*** 1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: div(x,y) -> quot(x,y,y) div(0(),y) -> 0() quot(x,0(),s(z)) -> s(div(x,s(z))) quot(0(),s(y),z) -> 0() quot(s(x),s(y),z) -> quot(x,y,z) Weak DP Rules: Weak TRS Rules: Signature: {div/2,quot/3} / {0/0,s/1} Obligation: Innermost basic terms: {div,quot}/{0,s} Applied Processor: DependencyPairs {dpKind_ = WIDP} Proof: We add the following weak innermost dependency pairs: Strict DPs div#(x,y) -> c_1(quot#(x,y,y)) div#(0(),y) -> c_2() quot#(x,0(),s(z)) -> c_3(div#(x,s(z))) quot#(0(),s(y),z) -> c_4() quot#(s(x),s(y),z) -> c_5(quot#(x,y,z)) Weak DPs and mark the set of starting terms. *** 1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: div#(x,y) -> c_1(quot#(x,y,y)) div#(0(),y) -> c_2() quot#(x,0(),s(z)) -> c_3(div#(x,s(z))) quot#(0(),s(y),z) -> c_4() quot#(s(x),s(y),z) -> c_5(quot#(x,y,z)) Strict TRS Rules: div(x,y) -> quot(x,y,y) div(0(),y) -> 0() quot(x,0(),s(z)) -> s(div(x,s(z))) quot(0(),s(y),z) -> 0() quot(s(x),s(y),z) -> quot(x,y,z) Weak DP Rules: Weak TRS Rules: Signature: {div/2,quot/3,div#/2,quot#/3} / {0/0,s/1,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1} Obligation: Innermost basic terms: {div#,quot#}/{0,s} Applied Processor: UsableRules Proof: We replace rewrite rules by usable rules: div#(x,y) -> c_1(quot#(x,y,y)) div#(0(),y) -> c_2() quot#(x,0(),s(z)) -> c_3(div#(x,s(z))) quot#(0(),s(y),z) -> c_4() quot#(s(x),s(y),z) -> c_5(quot#(x,y,z)) *** 1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: div#(x,y) -> c_1(quot#(x,y,y)) div#(0(),y) -> c_2() quot#(x,0(),s(z)) -> c_3(div#(x,s(z))) quot#(0(),s(y),z) -> c_4() quot#(s(x),s(y),z) -> c_5(quot#(x,y,z)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {div/2,quot/3,div#/2,quot#/3} / {0/0,s/1,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1} Obligation: Innermost basic terms: {div#,quot#}/{0,s} Applied Processor: Succeeding Proof: () *** 1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: div#(x,y) -> c_1(quot#(x,y,y)) div#(0(),y) -> c_2() quot#(x,0(),s(z)) -> c_3(div#(x,s(z))) quot#(0(),s(y),z) -> c_4() quot#(s(x),s(y),z) -> c_5(quot#(x,y,z)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {div/2,quot/3,div#/2,quot#/3} / {0/0,s/1,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1} Obligation: Innermost basic terms: {div#,quot#}/{0,s} Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} Proof: We estimate the number of application of {2,4} by application of Pre({2,4}) = {1,3,5}. Here rules are labelled as follows: 1: div#(x,y) -> c_1(quot#(x,y,y)) 2: div#(0(),y) -> c_2() 3: quot#(x,0(),s(z)) -> c_3(div#(x ,s(z))) 4: quot#(0(),s(y),z) -> c_4() 5: quot#(s(x),s(y),z) -> c_5(quot#(x,y,z)) *** 1.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: div#(x,y) -> c_1(quot#(x,y,y)) quot#(x,0(),s(z)) -> c_3(div#(x,s(z))) quot#(s(x),s(y),z) -> c_5(quot#(x,y,z)) Strict TRS Rules: Weak DP Rules: div#(0(),y) -> c_2() quot#(0(),s(y),z) -> c_4() Weak TRS Rules: Signature: {div/2,quot/3,div#/2,quot#/3} / {0/0,s/1,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1} Obligation: Innermost basic terms: {div#,quot#}/{0,s} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:div#(x,y) -> c_1(quot#(x,y,y)) -->_1 quot#(s(x),s(y),z) -> c_5(quot#(x,y,z)):3 -->_1 quot#(0(),s(y),z) -> c_4():5 2:S:quot#(x,0(),s(z)) -> c_3(div#(x,s(z))) -->_1 div#(0(),y) -> c_2():4 -->_1 div#(x,y) -> c_1(quot#(x,y,y)):1 3:S:quot#(s(x),s(y),z) -> c_5(quot#(x,y,z)) -->_1 quot#(0(),s(y),z) -> c_4():5 -->_1 quot#(s(x),s(y),z) -> c_5(quot#(x,y,z)):3 -->_1 quot#(x,0(),s(z)) -> c_3(div#(x,s(z))):2 4:W:div#(0(),y) -> c_2() 5:W:quot#(0(),s(y),z) -> c_4() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 4: div#(0(),y) -> c_2() 5: quot#(0(),s(y),z) -> c_4() *** 1.1.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: div#(x,y) -> c_1(quot#(x,y,y)) quot#(x,0(),s(z)) -> c_3(div#(x,s(z))) quot#(s(x),s(y),z) -> c_5(quot#(x,y,z)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {div/2,quot/3,div#/2,quot#/3} / {0/0,s/1,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1} Obligation: Innermost basic terms: {div#,quot#}/{0,s} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 3: quot#(s(x),s(y),z) -> c_5(quot#(x,y,z)) Consider the set of all dependency pairs 1: div#(x,y) -> c_1(quot#(x,y,y)) 2: quot#(x,0(),s(z)) -> c_3(div#(x ,s(z))) 3: quot#(s(x),s(y),z) -> c_5(quot#(x,y,z)) Processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}induces the complexity certificateTIME (?,O(n^1)) SPACE(?,?)on application of the dependency pairs {3} These cover all (indirect) predecessors of dependency pairs {1,2,3} their number of applications is equally bounded. The dependency pairs are shifted into the weak component. *** 1.1.1.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: div#(x,y) -> c_1(quot#(x,y,y)) quot#(x,0(),s(z)) -> c_3(div#(x,s(z))) quot#(s(x),s(y),z) -> c_5(quot#(x,y,z)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {div/2,quot/3,div#/2,quot#/3} / {0/0,s/1,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1} Obligation: Innermost basic terms: {div#,quot#}/{0,s} Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_1) = {1}, uargs(c_3) = {1}, uargs(c_5) = {1} Following symbols are considered usable: {div#,quot#} TcT has computed the following interpretation: p(0) = [0] p(div) = [2] x2 + [8] p(quot) = [1] p(s) = [1] x1 + [2] p(div#) = [4] x1 + [9] x2 + [5] p(quot#) = [4] x1 + [9] x3 + [5] p(c_1) = [1] x1 + [0] p(c_2) = [0] p(c_3) = [1] x1 + [0] p(c_4) = [0] p(c_5) = [1] x1 + [6] Following rules are strictly oriented: quot#(s(x),s(y),z) = [4] x + [9] z + [13] > [4] x + [9] z + [11] = c_5(quot#(x,y,z)) Following rules are (at-least) weakly oriented: div#(x,y) = [4] x + [9] y + [5] >= [4] x + [9] y + [5] = c_1(quot#(x,y,y)) quot#(x,0(),s(z)) = [4] x + [9] z + [23] >= [4] x + [9] z + [23] = c_3(div#(x,s(z))) *** 1.1.1.1.1.1.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: div#(x,y) -> c_1(quot#(x,y,y)) quot#(x,0(),s(z)) -> c_3(div#(x,s(z))) Strict TRS Rules: Weak DP Rules: quot#(s(x),s(y),z) -> c_5(quot#(x,y,z)) Weak TRS Rules: Signature: {div/2,quot/3,div#/2,quot#/3} / {0/0,s/1,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1} Obligation: Innermost basic terms: {div#,quot#}/{0,s} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: div#(x,y) -> c_1(quot#(x,y,y)) quot#(x,0(),s(z)) -> c_3(div#(x,s(z))) quot#(s(x),s(y),z) -> c_5(quot#(x,y,z)) Weak TRS Rules: Signature: {div/2,quot/3,div#/2,quot#/3} / {0/0,s/1,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1} Obligation: Innermost basic terms: {div#,quot#}/{0,s} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:div#(x,y) -> c_1(quot#(x,y,y)) -->_1 quot#(s(x),s(y),z) -> c_5(quot#(x,y,z)):3 2:W:quot#(x,0(),s(z)) -> c_3(div#(x,s(z))) -->_1 div#(x,y) -> c_1(quot#(x,y,y)):1 3:W:quot#(s(x),s(y),z) -> c_5(quot#(x,y,z)) -->_1 quot#(s(x),s(y),z) -> c_5(quot#(x,y,z)):3 -->_1 quot#(x,0(),s(z)) -> c_3(div#(x,s(z))):2 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: div#(x,y) -> c_1(quot#(x,y,y)) 2: quot#(x,0(),s(z)) -> c_3(div#(x ,s(z))) 3: quot#(s(x),s(y),z) -> c_5(quot#(x,y,z)) *** 1.1.1.1.1.1.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {div/2,quot/3,div#/2,quot#/3} / {0/0,s/1,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1} Obligation: Innermost basic terms: {div#,quot#}/{0,s} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1).