*** 1 Progress [(?,O(n^1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
div(x,y) -> quot(x,y,y)
div(0(),y) -> 0()
quot(x,0(),s(z)) -> s(div(x,s(z)))
quot(0(),s(y),z) -> 0()
quot(s(x),s(y),z) -> quot(x,y,z)
Weak DP Rules:
Weak TRS Rules:
Signature:
{div/2,quot/3} / {0/0,s/1}
Obligation:
Innermost
basic terms: {div,quot}/{0,s}
Applied Processor:
DependencyPairs {dpKind_ = WIDP}
Proof:
We add the following weak innermost dependency pairs:
Strict DPs
div#(x,y) -> c_1(quot#(x,y,y))
div#(0(),y) -> c_2()
quot#(x,0(),s(z)) -> c_3(div#(x,s(z)))
quot#(0(),s(y),z) -> c_4()
quot#(s(x),s(y),z) -> c_5(quot#(x,y,z))
Weak DPs
and mark the set of starting terms.
*** 1.1 Progress [(?,O(n^1))] ***
Considered Problem:
Strict DP Rules:
div#(x,y) -> c_1(quot#(x,y,y))
div#(0(),y) -> c_2()
quot#(x,0(),s(z)) -> c_3(div#(x,s(z)))
quot#(0(),s(y),z) -> c_4()
quot#(s(x),s(y),z) -> c_5(quot#(x,y,z))
Strict TRS Rules:
div(x,y) -> quot(x,y,y)
div(0(),y) -> 0()
quot(x,0(),s(z)) -> s(div(x,s(z)))
quot(0(),s(y),z) -> 0()
quot(s(x),s(y),z) -> quot(x,y,z)
Weak DP Rules:
Weak TRS Rules:
Signature:
{div/2,quot/3,div#/2,quot#/3} / {0/0,s/1,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1}
Obligation:
Innermost
basic terms: {div#,quot#}/{0,s}
Applied Processor:
UsableRules
Proof:
We replace rewrite rules by usable rules:
div#(x,y) -> c_1(quot#(x,y,y))
div#(0(),y) -> c_2()
quot#(x,0(),s(z)) -> c_3(div#(x,s(z)))
quot#(0(),s(y),z) -> c_4()
quot#(s(x),s(y),z) -> c_5(quot#(x,y,z))
*** 1.1.1 Progress [(?,O(n^1))] ***
Considered Problem:
Strict DP Rules:
div#(x,y) -> c_1(quot#(x,y,y))
div#(0(),y) -> c_2()
quot#(x,0(),s(z)) -> c_3(div#(x,s(z)))
quot#(0(),s(y),z) -> c_4()
quot#(s(x),s(y),z) -> c_5(quot#(x,y,z))
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
Signature:
{div/2,quot/3,div#/2,quot#/3} / {0/0,s/1,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1}
Obligation:
Innermost
basic terms: {div#,quot#}/{0,s}
Applied Processor:
Succeeding
Proof:
()
*** 1.1.1.1 Progress [(?,O(n^1))] ***
Considered Problem:
Strict DP Rules:
div#(x,y) -> c_1(quot#(x,y,y))
div#(0(),y) -> c_2()
quot#(x,0(),s(z)) -> c_3(div#(x,s(z)))
quot#(0(),s(y),z) -> c_4()
quot#(s(x),s(y),z) -> c_5(quot#(x,y,z))
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
Signature:
{div/2,quot/3,div#/2,quot#/3} / {0/0,s/1,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1}
Obligation:
Innermost
basic terms: {div#,quot#}/{0,s}
Applied Processor:
PredecessorEstimation {onSelection = all simple predecessor estimation selector}
Proof:
We estimate the number of application of
{2,4}
by application of
Pre({2,4}) = {1,3,5}.
Here rules are labelled as follows:
1: div#(x,y) -> c_1(quot#(x,y,y))
2: div#(0(),y) -> c_2()
3: quot#(x,0(),s(z)) -> c_3(div#(x
,s(z)))
4: quot#(0(),s(y),z) -> c_4()
5: quot#(s(x),s(y),z) ->
c_5(quot#(x,y,z))
*** 1.1.1.1.1 Progress [(?,O(n^1))] ***
Considered Problem:
Strict DP Rules:
div#(x,y) -> c_1(quot#(x,y,y))
quot#(x,0(),s(z)) -> c_3(div#(x,s(z)))
quot#(s(x),s(y),z) -> c_5(quot#(x,y,z))
Strict TRS Rules:
Weak DP Rules:
div#(0(),y) -> c_2()
quot#(0(),s(y),z) -> c_4()
Weak TRS Rules:
Signature:
{div/2,quot/3,div#/2,quot#/3} / {0/0,s/1,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1}
Obligation:
Innermost
basic terms: {div#,quot#}/{0,s}
Applied Processor:
RemoveWeakSuffixes
Proof:
Consider the dependency graph
1:S:div#(x,y) -> c_1(quot#(x,y,y))
-->_1 quot#(s(x),s(y),z) -> c_5(quot#(x,y,z)):3
-->_1 quot#(0(),s(y),z) -> c_4():5
2:S:quot#(x,0(),s(z)) -> c_3(div#(x,s(z)))
-->_1 div#(0(),y) -> c_2():4
-->_1 div#(x,y) -> c_1(quot#(x,y,y)):1
3:S:quot#(s(x),s(y),z) -> c_5(quot#(x,y,z))
-->_1 quot#(0(),s(y),z) -> c_4():5
-->_1 quot#(s(x),s(y),z) -> c_5(quot#(x,y,z)):3
-->_1 quot#(x,0(),s(z)) -> c_3(div#(x,s(z))):2
4:W:div#(0(),y) -> c_2()
5:W:quot#(0(),s(y),z) -> c_4()
The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
4: div#(0(),y) -> c_2()
5: quot#(0(),s(y),z) -> c_4()
*** 1.1.1.1.1.1 Progress [(?,O(n^1))] ***
Considered Problem:
Strict DP Rules:
div#(x,y) -> c_1(quot#(x,y,y))
quot#(x,0(),s(z)) -> c_3(div#(x,s(z)))
quot#(s(x),s(y),z) -> c_5(quot#(x,y,z))
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
Signature:
{div/2,quot/3,div#/2,quot#/3} / {0/0,s/1,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1}
Obligation:
Innermost
basic terms: {div#,quot#}/{0,s}
Applied Processor:
PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
Proof:
We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
3: quot#(s(x),s(y),z) ->
c_5(quot#(x,y,z))
Consider the set of all dependency pairs
1: div#(x,y) -> c_1(quot#(x,y,y))
2: quot#(x,0(),s(z)) -> c_3(div#(x
,s(z)))
3: quot#(s(x),s(y),z) ->
c_5(quot#(x,y,z))
Processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}induces the complexity certificateTIME (?,O(n^1))
SPACE(?,?)on application of the dependency pairs
{3}
These cover all (indirect) predecessors of dependency pairs
{1,2,3}
their number of applications is equally bounded.
The dependency pairs are shifted into the weak component.
*** 1.1.1.1.1.1.1 Progress [(?,O(n^1))] ***
Considered Problem:
Strict DP Rules:
div#(x,y) -> c_1(quot#(x,y,y))
quot#(x,0(),s(z)) -> c_3(div#(x,s(z)))
quot#(s(x),s(y),z) -> c_5(quot#(x,y,z))
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
Signature:
{div/2,quot/3,div#/2,quot#/3} / {0/0,s/1,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1}
Obligation:
Innermost
basic terms: {div#,quot#}/{0,s}
Applied Processor:
NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
Proof:
We apply a matrix interpretation of kind constructor based matrix interpretation:
The following argument positions are considered usable:
uargs(c_1) = {1},
uargs(c_3) = {1},
uargs(c_5) = {1}
Following symbols are considered usable:
{div#,quot#}
TcT has computed the following interpretation:
p(0) = [0]
p(div) = [2] x2 + [8]
p(quot) = [1]
p(s) = [1] x1 + [2]
p(div#) = [4] x1 + [9] x2 + [5]
p(quot#) = [4] x1 + [9] x3 + [5]
p(c_1) = [1] x1 + [0]
p(c_2) = [0]
p(c_3) = [1] x1 + [0]
p(c_4) = [0]
p(c_5) = [1] x1 + [6]
Following rules are strictly oriented:
quot#(s(x),s(y),z) = [4] x + [9] z + [13]
> [4] x + [9] z + [11]
= c_5(quot#(x,y,z))
Following rules are (at-least) weakly oriented:
div#(x,y) = [4] x + [9] y + [5]
>= [4] x + [9] y + [5]
= c_1(quot#(x,y,y))
quot#(x,0(),s(z)) = [4] x + [9] z + [23]
>= [4] x + [9] z + [23]
= c_3(div#(x,s(z)))
*** 1.1.1.1.1.1.1.1 Progress [(?,O(1))] ***
Considered Problem:
Strict DP Rules:
div#(x,y) -> c_1(quot#(x,y,y))
quot#(x,0(),s(z)) -> c_3(div#(x,s(z)))
Strict TRS Rules:
Weak DP Rules:
quot#(s(x),s(y),z) -> c_5(quot#(x,y,z))
Weak TRS Rules:
Signature:
{div/2,quot/3,div#/2,quot#/3} / {0/0,s/1,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1}
Obligation:
Innermost
basic terms: {div#,quot#}/{0,s}
Applied Processor:
Assumption
Proof:
()
*** 1.1.1.1.1.1.2 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
Weak DP Rules:
div#(x,y) -> c_1(quot#(x,y,y))
quot#(x,0(),s(z)) -> c_3(div#(x,s(z)))
quot#(s(x),s(y),z) -> c_5(quot#(x,y,z))
Weak TRS Rules:
Signature:
{div/2,quot/3,div#/2,quot#/3} / {0/0,s/1,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1}
Obligation:
Innermost
basic terms: {div#,quot#}/{0,s}
Applied Processor:
RemoveWeakSuffixes
Proof:
Consider the dependency graph
1:W:div#(x,y) -> c_1(quot#(x,y,y))
-->_1 quot#(s(x),s(y),z) -> c_5(quot#(x,y,z)):3
2:W:quot#(x,0(),s(z)) -> c_3(div#(x,s(z)))
-->_1 div#(x,y) -> c_1(quot#(x,y,y)):1
3:W:quot#(s(x),s(y),z) -> c_5(quot#(x,y,z))
-->_1 quot#(s(x),s(y),z) -> c_5(quot#(x,y,z)):3
-->_1 quot#(x,0(),s(z)) -> c_3(div#(x,s(z))):2
The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
1: div#(x,y) -> c_1(quot#(x,y,y))
2: quot#(x,0(),s(z)) -> c_3(div#(x
,s(z)))
3: quot#(s(x),s(y),z) ->
c_5(quot#(x,y,z))
*** 1.1.1.1.1.1.2.1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
Signature:
{div/2,quot/3,div#/2,quot#/3} / {0/0,s/1,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1}
Obligation:
Innermost
basic terms: {div#,quot#}/{0,s}
Applied Processor:
EmptyProcessor
Proof:
The problem is already closed. The intended complexity is O(1).