -> c_3(plus^#(x, y)) , times^#(0(), y) -> c_4() , times^#(s(x), y) -> c_5(plus^#(y, times(x, y)), times^#(x, y)) , times^#(s(0()), y) -> c_6() , div^#(x, y) -> c_7(quot^#(x, y, y)) , div^#(0(), y) -> c_8() , quot^#(x, 0(), s(z)) -> c_9(div^#(x, s(z))) , quot^#(0(), s(y), z) -> c_10() , quot^#(s(x), s(y), z) -> c_11(quot^#(x, y, z)) } Weak Trs: { plus(x, 0()) -> x , plus(0(), y) -> y , plus(s(x), y) -> s(plus(x, y)) , times(0(), y) -> 0() , times(s(x), y) -> plus(y, times(x, y)) , times(s(0()), y) -> y , div(x, y) -> quot(x, y, y) , div(0(), y) -> 0() , quot(x, 0(), s(z)) -> s(div(x, s(z))) , quot(0(), s(y), z) -> 0() , quot(s(x), s(y), z) -> quot(x, y, z) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^2)) We estimate the number of application of {1,2,4,6,8,10} by applications of Pre({1,2,4,6,8,10}) = {3,5,7,9,11}. Here rules are labeled as follows: DPs: { 1: plus^#(x, 0()) -> c_1() , 2: plus^#(0(), y) -> c_2() , 3: plus^#(s(x), y) -> c_3(plus^#(x, y)) , 4: times^#(0(), y) -> c_4() , 5: times^#(s(x), y) -> c_5(plus^#(y, times(x, y)), times^#(x, y)) , 6: times^#(s(0()), y) -> c_6() , 7: div^#(x, y) -> c_7(quot^#(x, y, y)) , 8: div^#(0(), y) -> c_8() , 9: quot^#(x, 0(), s(z)) -> c_9(div^#(x, s(z))) , 10: quot^#(0(), s(y), z) -> c_10() , 11: quot^#(s(x), s(y), z) -> c_11(quot^#(x, y, z)) } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^2)). Strict DPs: { plus^#(s(x), y) -> c_3(plus^#(x, y)) , times^#(s(x), y) -> c_5(plus^#(y, times(x, y)), times^#(x, y)) , div^#(x, y) -> c_7(quot^#(x, y, y)) , quot^#(x, 0(), s(z)) -> c_9(div^#(x, s(z))) , quot^#(s(x), s(y), z) -> c_11(quot^#(x, y, z)) } Weak DPs: { plus^#(x, 0()) -> c_1() , plus^#(0(), y) -> c_2() , times^#(0(), y) -> c_4() , times^#(s(0()), y) -> c_6() , div^#(0(), y) -> c_8() , quot^#(0(), s(y), z) -> c_10() } Weak Trs: { plus(x, 0()) -> x , plus(0(), y) -> y , plus(s(x), y) -> s(plus(x, y)) , times(0(), y) -> 0() , times(s(x), y) -> plus(y, times(x, y)) , times(s(0()), y) -> y , div(x, y) -> quot(x, y, y) , div(0(), y) -> 0() , quot(x, 0(), s(z)) -> s(div(x, s(z))) , quot(0(), s(y), z) -> 0() , quot(s(x), s(y), z) -> quot(x, y, z) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^2)) The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. { plus^#(x, 0()) -> c_1() , plus^#(0(), y) -> c_2() , times^#(0(), y) -> c_4() , times^#(s(0()), y) -> c_6() , div^#(0(), y) -> c_8() , quot^#(0(), s(y), z) -> c_10() } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^2)). Strict DPs: { plus^#(s(x), y) -> c_3(plus^#(x, y)) , times^#(s(x), y) -> c_5(plus^#(y, times(x, y)), times^#(x, y)) , div^#(x, y) -> c_7(quot^#(x, y, y)) , quot^#(x, 0(), s(z)) -> c_9(div^#(x, s(z))) , quot^#(s(x), s(y), z) -> c_11(quot^#(x, y, z)) } Weak Trs: { plus(x, 0()) -> x , plus(0(), y) -> y , plus(s(x), y) -> s(plus(x, y)) , times(0(), y) -> 0() , times(s(x), y) -> plus(y, times(x, y)) , times(s(0()), y) -> y , div(x, y) -> quot(x, y, y) , div(0(), y) -> 0() , quot(x, 0(), s(z)) -> s(div(x, s(z))) , quot(0(), s(y), z) -> 0() , quot(s(x), s(y), z) -> quot(x, y, z) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^2)) We replace rewrite rules by usable rules: Weak Usable Rules: { plus(x, 0()) -> x , plus(0(), y) -> y , plus(s(x), y) -> s(plus(x, y)) , times(0(), y) -> 0() , times(s(x), y) -> plus(y, times(x, y)) , times(s(0()), y) -> y } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^2)). Strict DPs: { plus^#(s(x), y) -> c_3(plus^#(x, y)) , times^#(s(x), y) -> c_5(plus^#(y, times(x, y)), times^#(x, y)) , div^#(x, y) -> c_7(quot^#(x, y, y)) , quot^#(x, 0(), s(z)) -> c_9(div^#(x, s(z))) , quot^#(s(x), s(y), z) -> c_11(quot^#(x, y, z)) } Weak Trs: { plus(x, 0()) -> x , plus(0(), y) -> y , plus(s(x), y) -> s(plus(x, y)) , times(0(), y) -> 0() , times(s(x), y) -> plus(y, times(x, y)) , times(s(0()), y) -> y } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^2)) We use the processor 'matrix interpretation of dimension 1' to orient following rules strictly. DPs: { 5: quot^#(s(x), s(y), z) -> c_11(quot^#(x, y, z)) } Sub-proof: ---------- The following argument positions are usable: Uargs(c_3) = {1}, Uargs(c_5) = {1, 2}, Uargs(c_7) = {1}, Uargs(c_9) = {1}, Uargs(c_11) = {1} TcT has computed the following constructor-based matrix interpretation satisfying not(EDA). [plus](x1, x2) = [0] [0] = [0] [s](x1) = [1] x1 + [2] [times](x1, x2) = [0] [plus^#](x1, x2) = [0] [c_3](x1) = [4] x1 + [0] [times^#](x1, x2) = [0] [c_5](x1, x2) = [4] x1 + [4] x2 + [0] [div^#](x1, x2) = [4] x1 + [4] x2 + [1] [c_7](x1) = [1] x1 + [0] [quot^#](x1, x2, x3) = [4] x1 + [4] x3 + [1] [c_9](x1) = [1] x1 + [0] [c_11](x1) = [1] x1 + [6] The order satisfies the following ordering constraints: [plus(x, 0())] = [0] ? [1] x + [0] = [x] [plus(0(), y)] = [0] ? [1] y + [0] = [y] [plus(s(x), y)] = [0] ? [2] = [s(plus(x, y))] [times(0(), y)] = [0] >= [0] = [0()] [times(s(x), y)] = [0] >= [0] = [plus(y, times(x, y))] [times(s(0()), y)] = [0] ? [1] y + [0] = [y] [plus^#(s(x), y)] = [0] >= [0] = [c_3(plus^#(x, y))] [times^#(s(x), y)] = [0] >= [0] = [c_5(plus^#(y, times(x, y)), times^#(x, y))] [div^#(x, y)] = [4] x + [4] y + [1] >= [4] x + [4] y + [1] = [c_7(quot^#(x, y, y))] [quot^#(x, 0(), s(z))] = [4] x + [4] z + [9] >= [4] x + [4] z + [9] = [c_9(div^#(x, s(z)))] [quot^#(s(x), s(y), z)] = [4] x + [4] z + [9] > [4] x + [4] z + [7] = [c_11(quot^#(x, y, z))] We return to the main proof. Consider the set of all dependency pairs : { 1: plus^#(s(x), y) -> c_3(plus^#(x, y)) , 2: times^#(s(x), y) -> c_5(plus^#(y, times(x, y)), times^#(x, y)) , 3: div^#(x, y) -> c_7(quot^#(x, y, y)) , 4: quot^#(x, 0(), s(z)) -> c_9(div^#(x, s(z))) , 5: quot^#(s(x), s(y), z) -> c_11(quot^#(x, y, z)) } Processor 'matrix interpretation of dimension 1' induces the complexity certificate YES(?,O(n^1)) on application of dependency pairs {5}. These cover all (indirect) predecessors of dependency pairs {3,4,5}, their number of application is equally bounded. The dependency pairs are shifted into the weak component. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^2)). Strict DPs: { plus^#(s(x), y) -> c_3(plus^#(x, y)) , times^#(s(x), y) -> c_5(plus^#(y, times(x, y)), times^#(x, y)) } Weak DPs: { div^#(x, y) -> c_7(quot^#(x, y, y)) , quot^#(x, 0(), s(z)) -> c_9(div^#(x, s(z))) , quot^#(s(x), s(y), z) -> c_11(quot^#(x, y, z)) } Weak Trs: { plus(x, 0()) -> x , plus(0(), y) -> y , plus(s(x), y) -> s(plus(x, y)) , times(0(), y) -> 0() , times(s(x), y) -> plus(y, times(x, y)) , times(s(0()), y) -> y } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^2)) The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. { div^#(x, y) -> c_7(quot^#(x, y, y)) , quot^#(x, 0(), s(z)) -> c_9(div^#(x, s(z))) , quot^#(s(x), s(y), z) -> c_11(quot^#(x, y, z)) } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^2)). Strict DPs: { plus^#(s(x), y) -> c_3(plus^#(x, y)) , times^#(s(x), y) -> c_5(plus^#(y, times(x, y)), times^#(x, y)) } Weak Trs: { plus(x, 0()) -> x , plus(0(), y) -> y , plus(s(x), y) -> s(plus(x, y)) , times(0(), y) -> 0() , times(s(x), y) -> plus(y, times(x, y)) , times(s(0()), y) -> y } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^2)) We use the processor 'Small Polynomial Path Order (PS,2-bounded)' to orient following rules strictly. DPs: { 1: plus^#(s(x), y) -> c_3(plus^#(x, y)) , 2: times^#(s(x), y) -> c_5(plus^#(y, times(x, y)), times^#(x, y)) } Sub-proof: ---------- The input was oriented with the instance of 'Small Polynomial Path Order (PS,2-bounded)' as induced by the safe mapping safe(plus) = {}, safe(0) = {}, safe(s) = {1}, safe(times) = {}, safe(plus^#) = {2}, safe(c_3) = {}, safe(times^#) = {}, safe(c_5) = {}, safe(div^#) = {}, safe(c_7) = {}, safe(quot^#) = {}, safe(c_9) = {}, safe(c_11) = {} and precedence times > plus, times^# > plus^# . Following symbols are considered recursive: {plus^#, times^#} The recursion depth is 2. Further, following argument filtering is employed: pi(plus) = [1, 2], pi(0) = [], pi(s) = [1], pi(times) = [], pi(plus^#) = [1], pi(c_3) = [1], pi(times^#) = [1, 2], pi(c_5) = [1, 2], pi(div^#) = [], pi(c_7) = [], pi(quot^#) = [], pi(c_9) = [], pi(c_11) = [] Usable defined function symbols are a subset of: {plus^#, times^#, div^#, quot^#} For your convenience, here are the satisfied ordering constraints: pi(plus^#(s(x), y)) = plus^#(s(; x);) > c_3(plus^#(x;);) = pi(c_3(plus^#(x, y))) pi(times^#(s(x), y)) = times^#(s(; x), y;) > c_5(plus^#(y;), times^#(x, y;);) = pi(c_5(plus^#(y, times(x, y)), times^#(x, y))) The strictly oriented rules are moved into the weak component. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Weak DPs: { plus^#(s(x), y) -> c_3(plus^#(x, y)) , times^#(s(x), y) -> c_5(plus^#(y, times(x, y)), times^#(x, y)) } Weak Trs: { plus(x, 0()) -> x , plus(0(), y) -> y , plus(s(x), y) -> s(plus(x, y)) , times(0(), y) -> 0() , times(s(x), y) -> plus(y, times(x, y)) , times(s(0()), y) -> y } Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. { plus^#(s(x), y) -> c_3(plus^#(x, y)) , times^#(s(x), y) -> c_5(plus^#(y, times(x, y)), times^#(x, y)) } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Weak Trs: { plus(x, 0()) -> x , plus(0(), y) -> y , plus(s(x), y) -> s(plus(x, y)) , times(0(), y) -> 0() , times(s(x), y) -> plus(y, times(x, y)) , times(s(0()), y) -> y } Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) No rule is usable, rules are removed from the input problem. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Rules: Empty Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) Empty rules are trivially bounded Hurray, we answered YES(O(1),O(n^2))