*** 1 Progress [(?,O(n^4))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        if_minus(false(),s(x),y) -> s(minus(x,y))
        if_minus(true(),s(x),y) -> 0()
        le(0(),y) -> true()
        le(s(x),0()) -> false()
        le(s(x),s(y)) -> le(x,y)
        log(s(0())) -> 0()
        log(s(s(x))) -> s(log(s(quot(x,s(s(0()))))))
        minus(0(),y) -> 0()
        minus(s(x),y) -> if_minus(le(s(x),y),s(x),y)
        quot(0(),s(y)) -> 0()
        quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {if_minus/3,le/2,log/1,minus/2,quot/2} / {0/0,false/0,s/1,true/0}
      Obligation:
        Innermost
        basic terms: {if_minus,le,log,minus,quot}/{0,false,s,true}
    Applied Processor:
      DependencyPairs {dpKind_ = DT}
    Proof:
      We add the following dependency tuples:
      
      Strict DPs
        if_minus#(false(),s(x),y) -> c_1(minus#(x,y))
        if_minus#(true(),s(x),y) -> c_2()
        le#(0(),y) -> c_3()
        le#(s(x),0()) -> c_4()
        le#(s(x),s(y)) -> c_5(le#(x,y))
        log#(s(0())) -> c_6()
        log#(s(s(x))) -> c_7(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0()))))
        minus#(0(),y) -> c_8()
        minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y))
        quot#(0(),s(y)) -> c_10()
        quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y))
      Weak DPs
        
      
      and mark the set of starting terms.
*** 1.1 Progress [(?,O(n^4))]  ***
    Considered Problem:
      Strict DP Rules:
        if_minus#(false(),s(x),y) -> c_1(minus#(x,y))
        if_minus#(true(),s(x),y) -> c_2()
        le#(0(),y) -> c_3()
        le#(s(x),0()) -> c_4()
        le#(s(x),s(y)) -> c_5(le#(x,y))
        log#(s(0())) -> c_6()
        log#(s(s(x))) -> c_7(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0()))))
        minus#(0(),y) -> c_8()
        minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y))
        quot#(0(),s(y)) -> c_10()
        quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y))
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        if_minus(false(),s(x),y) -> s(minus(x,y))
        if_minus(true(),s(x),y) -> 0()
        le(0(),y) -> true()
        le(s(x),0()) -> false()
        le(s(x),s(y)) -> le(x,y)
        log(s(0())) -> 0()
        log(s(s(x))) -> s(log(s(quot(x,s(s(0()))))))
        minus(0(),y) -> 0()
        minus(s(x),y) -> if_minus(le(s(x),y),s(x),y)
        quot(0(),s(y)) -> 0()
        quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
      Signature:
        {if_minus/3,le/2,log/1,minus/2,quot/2,if_minus#/3,le#/2,log#/1,minus#/2,quot#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/2,c_10/0,c_11/2}
      Obligation:
        Innermost
        basic terms: {if_minus#,le#,log#,minus#,quot#}/{0,false,s,true}
    Applied Processor:
      UsableRules
    Proof:
      We replace rewrite rules by usable rules:
        if_minus(false(),s(x),y) -> s(minus(x,y))
        if_minus(true(),s(x),y) -> 0()
        le(0(),y) -> true()
        le(s(x),0()) -> false()
        le(s(x),s(y)) -> le(x,y)
        minus(0(),y) -> 0()
        minus(s(x),y) -> if_minus(le(s(x),y),s(x),y)
        quot(0(),s(y)) -> 0()
        quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
        if_minus#(false(),s(x),y) -> c_1(minus#(x,y))
        if_minus#(true(),s(x),y) -> c_2()
        le#(0(),y) -> c_3()
        le#(s(x),0()) -> c_4()
        le#(s(x),s(y)) -> c_5(le#(x,y))
        log#(s(0())) -> c_6()
        log#(s(s(x))) -> c_7(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0()))))
        minus#(0(),y) -> c_8()
        minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y))
        quot#(0(),s(y)) -> c_10()
        quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y))
*** 1.1.1 Progress [(?,O(n^4))]  ***
    Considered Problem:
      Strict DP Rules:
        if_minus#(false(),s(x),y) -> c_1(minus#(x,y))
        if_minus#(true(),s(x),y) -> c_2()
        le#(0(),y) -> c_3()
        le#(s(x),0()) -> c_4()
        le#(s(x),s(y)) -> c_5(le#(x,y))
        log#(s(0())) -> c_6()
        log#(s(s(x))) -> c_7(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0()))))
        minus#(0(),y) -> c_8()
        minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y))
        quot#(0(),s(y)) -> c_10()
        quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y))
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        if_minus(false(),s(x),y) -> s(minus(x,y))
        if_minus(true(),s(x),y) -> 0()
        le(0(),y) -> true()
        le(s(x),0()) -> false()
        le(s(x),s(y)) -> le(x,y)
        minus(0(),y) -> 0()
        minus(s(x),y) -> if_minus(le(s(x),y),s(x),y)
        quot(0(),s(y)) -> 0()
        quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
      Signature:
        {if_minus/3,le/2,log/1,minus/2,quot/2,if_minus#/3,le#/2,log#/1,minus#/2,quot#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/2,c_10/0,c_11/2}
      Obligation:
        Innermost
        basic terms: {if_minus#,le#,log#,minus#,quot#}/{0,false,s,true}
    Applied Processor:
      PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    Proof:
      We estimate the number of application of
        {2,3,4,6,8,10}
      by application of
        Pre({2,3,4,6,8,10}) = {1,5,7,9,11}.
      Here rules are labelled as follows:
        1:  if_minus#(false(),s(x),y) ->      
              c_1(minus#(x,y))                
        2:  if_minus#(true(),s(x),y) ->       
              c_2()                           
        3:  le#(0(),y) -> c_3()               
        4:  le#(s(x),0()) -> c_4()            
        5:  le#(s(x),s(y)) -> c_5(le#(x,y))   
        6:  log#(s(0())) -> c_6()             
        7:  log#(s(s(x))) ->                  
              c_7(log#(s(quot(x,s(s(0())))))  
                 ,quot#(x,s(s(0()))))         
        8:  minus#(0(),y) -> c_8()            
        9:  minus#(s(x),y) ->                 
              c_9(if_minus#(le(s(x),y),s(x),y)
                 ,le#(s(x),y))                
        10: quot#(0(),s(y)) -> c_10()         
        11: quot#(s(x),s(y)) ->               
              c_11(quot#(minus(x,y),s(y))     
                  ,minus#(x,y))               
*** 1.1.1.1 Progress [(?,O(n^4))]  ***
    Considered Problem:
      Strict DP Rules:
        if_minus#(false(),s(x),y) -> c_1(minus#(x,y))
        le#(s(x),s(y)) -> c_5(le#(x,y))
        log#(s(s(x))) -> c_7(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0()))))
        minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y))
        quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y))
      Strict TRS Rules:
        
      Weak DP Rules:
        if_minus#(true(),s(x),y) -> c_2()
        le#(0(),y) -> c_3()
        le#(s(x),0()) -> c_4()
        log#(s(0())) -> c_6()
        minus#(0(),y) -> c_8()
        quot#(0(),s(y)) -> c_10()
      Weak TRS Rules:
        if_minus(false(),s(x),y) -> s(minus(x,y))
        if_minus(true(),s(x),y) -> 0()
        le(0(),y) -> true()
        le(s(x),0()) -> false()
        le(s(x),s(y)) -> le(x,y)
        minus(0(),y) -> 0()
        minus(s(x),y) -> if_minus(le(s(x),y),s(x),y)
        quot(0(),s(y)) -> 0()
        quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
      Signature:
        {if_minus/3,le/2,log/1,minus/2,quot/2,if_minus#/3,le#/2,log#/1,minus#/2,quot#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/2,c_10/0,c_11/2}
      Obligation:
        Innermost
        basic terms: {if_minus#,le#,log#,minus#,quot#}/{0,false,s,true}
    Applied Processor:
      RemoveWeakSuffixes
    Proof:
      Consider the dependency graph
        1:S:if_minus#(false(),s(x),y) -> c_1(minus#(x,y))
           -->_1 minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y)):4
           -->_1 minus#(0(),y) -> c_8():10
        
        2:S:le#(s(x),s(y)) -> c_5(le#(x,y))
           -->_1 le#(s(x),0()) -> c_4():8
           -->_1 le#(0(),y) -> c_3():7
           -->_1 le#(s(x),s(y)) -> c_5(le#(x,y)):2
        
        3:S:log#(s(s(x))) -> c_7(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0()))))
           -->_2 quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)):5
           -->_2 quot#(0(),s(y)) -> c_10():11
           -->_1 log#(s(0())) -> c_6():9
           -->_1 log#(s(s(x))) -> c_7(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0())))):3
        
        4:S:minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y))
           -->_2 le#(s(x),0()) -> c_4():8
           -->_1 if_minus#(true(),s(x),y) -> c_2():6
           -->_2 le#(s(x),s(y)) -> c_5(le#(x,y)):2
           -->_1 if_minus#(false(),s(x),y) -> c_1(minus#(x,y)):1
        
        5:S:quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y))
           -->_1 quot#(0(),s(y)) -> c_10():11
           -->_2 minus#(0(),y) -> c_8():10
           -->_1 quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)):5
           -->_2 minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y)):4
        
        6:W:if_minus#(true(),s(x),y) -> c_2()
           
        
        7:W:le#(0(),y) -> c_3()
           
        
        8:W:le#(s(x),0()) -> c_4()
           
        
        9:W:log#(s(0())) -> c_6()
           
        
        10:W:minus#(0(),y) -> c_8()
           
        
        11:W:quot#(0(),s(y)) -> c_10()
           
        
      The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
        9:  log#(s(0())) -> c_6()      
        11: quot#(0(),s(y)) -> c_10()  
        10: minus#(0(),y) -> c_8()     
        7:  le#(0(),y) -> c_3()        
        6:  if_minus#(true(),s(x),y) ->
              c_2()                    
        8:  le#(s(x),0()) -> c_4()     
*** 1.1.1.1.1 Progress [(?,O(n^4))]  ***
    Considered Problem:
      Strict DP Rules:
        if_minus#(false(),s(x),y) -> c_1(minus#(x,y))
        le#(s(x),s(y)) -> c_5(le#(x,y))
        log#(s(s(x))) -> c_7(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0()))))
        minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y))
        quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y))
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        if_minus(false(),s(x),y) -> s(minus(x,y))
        if_minus(true(),s(x),y) -> 0()
        le(0(),y) -> true()
        le(s(x),0()) -> false()
        le(s(x),s(y)) -> le(x,y)
        minus(0(),y) -> 0()
        minus(s(x),y) -> if_minus(le(s(x),y),s(x),y)
        quot(0(),s(y)) -> 0()
        quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
      Signature:
        {if_minus/3,le/2,log/1,minus/2,quot/2,if_minus#/3,le#/2,log#/1,minus#/2,quot#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/2,c_10/0,c_11/2}
      Obligation:
        Innermost
        basic terms: {if_minus#,le#,log#,minus#,quot#}/{0,false,s,true}
    Applied Processor:
      Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd}
    Proof:
      We analyse the complexity of following sub-problems (R) and (S).
      Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component.
      
      Problem (R)
        Strict DP Rules:
          if_minus#(false(),s(x),y) -> c_1(minus#(x,y))
          le#(s(x),s(y)) -> c_5(le#(x,y))
          minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y))
        Strict TRS Rules:
          
        Weak DP Rules:
          log#(s(s(x))) -> c_7(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0()))))
          quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y))
        Weak TRS Rules:
          if_minus(false(),s(x),y) -> s(minus(x,y))
          if_minus(true(),s(x),y) -> 0()
          le(0(),y) -> true()
          le(s(x),0()) -> false()
          le(s(x),s(y)) -> le(x,y)
          minus(0(),y) -> 0()
          minus(s(x),y) -> if_minus(le(s(x),y),s(x),y)
          quot(0(),s(y)) -> 0()
          quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
        Signature:
          {if_minus/3,le/2,log/1,minus/2,quot/2,if_minus#/3,le#/2,log#/1,minus#/2,quot#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/2,c_10/0,c_11/2}
        Obligation:
          Innermost
          basic terms: {if_minus#,le#,log#,minus#,quot#}/{0,false,s,true}
      
      Problem (S)
        Strict DP Rules:
          log#(s(s(x))) -> c_7(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0()))))
          quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y))
        Strict TRS Rules:
          
        Weak DP Rules:
          if_minus#(false(),s(x),y) -> c_1(minus#(x,y))
          le#(s(x),s(y)) -> c_5(le#(x,y))
          minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y))
        Weak TRS Rules:
          if_minus(false(),s(x),y) -> s(minus(x,y))
          if_minus(true(),s(x),y) -> 0()
          le(0(),y) -> true()
          le(s(x),0()) -> false()
          le(s(x),s(y)) -> le(x,y)
          minus(0(),y) -> 0()
          minus(s(x),y) -> if_minus(le(s(x),y),s(x),y)
          quot(0(),s(y)) -> 0()
          quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
        Signature:
          {if_minus/3,le/2,log/1,minus/2,quot/2,if_minus#/3,le#/2,log#/1,minus#/2,quot#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/2,c_10/0,c_11/2}
        Obligation:
          Innermost
          basic terms: {if_minus#,le#,log#,minus#,quot#}/{0,false,s,true}
  *** 1.1.1.1.1.1 Progress [(?,O(n^4))]  ***
      Considered Problem:
        Strict DP Rules:
          if_minus#(false(),s(x),y) -> c_1(minus#(x,y))
          le#(s(x),s(y)) -> c_5(le#(x,y))
          minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y))
        Strict TRS Rules:
          
        Weak DP Rules:
          log#(s(s(x))) -> c_7(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0()))))
          quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y))
        Weak TRS Rules:
          if_minus(false(),s(x),y) -> s(minus(x,y))
          if_minus(true(),s(x),y) -> 0()
          le(0(),y) -> true()
          le(s(x),0()) -> false()
          le(s(x),s(y)) -> le(x,y)
          minus(0(),y) -> 0()
          minus(s(x),y) -> if_minus(le(s(x),y),s(x),y)
          quot(0(),s(y)) -> 0()
          quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
        Signature:
          {if_minus/3,le/2,log/1,minus/2,quot/2,if_minus#/3,le#/2,log#/1,minus#/2,quot#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/2,c_10/0,c_11/2}
        Obligation:
          Innermost
          basic terms: {if_minus#,le#,log#,minus#,quot#}/{0,false,s,true}
      Applied Processor:
        DecomposeDG {onSelection = all below first cut in WDG, onUpper = Just someStrategy, onLower = Nothing}
      Proof:
        We decompose the input problem according to the dependency graph into the upper component
          log#(s(s(x))) -> c_7(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0()))))
        and a lower component
          if_minus#(false(),s(x),y) -> c_1(minus#(x,y))
          le#(s(x),s(y)) -> c_5(le#(x,y))
          minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y))
          quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y))
        Further, following extension rules are added to the lower component.
          log#(s(s(x))) -> log#(s(quot(x,s(s(0())))))
          log#(s(s(x))) -> quot#(x,s(s(0())))
    *** 1.1.1.1.1.1.1 Progress [(?,O(n^1))]  ***
        Considered Problem:
          Strict DP Rules:
            log#(s(s(x))) -> c_7(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0()))))
          Strict TRS Rules:
            
          Weak DP Rules:
            
          Weak TRS Rules:
            if_minus(false(),s(x),y) -> s(minus(x,y))
            if_minus(true(),s(x),y) -> 0()
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            minus(0(),y) -> 0()
            minus(s(x),y) -> if_minus(le(s(x),y),s(x),y)
            quot(0(),s(y)) -> 0()
            quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
          Signature:
            {if_minus/3,le/2,log/1,minus/2,quot/2,if_minus#/3,le#/2,log#/1,minus#/2,quot#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/2,c_10/0,c_11/2}
          Obligation:
            Innermost
            basic terms: {if_minus#,le#,log#,minus#,quot#}/{0,false,s,true}
        Applied Processor:
          PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
        Proof:
          We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
            1: log#(s(s(x))) ->                
                 c_7(log#(s(quot(x,s(s(0())))))
                    ,quot#(x,s(s(0()))))       
            
          The strictly oriented rules are moved into the weak component.
      *** 1.1.1.1.1.1.1.1 Progress [(?,O(n^1))]  ***
          Considered Problem:
            Strict DP Rules:
              log#(s(s(x))) -> c_7(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0()))))
            Strict TRS Rules:
              
            Weak DP Rules:
              
            Weak TRS Rules:
              if_minus(false(),s(x),y) -> s(minus(x,y))
              if_minus(true(),s(x),y) -> 0()
              le(0(),y) -> true()
              le(s(x),0()) -> false()
              le(s(x),s(y)) -> le(x,y)
              minus(0(),y) -> 0()
              minus(s(x),y) -> if_minus(le(s(x),y),s(x),y)
              quot(0(),s(y)) -> 0()
              quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
            Signature:
              {if_minus/3,le/2,log/1,minus/2,quot/2,if_minus#/3,le#/2,log#/1,minus#/2,quot#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/2,c_10/0,c_11/2}
            Obligation:
              Innermost
              basic terms: {if_minus#,le#,log#,minus#,quot#}/{0,false,s,true}
          Applied Processor:
            NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
          Proof:
            We apply a matrix interpretation of kind constructor based matrix interpretation:
            The following argument positions are considered usable:
              uargs(c_7) = {1}
            
            Following symbols are considered usable:
              {if_minus,minus,quot,if_minus#,le#,log#,minus#,quot#}
            TcT has computed the following interpretation:
                      p(0) = [1]                  
                  p(false) = [0]                  
               p(if_minus) = [1] x2 + [0]         
                     p(le) = [8] x2 + [0]         
                    p(log) = [1]                  
                  p(minus) = [1] x1 + [0]         
                   p(quot) = [1] x1 + [0]         
                      p(s) = [1] x1 + [1]         
                   p(true) = [0]                  
              p(if_minus#) = [1] x1 + [2]         
                    p(le#) = [1]                  
                   p(log#) = [1] x1 + [0]         
                 p(minus#) = [1]                  
                  p(quot#) = [1] x1 + [10]        
                    p(c_1) = [1] x1 + [0]         
                    p(c_2) = [1]                  
                    p(c_3) = [1]                  
                    p(c_4) = [0]                  
                    p(c_5) = [0]                  
                    p(c_6) = [1]                  
                    p(c_7) = [1] x1 + [0]         
                    p(c_8) = [2]                  
                    p(c_9) = [1] x1 + [2] x2 + [1]
                   p(c_10) = [1]                  
                   p(c_11) = [1] x1 + [4]         
            
            Following rules are strictly oriented:
            log#(s(s(x))) = [1] x + [2]                   
                          > [1] x + [1]                   
                          = c_7(log#(s(quot(x,s(s(0())))))
                               ,quot#(x,s(s(0()))))       
            
            
            Following rules are (at-least) weakly oriented:
            if_minus(false(),s(x),y) =  [1] x + [1]                
                                     >= [1] x + [1]                
                                     =  s(minus(x,y))              
            
             if_minus(true(),s(x),y) =  [1] x + [1]                
                                     >= [1]                        
                                     =  0()                        
            
                        minus(0(),y) =  [1]                        
                                     >= [1]                        
                                     =  0()                        
            
                       minus(s(x),y) =  [1] x + [1]                
                                     >= [1] x + [1]                
                                     =  if_minus(le(s(x),y),s(x),y)
            
                      quot(0(),s(y)) =  [1]                        
                                     >= [1]                        
                                     =  0()                        
            
                     quot(s(x),s(y)) =  [1] x + [1]                
                                     >= [1] x + [1]                
                                     =  s(quot(minus(x,y),s(y)))   
            
      *** 1.1.1.1.1.1.1.1.1 Progress [(?,O(1))]  ***
          Considered Problem:
            Strict DP Rules:
              
            Strict TRS Rules:
              
            Weak DP Rules:
              log#(s(s(x))) -> c_7(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0()))))
            Weak TRS Rules:
              if_minus(false(),s(x),y) -> s(minus(x,y))
              if_minus(true(),s(x),y) -> 0()
              le(0(),y) -> true()
              le(s(x),0()) -> false()
              le(s(x),s(y)) -> le(x,y)
              minus(0(),y) -> 0()
              minus(s(x),y) -> if_minus(le(s(x),y),s(x),y)
              quot(0(),s(y)) -> 0()
              quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
            Signature:
              {if_minus/3,le/2,log/1,minus/2,quot/2,if_minus#/3,le#/2,log#/1,minus#/2,quot#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/2,c_10/0,c_11/2}
            Obligation:
              Innermost
              basic terms: {if_minus#,le#,log#,minus#,quot#}/{0,false,s,true}
          Applied Processor:
            Assumption
          Proof:
            ()
      
      *** 1.1.1.1.1.1.1.2 Progress [(O(1),O(1))]  ***
          Considered Problem:
            Strict DP Rules:
              
            Strict TRS Rules:
              
            Weak DP Rules:
              log#(s(s(x))) -> c_7(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0()))))
            Weak TRS Rules:
              if_minus(false(),s(x),y) -> s(minus(x,y))
              if_minus(true(),s(x),y) -> 0()
              le(0(),y) -> true()
              le(s(x),0()) -> false()
              le(s(x),s(y)) -> le(x,y)
              minus(0(),y) -> 0()
              minus(s(x),y) -> if_minus(le(s(x),y),s(x),y)
              quot(0(),s(y)) -> 0()
              quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
            Signature:
              {if_minus/3,le/2,log/1,minus/2,quot/2,if_minus#/3,le#/2,log#/1,minus#/2,quot#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/2,c_10/0,c_11/2}
            Obligation:
              Innermost
              basic terms: {if_minus#,le#,log#,minus#,quot#}/{0,false,s,true}
          Applied Processor:
            RemoveWeakSuffixes
          Proof:
            Consider the dependency graph
              1:W:log#(s(s(x))) -> c_7(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0()))))
                 -->_1 log#(s(s(x))) -> c_7(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0())))):1
              
            The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
              1: log#(s(s(x))) ->                
                   c_7(log#(s(quot(x,s(s(0())))))
                      ,quot#(x,s(s(0()))))       
      *** 1.1.1.1.1.1.1.2.1 Progress [(O(1),O(1))]  ***
          Considered Problem:
            Strict DP Rules:
              
            Strict TRS Rules:
              
            Weak DP Rules:
              
            Weak TRS Rules:
              if_minus(false(),s(x),y) -> s(minus(x,y))
              if_minus(true(),s(x),y) -> 0()
              le(0(),y) -> true()
              le(s(x),0()) -> false()
              le(s(x),s(y)) -> le(x,y)
              minus(0(),y) -> 0()
              minus(s(x),y) -> if_minus(le(s(x),y),s(x),y)
              quot(0(),s(y)) -> 0()
              quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
            Signature:
              {if_minus/3,le/2,log/1,minus/2,quot/2,if_minus#/3,le#/2,log#/1,minus#/2,quot#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/2,c_10/0,c_11/2}
            Obligation:
              Innermost
              basic terms: {if_minus#,le#,log#,minus#,quot#}/{0,false,s,true}
          Applied Processor:
            EmptyProcessor
          Proof:
            The problem is already closed. The intended complexity is O(1).
      
    *** 1.1.1.1.1.1.2 Progress [(?,O(n^3))]  ***
        Considered Problem:
          Strict DP Rules:
            if_minus#(false(),s(x),y) -> c_1(minus#(x,y))
            le#(s(x),s(y)) -> c_5(le#(x,y))
            minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y))
          Strict TRS Rules:
            
          Weak DP Rules:
            log#(s(s(x))) -> log#(s(quot(x,s(s(0())))))
            log#(s(s(x))) -> quot#(x,s(s(0())))
            quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y))
          Weak TRS Rules:
            if_minus(false(),s(x),y) -> s(minus(x,y))
            if_minus(true(),s(x),y) -> 0()
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            minus(0(),y) -> 0()
            minus(s(x),y) -> if_minus(le(s(x),y),s(x),y)
            quot(0(),s(y)) -> 0()
            quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
          Signature:
            {if_minus/3,le/2,log/1,minus/2,quot/2,if_minus#/3,le#/2,log#/1,minus#/2,quot#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/2,c_10/0,c_11/2}
          Obligation:
            Innermost
            basic terms: {if_minus#,le#,log#,minus#,quot#}/{0,false,s,true}
        Applied Processor:
          DecomposeDG {onSelection = all below first cut in WDG, onUpper = Just someStrategy, onLower = Nothing}
        Proof:
          We decompose the input problem according to the dependency graph into the upper component
            log#(s(s(x))) -> log#(s(quot(x,s(s(0())))))
            log#(s(s(x))) -> quot#(x,s(s(0())))
            quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y))
          and a lower component
            if_minus#(false(),s(x),y) -> c_1(minus#(x,y))
            le#(s(x),s(y)) -> c_5(le#(x,y))
            minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y))
          Further, following extension rules are added to the lower component.
            log#(s(s(x))) -> log#(s(quot(x,s(s(0())))))
            log#(s(s(x))) -> quot#(x,s(s(0())))
            quot#(s(x),s(y)) -> minus#(x,y)
            quot#(s(x),s(y)) -> quot#(minus(x,y),s(y))
      *** 1.1.1.1.1.1.2.1 Progress [(?,O(n^1))]  ***
          Considered Problem:
            Strict DP Rules:
              quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y))
            Strict TRS Rules:
              
            Weak DP Rules:
              log#(s(s(x))) -> log#(s(quot(x,s(s(0())))))
              log#(s(s(x))) -> quot#(x,s(s(0())))
            Weak TRS Rules:
              if_minus(false(),s(x),y) -> s(minus(x,y))
              if_minus(true(),s(x),y) -> 0()
              le(0(),y) -> true()
              le(s(x),0()) -> false()
              le(s(x),s(y)) -> le(x,y)
              minus(0(),y) -> 0()
              minus(s(x),y) -> if_minus(le(s(x),y),s(x),y)
              quot(0(),s(y)) -> 0()
              quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
            Signature:
              {if_minus/3,le/2,log/1,minus/2,quot/2,if_minus#/3,le#/2,log#/1,minus#/2,quot#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/2,c_10/0,c_11/2}
            Obligation:
              Innermost
              basic terms: {if_minus#,le#,log#,minus#,quot#}/{0,false,s,true}
          Applied Processor:
            PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
          Proof:
            We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
              1: quot#(s(x),s(y)) ->          
                   c_11(quot#(minus(x,y),s(y))
                       ,minus#(x,y))          
              
            The strictly oriented rules are moved into the weak component.
        *** 1.1.1.1.1.1.2.1.1 Progress [(?,O(n^1))]  ***
            Considered Problem:
              Strict DP Rules:
                quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y))
              Strict TRS Rules:
                
              Weak DP Rules:
                log#(s(s(x))) -> log#(s(quot(x,s(s(0())))))
                log#(s(s(x))) -> quot#(x,s(s(0())))
              Weak TRS Rules:
                if_minus(false(),s(x),y) -> s(minus(x,y))
                if_minus(true(),s(x),y) -> 0()
                le(0(),y) -> true()
                le(s(x),0()) -> false()
                le(s(x),s(y)) -> le(x,y)
                minus(0(),y) -> 0()
                minus(s(x),y) -> if_minus(le(s(x),y),s(x),y)
                quot(0(),s(y)) -> 0()
                quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
              Signature:
                {if_minus/3,le/2,log/1,minus/2,quot/2,if_minus#/3,le#/2,log#/1,minus#/2,quot#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/2,c_10/0,c_11/2}
              Obligation:
                Innermost
                basic terms: {if_minus#,le#,log#,minus#,quot#}/{0,false,s,true}
            Applied Processor:
              NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
            Proof:
              We apply a matrix interpretation of kind constructor based matrix interpretation:
              The following argument positions are considered usable:
                uargs(c_11) = {1}
              
              Following symbols are considered usable:
                {if_minus,minus,quot,if_minus#,le#,log#,minus#,quot#}
              TcT has computed the following interpretation:
                        p(0) = [0]                  
                    p(false) = [0]                  
                 p(if_minus) = [1] x2 + [0]         
                       p(le) = [2] x2 + [0]         
                      p(log) = [1]                  
                    p(minus) = [1] x1 + [0]         
                     p(quot) = [1] x1 + [4]         
                        p(s) = [1] x1 + [4]         
                     p(true) = [0]                  
                p(if_minus#) = [1]                  
                      p(le#) = [0]                  
                     p(log#) = [2] x1 + [0]         
                   p(minus#) = [0]                  
                    p(quot#) = [1] x1 + [0]         
                      p(c_1) = [8] x1 + [1]         
                      p(c_2) = [0]                  
                      p(c_3) = [0]                  
                      p(c_4) = [1]                  
                      p(c_5) = [2]                  
                      p(c_6) = [4]                  
                      p(c_7) = [1] x1 + [1]         
                      p(c_8) = [1]                  
                      p(c_9) = [2] x1 + [4] x2 + [1]
                     p(c_10) = [4]                  
                     p(c_11) = [1] x1 + [8] x2 + [0]
              
              Following rules are strictly oriented:
              quot#(s(x),s(y)) = [1] x + [4]                
                               > [1] x + [0]                
                               = c_11(quot#(minus(x,y),s(y))
                                     ,minus#(x,y))          
              
              
              Following rules are (at-least) weakly oriented:
                         log#(s(s(x))) =  [2] x + [16]               
                                       >= [2] x + [16]               
                                       =  log#(s(quot(x,s(s(0()))))) 
              
                         log#(s(s(x))) =  [2] x + [16]               
                                       >= [1] x + [0]                
                                       =  quot#(x,s(s(0())))         
              
              if_minus(false(),s(x),y) =  [1] x + [4]                
                                       >= [1] x + [4]                
                                       =  s(minus(x,y))              
              
               if_minus(true(),s(x),y) =  [1] x + [4]                
                                       >= [0]                        
                                       =  0()                        
              
                          minus(0(),y) =  [0]                        
                                       >= [0]                        
                                       =  0()                        
              
                         minus(s(x),y) =  [1] x + [4]                
                                       >= [1] x + [4]                
                                       =  if_minus(le(s(x),y),s(x),y)
              
                        quot(0(),s(y)) =  [4]                        
                                       >= [0]                        
                                       =  0()                        
              
                       quot(s(x),s(y)) =  [1] x + [8]                
                                       >= [1] x + [8]                
                                       =  s(quot(minus(x,y),s(y)))   
              
        *** 1.1.1.1.1.1.2.1.1.1 Progress [(?,O(1))]  ***
            Considered Problem:
              Strict DP Rules:
                
              Strict TRS Rules:
                
              Weak DP Rules:
                log#(s(s(x))) -> log#(s(quot(x,s(s(0())))))
                log#(s(s(x))) -> quot#(x,s(s(0())))
                quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y))
              Weak TRS Rules:
                if_minus(false(),s(x),y) -> s(minus(x,y))
                if_minus(true(),s(x),y) -> 0()
                le(0(),y) -> true()
                le(s(x),0()) -> false()
                le(s(x),s(y)) -> le(x,y)
                minus(0(),y) -> 0()
                minus(s(x),y) -> if_minus(le(s(x),y),s(x),y)
                quot(0(),s(y)) -> 0()
                quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
              Signature:
                {if_minus/3,le/2,log/1,minus/2,quot/2,if_minus#/3,le#/2,log#/1,minus#/2,quot#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/2,c_10/0,c_11/2}
              Obligation:
                Innermost
                basic terms: {if_minus#,le#,log#,minus#,quot#}/{0,false,s,true}
            Applied Processor:
              Assumption
            Proof:
              ()
        
        *** 1.1.1.1.1.1.2.1.2 Progress [(O(1),O(1))]  ***
            Considered Problem:
              Strict DP Rules:
                
              Strict TRS Rules:
                
              Weak DP Rules:
                log#(s(s(x))) -> log#(s(quot(x,s(s(0())))))
                log#(s(s(x))) -> quot#(x,s(s(0())))
                quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y))
              Weak TRS Rules:
                if_minus(false(),s(x),y) -> s(minus(x,y))
                if_minus(true(),s(x),y) -> 0()
                le(0(),y) -> true()
                le(s(x),0()) -> false()
                le(s(x),s(y)) -> le(x,y)
                minus(0(),y) -> 0()
                minus(s(x),y) -> if_minus(le(s(x),y),s(x),y)
                quot(0(),s(y)) -> 0()
                quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
              Signature:
                {if_minus/3,le/2,log/1,minus/2,quot/2,if_minus#/3,le#/2,log#/1,minus#/2,quot#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/2,c_10/0,c_11/2}
              Obligation:
                Innermost
                basic terms: {if_minus#,le#,log#,minus#,quot#}/{0,false,s,true}
            Applied Processor:
              RemoveWeakSuffixes
            Proof:
              Consider the dependency graph
                1:W:log#(s(s(x))) -> log#(s(quot(x,s(s(0())))))
                   -->_1 log#(s(s(x))) -> quot#(x,s(s(0()))):2
                   -->_1 log#(s(s(x))) -> log#(s(quot(x,s(s(0()))))):1
                
                2:W:log#(s(s(x))) -> quot#(x,s(s(0())))
                   -->_1 quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)):3
                
                3:W:quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y))
                   -->_1 quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)):3
                
              The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
                1: log#(s(s(x))) -> log#(s(quot(x           
                                               ,s(s(0())))))
                2: log#(s(s(x))) -> quot#(x                 
                                         ,s(s(0())))        
                3: quot#(s(x),s(y)) ->                      
                     c_11(quot#(minus(x,y),s(y))            
                         ,minus#(x,y))                      
        *** 1.1.1.1.1.1.2.1.2.1 Progress [(O(1),O(1))]  ***
            Considered Problem:
              Strict DP Rules:
                
              Strict TRS Rules:
                
              Weak DP Rules:
                
              Weak TRS Rules:
                if_minus(false(),s(x),y) -> s(minus(x,y))
                if_minus(true(),s(x),y) -> 0()
                le(0(),y) -> true()
                le(s(x),0()) -> false()
                le(s(x),s(y)) -> le(x,y)
                minus(0(),y) -> 0()
                minus(s(x),y) -> if_minus(le(s(x),y),s(x),y)
                quot(0(),s(y)) -> 0()
                quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
              Signature:
                {if_minus/3,le/2,log/1,minus/2,quot/2,if_minus#/3,le#/2,log#/1,minus#/2,quot#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/2,c_10/0,c_11/2}
              Obligation:
                Innermost
                basic terms: {if_minus#,le#,log#,minus#,quot#}/{0,false,s,true}
            Applied Processor:
              EmptyProcessor
            Proof:
              The problem is already closed. The intended complexity is O(1).
        
      *** 1.1.1.1.1.1.2.2 Progress [(?,O(n^2))]  ***
          Considered Problem:
            Strict DP Rules:
              if_minus#(false(),s(x),y) -> c_1(minus#(x,y))
              le#(s(x),s(y)) -> c_5(le#(x,y))
              minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y))
            Strict TRS Rules:
              
            Weak DP Rules:
              log#(s(s(x))) -> log#(s(quot(x,s(s(0())))))
              log#(s(s(x))) -> quot#(x,s(s(0())))
              quot#(s(x),s(y)) -> minus#(x,y)
              quot#(s(x),s(y)) -> quot#(minus(x,y),s(y))
            Weak TRS Rules:
              if_minus(false(),s(x),y) -> s(minus(x,y))
              if_minus(true(),s(x),y) -> 0()
              le(0(),y) -> true()
              le(s(x),0()) -> false()
              le(s(x),s(y)) -> le(x,y)
              minus(0(),y) -> 0()
              minus(s(x),y) -> if_minus(le(s(x),y),s(x),y)
              quot(0(),s(y)) -> 0()
              quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
            Signature:
              {if_minus/3,le/2,log/1,minus/2,quot/2,if_minus#/3,le#/2,log#/1,minus#/2,quot#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/2,c_10/0,c_11/2}
            Obligation:
              Innermost
              basic terms: {if_minus#,le#,log#,minus#,quot#}/{0,false,s,true}
          Applied Processor:
            PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 3, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
          Proof:
            We first use the processor NaturalMI {miDimension = 3, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
              2: le#(s(x),s(y)) -> c_5(le#(x,y))
              
            The strictly oriented rules are moved into the weak component.
        *** 1.1.1.1.1.1.2.2.1 Progress [(?,O(n^2))]  ***
            Considered Problem:
              Strict DP Rules:
                if_minus#(false(),s(x),y) -> c_1(minus#(x,y))
                le#(s(x),s(y)) -> c_5(le#(x,y))
                minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y))
              Strict TRS Rules:
                
              Weak DP Rules:
                log#(s(s(x))) -> log#(s(quot(x,s(s(0())))))
                log#(s(s(x))) -> quot#(x,s(s(0())))
                quot#(s(x),s(y)) -> minus#(x,y)
                quot#(s(x),s(y)) -> quot#(minus(x,y),s(y))
              Weak TRS Rules:
                if_minus(false(),s(x),y) -> s(minus(x,y))
                if_minus(true(),s(x),y) -> 0()
                le(0(),y) -> true()
                le(s(x),0()) -> false()
                le(s(x),s(y)) -> le(x,y)
                minus(0(),y) -> 0()
                minus(s(x),y) -> if_minus(le(s(x),y),s(x),y)
                quot(0(),s(y)) -> 0()
                quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
              Signature:
                {if_minus/3,le/2,log/1,minus/2,quot/2,if_minus#/3,le#/2,log#/1,minus#/2,quot#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/2,c_10/0,c_11/2}
              Obligation:
                Innermost
                basic terms: {if_minus#,le#,log#,minus#,quot#}/{0,false,s,true}
            Applied Processor:
              NaturalMI {miDimension = 3, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
            Proof:
              We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 2 non-zero interpretation-entries in the diagonal of the component-wise maxima):
              The following argument positions are considered usable:
                uargs(c_1) = {1},
                uargs(c_5) = {1},
                uargs(c_9) = {1,2}
              
              Following symbols are considered usable:
                {if_minus,minus,quot,if_minus#,le#,log#,minus#,quot#}
              TcT has computed the following interpretation:
                        p(0) = [0]                          
                               [0]                          
                               [0]                          
                    p(false) = [0]                          
                               [0]                          
                               [0]                          
                 p(if_minus) = [1 0 0]      [0 0 0]      [0]
                               [0 0 0] x2 + [0 0 1] x3 + [1]
                               [0 0 1]      [0 0 0]      [0]
                       p(le) = [0]                          
                               [0]                          
                               [0]                          
                      p(log) = [0]                          
                               [0]                          
                               [0]                          
                    p(minus) = [1 0 0]      [0 0 0]      [0]
                               [1 0 0] x1 + [1 1 1] x2 + [0]
                               [0 0 1]      [0 0 0]      [0]
                     p(quot) = [1 0 0]      [0]             
                               [0 0 0] x1 + [0]             
                               [0 0 1]      [0]             
                        p(s) = [1 0 1]      [1]             
                               [0 0 0] x1 + [0]             
                               [0 0 1]      [1]             
                     p(true) = [0]                          
                               [0]                          
                               [0]                          
                p(if_minus#) = [1 0 0]      [0]             
                               [0 0 0] x2 + [0]             
                               [1 0 1]      [0]             
                      p(le#) = [0 0 1]      [1]             
                               [0 0 0] x1 + [1]             
                               [1 0 0]      [1]             
                     p(log#) = [1 0 0]      [0]             
                               [1 0 0] x1 + [0]             
                               [1 0 0]      [0]             
                   p(minus#) = [1 0 1]      [1]             
                               [0 0 0] x1 + [0]             
                               [0 0 0]      [0]             
                    p(quot#) = [1 0 0]      [0 0 1]      [1]
                               [0 0 0] x1 + [0 0 1] x2 + [1]
                               [1 0 0]      [0 0 0]      [0]
                      p(c_1) = [1 0 0]      [0]             
                               [0 0 0] x1 + [0]             
                               [0 0 0]      [0]             
                      p(c_2) = [0]                          
                               [0]                          
                               [0]                          
                      p(c_3) = [0]                          
                               [0]                          
                               [0]                          
                      p(c_4) = [0]                          
                               [0]                          
                               [0]                          
                      p(c_5) = [1 0 0]      [0]             
                               [0 0 0] x1 + [1]             
                               [0 0 1]      [1]             
                      p(c_6) = [0]                          
                               [0]                          
                               [0]                          
                      p(c_7) = [0]                          
                               [0]                          
                               [0]                          
                      p(c_8) = [0]                          
                               [0]                          
                               [0]                          
                      p(c_9) = [1 0 0]      [1 0 0]      [0]
                               [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                     p(c_10) = [0]                          
                               [0]                          
                               [0]                          
                     p(c_11) = [0]                          
                               [0]                          
                               [0]                          
              
              Following rules are strictly oriented:
              le#(s(x),s(y)) = [0 0 1]     [2]
                               [0 0 0] x + [1]
                               [1 0 1]     [2]
                             > [0 0 1]     [1]
                               [0 0 0] x + [1]
                               [1 0 0]     [2]
                             = c_5(le#(x,y))  
              
              
              Following rules are (at-least) weakly oriented:
              if_minus#(false(),s(x),y) =  [1 0 1]     [1]                 
                                           [0 0 0] x + [0]                 
                                           [1 0 2]     [2]                 
                                        >= [1 0 1]     [1]                 
                                           [0 0 0] x + [0]                 
                                           [0 0 0]     [0]                 
                                        =  c_1(minus#(x,y))                
              
                          log#(s(s(x))) =  [1 0 2]     [3]                 
                                           [1 0 2] x + [3]                 
                                           [1 0 2]     [3]                 
                                        >= [1 0 1]     [1]                 
                                           [1 0 1] x + [1]                 
                                           [1 0 1]     [1]                 
                                        =  log#(s(quot(x,s(s(0())))))      
              
                          log#(s(s(x))) =  [1 0 2]     [3]                 
                                           [1 0 2] x + [3]                 
                                           [1 0 2]     [3]                 
                                        >= [1 0 0]     [3]                 
                                           [0 0 0] x + [3]                 
                                           [1 0 0]     [0]                 
                                        =  quot#(x,s(s(0())))              
              
                         minus#(s(x),y) =  [1 0 2]     [3]                 
                                           [0 0 0] x + [0]                 
                                           [0 0 0]     [0]                 
                                        >= [1 0 2]     [3]                 
                                           [0 0 0] x + [0]                 
                                           [0 0 0]     [0]                 
                                        =  c_9(if_minus#(le(s(x),y),s(x),y)
                                              ,le#(s(x),y))                
              
                       quot#(s(x),s(y)) =  [1 0 1]     [0 0 1]     [3]     
                                           [0 0 0] x + [0 0 1] y + [2]     
                                           [1 0 1]     [0 0 0]     [1]     
                                        >= [1 0 1]     [1]                 
                                           [0 0 0] x + [0]                 
                                           [0 0 0]     [0]                 
                                        =  minus#(x,y)                     
              
                       quot#(s(x),s(y)) =  [1 0 1]     [0 0 1]     [3]     
                                           [0 0 0] x + [0 0 1] y + [2]     
                                           [1 0 1]     [0 0 0]     [1]     
                                        >= [1 0 0]     [0 0 1]     [2]     
                                           [0 0 0] x + [0 0 1] y + [2]     
                                           [1 0 0]     [0 0 0]     [0]     
                                        =  quot#(minus(x,y),s(y))          
              
               if_minus(false(),s(x),y) =  [1 0 1]     [0 0 0]     [1]     
                                           [0 0 0] x + [0 0 1] y + [1]     
                                           [0 0 1]     [0 0 0]     [1]     
                                        >= [1 0 1]     [1]                 
                                           [0 0 0] x + [0]                 
                                           [0 0 1]     [1]                 
                                        =  s(minus(x,y))                   
              
                if_minus(true(),s(x),y) =  [1 0 1]     [0 0 0]     [1]     
                                           [0 0 0] x + [0 0 1] y + [1]     
                                           [0 0 1]     [0 0 0]     [1]     
                                        >= [0]                             
                                           [0]                             
                                           [0]                             
                                        =  0()                             
              
                           minus(0(),y) =  [0 0 0]     [0]                 
                                           [1 1 1] y + [0]                 
                                           [0 0 0]     [0]                 
                                        >= [0]                             
                                           [0]                             
                                           [0]                             
                                        =  0()                             
              
                          minus(s(x),y) =  [1 0 1]     [0 0 0]     [1]     
                                           [1 0 1] x + [1 1 1] y + [1]     
                                           [0 0 1]     [0 0 0]     [1]     
                                        >= [1 0 1]     [0 0 0]     [1]     
                                           [0 0 0] x + [0 0 1] y + [1]     
                                           [0 0 1]     [0 0 0]     [1]     
                                        =  if_minus(le(s(x),y),s(x),y)     
              
                         quot(0(),s(y)) =  [0]                             
                                           [0]                             
                                           [0]                             
                                        >= [0]                             
                                           [0]                             
                                           [0]                             
                                        =  0()                             
              
                        quot(s(x),s(y)) =  [1 0 1]     [1]                 
                                           [0 0 0] x + [0]                 
                                           [0 0 1]     [1]                 
                                        >= [1 0 1]     [1]                 
                                           [0 0 0] x + [0]                 
                                           [0 0 1]     [1]                 
                                        =  s(quot(minus(x,y),s(y)))        
              
        *** 1.1.1.1.1.1.2.2.1.1 Progress [(?,O(1))]  ***
            Considered Problem:
              Strict DP Rules:
                if_minus#(false(),s(x),y) -> c_1(minus#(x,y))
                minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y))
              Strict TRS Rules:
                
              Weak DP Rules:
                le#(s(x),s(y)) -> c_5(le#(x,y))
                log#(s(s(x))) -> log#(s(quot(x,s(s(0())))))
                log#(s(s(x))) -> quot#(x,s(s(0())))
                quot#(s(x),s(y)) -> minus#(x,y)
                quot#(s(x),s(y)) -> quot#(minus(x,y),s(y))
              Weak TRS Rules:
                if_minus(false(),s(x),y) -> s(minus(x,y))
                if_minus(true(),s(x),y) -> 0()
                le(0(),y) -> true()
                le(s(x),0()) -> false()
                le(s(x),s(y)) -> le(x,y)
                minus(0(),y) -> 0()
                minus(s(x),y) -> if_minus(le(s(x),y),s(x),y)
                quot(0(),s(y)) -> 0()
                quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
              Signature:
                {if_minus/3,le/2,log/1,minus/2,quot/2,if_minus#/3,le#/2,log#/1,minus#/2,quot#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/2,c_10/0,c_11/2}
              Obligation:
                Innermost
                basic terms: {if_minus#,le#,log#,minus#,quot#}/{0,false,s,true}
            Applied Processor:
              Assumption
            Proof:
              ()
        
        *** 1.1.1.1.1.1.2.2.2 Progress [(?,O(n^1))]  ***
            Considered Problem:
              Strict DP Rules:
                if_minus#(false(),s(x),y) -> c_1(minus#(x,y))
                minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y))
              Strict TRS Rules:
                
              Weak DP Rules:
                le#(s(x),s(y)) -> c_5(le#(x,y))
                log#(s(s(x))) -> log#(s(quot(x,s(s(0())))))
                log#(s(s(x))) -> quot#(x,s(s(0())))
                quot#(s(x),s(y)) -> minus#(x,y)
                quot#(s(x),s(y)) -> quot#(minus(x,y),s(y))
              Weak TRS Rules:
                if_minus(false(),s(x),y) -> s(minus(x,y))
                if_minus(true(),s(x),y) -> 0()
                le(0(),y) -> true()
                le(s(x),0()) -> false()
                le(s(x),s(y)) -> le(x,y)
                minus(0(),y) -> 0()
                minus(s(x),y) -> if_minus(le(s(x),y),s(x),y)
                quot(0(),s(y)) -> 0()
                quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
              Signature:
                {if_minus/3,le/2,log/1,minus/2,quot/2,if_minus#/3,le#/2,log#/1,minus#/2,quot#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/2,c_10/0,c_11/2}
              Obligation:
                Innermost
                basic terms: {if_minus#,le#,log#,minus#,quot#}/{0,false,s,true}
            Applied Processor:
              RemoveWeakSuffixes
            Proof:
              Consider the dependency graph
                1:S:if_minus#(false(),s(x),y) -> c_1(minus#(x,y))
                   -->_1 minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y)):2
                
                2:S:minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y))
                   -->_2 le#(s(x),s(y)) -> c_5(le#(x,y)):3
                   -->_1 if_minus#(false(),s(x),y) -> c_1(minus#(x,y)):1
                
                3:W:le#(s(x),s(y)) -> c_5(le#(x,y))
                   -->_1 le#(s(x),s(y)) -> c_5(le#(x,y)):3
                
                4:W:log#(s(s(x))) -> log#(s(quot(x,s(s(0())))))
                   -->_1 log#(s(s(x))) -> quot#(x,s(s(0()))):5
                   -->_1 log#(s(s(x))) -> log#(s(quot(x,s(s(0()))))):4
                
                5:W:log#(s(s(x))) -> quot#(x,s(s(0())))
                   -->_1 quot#(s(x),s(y)) -> quot#(minus(x,y),s(y)):7
                   -->_1 quot#(s(x),s(y)) -> minus#(x,y):6
                
                6:W:quot#(s(x),s(y)) -> minus#(x,y)
                   -->_1 minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y)):2
                
                7:W:quot#(s(x),s(y)) -> quot#(minus(x,y),s(y))
                   -->_1 quot#(s(x),s(y)) -> quot#(minus(x,y),s(y)):7
                   -->_1 quot#(s(x),s(y)) -> minus#(x,y):6
                
              The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
                3: le#(s(x),s(y)) -> c_5(le#(x,y))
        *** 1.1.1.1.1.1.2.2.2.1 Progress [(?,O(n^1))]  ***
            Considered Problem:
              Strict DP Rules:
                if_minus#(false(),s(x),y) -> c_1(minus#(x,y))
                minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y))
              Strict TRS Rules:
                
              Weak DP Rules:
                log#(s(s(x))) -> log#(s(quot(x,s(s(0())))))
                log#(s(s(x))) -> quot#(x,s(s(0())))
                quot#(s(x),s(y)) -> minus#(x,y)
                quot#(s(x),s(y)) -> quot#(minus(x,y),s(y))
              Weak TRS Rules:
                if_minus(false(),s(x),y) -> s(minus(x,y))
                if_minus(true(),s(x),y) -> 0()
                le(0(),y) -> true()
                le(s(x),0()) -> false()
                le(s(x),s(y)) -> le(x,y)
                minus(0(),y) -> 0()
                minus(s(x),y) -> if_minus(le(s(x),y),s(x),y)
                quot(0(),s(y)) -> 0()
                quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
              Signature:
                {if_minus/3,le/2,log/1,minus/2,quot/2,if_minus#/3,le#/2,log#/1,minus#/2,quot#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/2,c_10/0,c_11/2}
              Obligation:
                Innermost
                basic terms: {if_minus#,le#,log#,minus#,quot#}/{0,false,s,true}
            Applied Processor:
              SimplifyRHS
            Proof:
              Consider the dependency graph
                1:S:if_minus#(false(),s(x),y) -> c_1(minus#(x,y))
                   -->_1 minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y)):2
                
                2:S:minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y))
                   -->_1 if_minus#(false(),s(x),y) -> c_1(minus#(x,y)):1
                
                4:W:log#(s(s(x))) -> log#(s(quot(x,s(s(0())))))
                   -->_1 log#(s(s(x))) -> quot#(x,s(s(0()))):5
                   -->_1 log#(s(s(x))) -> log#(s(quot(x,s(s(0()))))):4
                
                5:W:log#(s(s(x))) -> quot#(x,s(s(0())))
                   -->_1 quot#(s(x),s(y)) -> quot#(minus(x,y),s(y)):7
                   -->_1 quot#(s(x),s(y)) -> minus#(x,y):6
                
                6:W:quot#(s(x),s(y)) -> minus#(x,y)
                   -->_1 minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y)):2
                
                7:W:quot#(s(x),s(y)) -> quot#(minus(x,y),s(y))
                   -->_1 quot#(s(x),s(y)) -> quot#(minus(x,y),s(y)):7
                   -->_1 quot#(s(x),s(y)) -> minus#(x,y):6
                
              Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
                minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y))
        *** 1.1.1.1.1.1.2.2.2.1.1 Progress [(?,O(n^1))]  ***
            Considered Problem:
              Strict DP Rules:
                if_minus#(false(),s(x),y) -> c_1(minus#(x,y))
                minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y))
              Strict TRS Rules:
                
              Weak DP Rules:
                log#(s(s(x))) -> log#(s(quot(x,s(s(0())))))
                log#(s(s(x))) -> quot#(x,s(s(0())))
                quot#(s(x),s(y)) -> minus#(x,y)
                quot#(s(x),s(y)) -> quot#(minus(x,y),s(y))
              Weak TRS Rules:
                if_minus(false(),s(x),y) -> s(minus(x,y))
                if_minus(true(),s(x),y) -> 0()
                le(0(),y) -> true()
                le(s(x),0()) -> false()
                le(s(x),s(y)) -> le(x,y)
                minus(0(),y) -> 0()
                minus(s(x),y) -> if_minus(le(s(x),y),s(x),y)
                quot(0(),s(y)) -> 0()
                quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
              Signature:
                {if_minus/3,le/2,log/1,minus/2,quot/2,if_minus#/3,le#/2,log#/1,minus#/2,quot#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/1,c_10/0,c_11/2}
              Obligation:
                Innermost
                basic terms: {if_minus#,le#,log#,minus#,quot#}/{0,false,s,true}
            Applied Processor:
              PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
            Proof:
              We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
                1: if_minus#(false(),s(x),y) ->
                     c_1(minus#(x,y))          
                
              The strictly oriented rules are moved into the weak component.
          *** 1.1.1.1.1.1.2.2.2.1.1.1 Progress [(?,O(n^1))]  ***
              Considered Problem:
                Strict DP Rules:
                  if_minus#(false(),s(x),y) -> c_1(minus#(x,y))
                  minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y))
                Strict TRS Rules:
                  
                Weak DP Rules:
                  log#(s(s(x))) -> log#(s(quot(x,s(s(0())))))
                  log#(s(s(x))) -> quot#(x,s(s(0())))
                  quot#(s(x),s(y)) -> minus#(x,y)
                  quot#(s(x),s(y)) -> quot#(minus(x,y),s(y))
                Weak TRS Rules:
                  if_minus(false(),s(x),y) -> s(minus(x,y))
                  if_minus(true(),s(x),y) -> 0()
                  le(0(),y) -> true()
                  le(s(x),0()) -> false()
                  le(s(x),s(y)) -> le(x,y)
                  minus(0(),y) -> 0()
                  minus(s(x),y) -> if_minus(le(s(x),y),s(x),y)
                  quot(0(),s(y)) -> 0()
                  quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
                Signature:
                  {if_minus/3,le/2,log/1,minus/2,quot/2,if_minus#/3,le#/2,log#/1,minus#/2,quot#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/1,c_10/0,c_11/2}
                Obligation:
                  Innermost
                  basic terms: {if_minus#,le#,log#,minus#,quot#}/{0,false,s,true}
              Applied Processor:
                NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
              Proof:
                We apply a matrix interpretation of kind constructor based matrix interpretation:
                The following argument positions are considered usable:
                  uargs(c_1) = {1},
                  uargs(c_9) = {1}
                
                Following symbols are considered usable:
                  {if_minus,le,minus,quot,if_minus#,le#,log#,minus#,quot#}
                TcT has computed the following interpretation:
                          p(0) = [0]                  
                      p(false) = [1]                  
                   p(if_minus) = [1] x2 + [0]         
                         p(le) = [1]                  
                        p(log) = [1] x1 + [2]         
                      p(minus) = [1] x1 + [0]         
                       p(quot) = [1] x1 + [1]         
                          p(s) = [1] x1 + [1]         
                       p(true) = [0]                  
                  p(if_minus#) = [4] x1 + [1] x2 + [3]
                        p(le#) = [1] x2 + [1]         
                       p(log#) = [2] x1 + [1]         
                     p(minus#) = [1] x1 + [7]         
                      p(quot#) = [2] x1 + [5]         
                        p(c_1) = [1] x1 + [0]         
                        p(c_2) = [1]                  
                        p(c_3) = [1]                  
                        p(c_4) = [1]                  
                        p(c_5) = [1]                  
                        p(c_6) = [0]                  
                        p(c_7) = [2] x2 + [1]         
                        p(c_8) = [2]                  
                        p(c_9) = [1] x1 + [0]         
                       p(c_10) = [8]                  
                       p(c_11) = [1] x1 + [1]         
                
                Following rules are strictly oriented:
                if_minus#(false(),s(x),y) = [1] x + [8]     
                                          > [1] x + [7]     
                                          = c_1(minus#(x,y))
                
                
                Following rules are (at-least) weakly oriented:
                           log#(s(s(x))) =  [2] x + [5]                
                                         >= [2] x + [5]                
                                         =  log#(s(quot(x,s(s(0()))))) 
                
                           log#(s(s(x))) =  [2] x + [5]                
                                         >= [2] x + [5]                
                                         =  quot#(x,s(s(0())))         
                
                          minus#(s(x),y) =  [1] x + [8]                
                                         >= [1] x + [8]                
                                         =  c_9(if_minus#(le(s(x),y)   
                                                         ,s(x)         
                                                         ,y))          
                
                        quot#(s(x),s(y)) =  [2] x + [7]                
                                         >= [1] x + [7]                
                                         =  minus#(x,y)                
                
                        quot#(s(x),s(y)) =  [2] x + [7]                
                                         >= [2] x + [5]                
                                         =  quot#(minus(x,y),s(y))     
                
                if_minus(false(),s(x),y) =  [1] x + [1]                
                                         >= [1] x + [1]                
                                         =  s(minus(x,y))              
                
                 if_minus(true(),s(x),y) =  [1] x + [1]                
                                         >= [0]                        
                                         =  0()                        
                
                               le(0(),y) =  [1]                        
                                         >= [0]                        
                                         =  true()                     
                
                            le(s(x),0()) =  [1]                        
                                         >= [1]                        
                                         =  false()                    
                
                           le(s(x),s(y)) =  [1]                        
                                         >= [1]                        
                                         =  le(x,y)                    
                
                            minus(0(),y) =  [0]                        
                                         >= [0]                        
                                         =  0()                        
                
                           minus(s(x),y) =  [1] x + [1]                
                                         >= [1] x + [1]                
                                         =  if_minus(le(s(x),y),s(x),y)
                
                          quot(0(),s(y)) =  [1]                        
                                         >= [0]                        
                                         =  0()                        
                
                         quot(s(x),s(y)) =  [1] x + [2]                
                                         >= [1] x + [2]                
                                         =  s(quot(minus(x,y),s(y)))   
                
          *** 1.1.1.1.1.1.2.2.2.1.1.1.1 Progress [(?,O(1))]  ***
              Considered Problem:
                Strict DP Rules:
                  minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y))
                Strict TRS Rules:
                  
                Weak DP Rules:
                  if_minus#(false(),s(x),y) -> c_1(minus#(x,y))
                  log#(s(s(x))) -> log#(s(quot(x,s(s(0())))))
                  log#(s(s(x))) -> quot#(x,s(s(0())))
                  quot#(s(x),s(y)) -> minus#(x,y)
                  quot#(s(x),s(y)) -> quot#(minus(x,y),s(y))
                Weak TRS Rules:
                  if_minus(false(),s(x),y) -> s(minus(x,y))
                  if_minus(true(),s(x),y) -> 0()
                  le(0(),y) -> true()
                  le(s(x),0()) -> false()
                  le(s(x),s(y)) -> le(x,y)
                  minus(0(),y) -> 0()
                  minus(s(x),y) -> if_minus(le(s(x),y),s(x),y)
                  quot(0(),s(y)) -> 0()
                  quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
                Signature:
                  {if_minus/3,le/2,log/1,minus/2,quot/2,if_minus#/3,le#/2,log#/1,minus#/2,quot#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/1,c_10/0,c_11/2}
                Obligation:
                  Innermost
                  basic terms: {if_minus#,le#,log#,minus#,quot#}/{0,false,s,true}
              Applied Processor:
                Assumption
              Proof:
                ()
          
          *** 1.1.1.1.1.1.2.2.2.1.1.2 Progress [(?,O(n^1))]  ***
              Considered Problem:
                Strict DP Rules:
                  minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y))
                Strict TRS Rules:
                  
                Weak DP Rules:
                  if_minus#(false(),s(x),y) -> c_1(minus#(x,y))
                  log#(s(s(x))) -> log#(s(quot(x,s(s(0())))))
                  log#(s(s(x))) -> quot#(x,s(s(0())))
                  quot#(s(x),s(y)) -> minus#(x,y)
                  quot#(s(x),s(y)) -> quot#(minus(x,y),s(y))
                Weak TRS Rules:
                  if_minus(false(),s(x),y) -> s(minus(x,y))
                  if_minus(true(),s(x),y) -> 0()
                  le(0(),y) -> true()
                  le(s(x),0()) -> false()
                  le(s(x),s(y)) -> le(x,y)
                  minus(0(),y) -> 0()
                  minus(s(x),y) -> if_minus(le(s(x),y),s(x),y)
                  quot(0(),s(y)) -> 0()
                  quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
                Signature:
                  {if_minus/3,le/2,log/1,minus/2,quot/2,if_minus#/3,le#/2,log#/1,minus#/2,quot#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/1,c_10/0,c_11/2}
                Obligation:
                  Innermost
                  basic terms: {if_minus#,le#,log#,minus#,quot#}/{0,false,s,true}
              Applied Processor:
                PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
              Proof:
                We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
                  1: minus#(s(x),y) ->         
                       c_9(if_minus#(le(s(x),y)
                                    ,s(x)      
                                    ,y))       
                  
                Consider the set of all dependency pairs
                  1: minus#(s(x),y) ->                        
                       c_9(if_minus#(le(s(x),y)               
                                    ,s(x)                     
                                    ,y))                      
                  2: if_minus#(false(),s(x),y) ->             
                       c_1(minus#(x,y))                       
                  3: log#(s(s(x))) -> log#(s(quot(x           
                                                 ,s(s(0())))))
                  4: log#(s(s(x))) -> quot#(x                 
                                           ,s(s(0())))        
                  5: quot#(s(x),s(y)) -> minus#(x,y)          
                  6: quot#(s(x),s(y)) ->                      
                       quot#(minus(x,y),s(y))                 
                Processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}induces the complexity certificateTIME (?,O(n^1))
                SPACE(?,?)on application of the dependency pairs
                  {1}
                These cover all (indirect) predecessors of dependency pairs
                  {1,2}
                their number of applications is equally bounded.
                The dependency pairs are shifted into the weak component.
            *** 1.1.1.1.1.1.2.2.2.1.1.2.1 Progress [(?,O(n^1))]  ***
                Considered Problem:
                  Strict DP Rules:
                    minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y))
                  Strict TRS Rules:
                    
                  Weak DP Rules:
                    if_minus#(false(),s(x),y) -> c_1(minus#(x,y))
                    log#(s(s(x))) -> log#(s(quot(x,s(s(0())))))
                    log#(s(s(x))) -> quot#(x,s(s(0())))
                    quot#(s(x),s(y)) -> minus#(x,y)
                    quot#(s(x),s(y)) -> quot#(minus(x,y),s(y))
                  Weak TRS Rules:
                    if_minus(false(),s(x),y) -> s(minus(x,y))
                    if_minus(true(),s(x),y) -> 0()
                    le(0(),y) -> true()
                    le(s(x),0()) -> false()
                    le(s(x),s(y)) -> le(x,y)
                    minus(0(),y) -> 0()
                    minus(s(x),y) -> if_minus(le(s(x),y),s(x),y)
                    quot(0(),s(y)) -> 0()
                    quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
                  Signature:
                    {if_minus/3,le/2,log/1,minus/2,quot/2,if_minus#/3,le#/2,log#/1,minus#/2,quot#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/1,c_10/0,c_11/2}
                  Obligation:
                    Innermost
                    basic terms: {if_minus#,le#,log#,minus#,quot#}/{0,false,s,true}
                Applied Processor:
                  NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
                Proof:
                  We apply a matrix interpretation of kind constructor based matrix interpretation:
                  The following argument positions are considered usable:
                    uargs(c_1) = {1},
                    uargs(c_9) = {1}
                  
                  Following symbols are considered usable:
                    {if_minus,le,minus,quot,if_minus#,le#,log#,minus#,quot#}
                  TcT has computed the following interpretation:
                            p(0) = [0]                  
                        p(false) = [1]                  
                     p(if_minus) = [1] x2 + [0]         
                           p(le) = [1]                  
                          p(log) = [1] x1 + [1]         
                        p(minus) = [1] x1 + [0]         
                         p(quot) = [1] x1 + [0]         
                            p(s) = [1] x1 + [1]         
                         p(true) = [0]                  
                    p(if_minus#) = [8] x1 + [8] x2 + [0]
                          p(le#) = [2] x2 + [1]         
                         p(log#) = [8] x1 + [13]        
                       p(minus#) = [8] x1 + [14]        
                        p(quot#) = [8] x1 + [5] x2 + [6]
                          p(c_1) = [1] x1 + [2]         
                          p(c_2) = [1]                  
                          p(c_3) = [1]                  
                          p(c_4) = [1]                  
                          p(c_5) = [1]                  
                          p(c_6) = [1]                  
                          p(c_7) = [1] x1 + [1] x2 + [0]
                          p(c_8) = [1]                  
                          p(c_9) = [1] x1 + [2]         
                         p(c_10) = [0]                  
                         p(c_11) = [1] x1 + [4] x2 + [1]
                  
                  Following rules are strictly oriented:
                  minus#(s(x),y) = [8] x + [22]            
                                 > [8] x + [18]            
                                 = c_9(if_minus#(le(s(x),y)
                                                ,s(x)      
                                                ,y))       
                  
                  
                  Following rules are (at-least) weakly oriented:
                  if_minus#(false(),s(x),y) =  [8] x + [16]               
                                            >= [8] x + [16]               
                                            =  c_1(minus#(x,y))           
                  
                              log#(s(s(x))) =  [8] x + [29]               
                                            >= [8] x + [21]               
                                            =  log#(s(quot(x,s(s(0()))))) 
                  
                              log#(s(s(x))) =  [8] x + [29]               
                                            >= [8] x + [16]               
                                            =  quot#(x,s(s(0())))         
                  
                           quot#(s(x),s(y)) =  [8] x + [5] y + [19]       
                                            >= [8] x + [14]               
                                            =  minus#(x,y)                
                  
                           quot#(s(x),s(y)) =  [8] x + [5] y + [19]       
                                            >= [8] x + [5] y + [11]       
                                            =  quot#(minus(x,y),s(y))     
                  
                   if_minus(false(),s(x),y) =  [1] x + [1]                
                                            >= [1] x + [1]                
                                            =  s(minus(x,y))              
                  
                    if_minus(true(),s(x),y) =  [1] x + [1]                
                                            >= [0]                        
                                            =  0()                        
                  
                                  le(0(),y) =  [1]                        
                                            >= [0]                        
                                            =  true()                     
                  
                               le(s(x),0()) =  [1]                        
                                            >= [1]                        
                                            =  false()                    
                  
                              le(s(x),s(y)) =  [1]                        
                                            >= [1]                        
                                            =  le(x,y)                    
                  
                               minus(0(),y) =  [0]                        
                                            >= [0]                        
                                            =  0()                        
                  
                              minus(s(x),y) =  [1] x + [1]                
                                            >= [1] x + [1]                
                                            =  if_minus(le(s(x),y),s(x),y)
                  
                             quot(0(),s(y)) =  [0]                        
                                            >= [0]                        
                                            =  0()                        
                  
                            quot(s(x),s(y)) =  [1] x + [1]                
                                            >= [1] x + [1]                
                                            =  s(quot(minus(x,y),s(y)))   
                  
            *** 1.1.1.1.1.1.2.2.2.1.1.2.1.1 Progress [(?,O(1))]  ***
                Considered Problem:
                  Strict DP Rules:
                    
                  Strict TRS Rules:
                    
                  Weak DP Rules:
                    if_minus#(false(),s(x),y) -> c_1(minus#(x,y))
                    log#(s(s(x))) -> log#(s(quot(x,s(s(0())))))
                    log#(s(s(x))) -> quot#(x,s(s(0())))
                    minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y))
                    quot#(s(x),s(y)) -> minus#(x,y)
                    quot#(s(x),s(y)) -> quot#(minus(x,y),s(y))
                  Weak TRS Rules:
                    if_minus(false(),s(x),y) -> s(minus(x,y))
                    if_minus(true(),s(x),y) -> 0()
                    le(0(),y) -> true()
                    le(s(x),0()) -> false()
                    le(s(x),s(y)) -> le(x,y)
                    minus(0(),y) -> 0()
                    minus(s(x),y) -> if_minus(le(s(x),y),s(x),y)
                    quot(0(),s(y)) -> 0()
                    quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
                  Signature:
                    {if_minus/3,le/2,log/1,minus/2,quot/2,if_minus#/3,le#/2,log#/1,minus#/2,quot#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/1,c_10/0,c_11/2}
                  Obligation:
                    Innermost
                    basic terms: {if_minus#,le#,log#,minus#,quot#}/{0,false,s,true}
                Applied Processor:
                  Assumption
                Proof:
                  ()
            
            *** 1.1.1.1.1.1.2.2.2.1.1.2.2 Progress [(O(1),O(1))]  ***
                Considered Problem:
                  Strict DP Rules:
                    
                  Strict TRS Rules:
                    
                  Weak DP Rules:
                    if_minus#(false(),s(x),y) -> c_1(minus#(x,y))
                    log#(s(s(x))) -> log#(s(quot(x,s(s(0())))))
                    log#(s(s(x))) -> quot#(x,s(s(0())))
                    minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y))
                    quot#(s(x),s(y)) -> minus#(x,y)
                    quot#(s(x),s(y)) -> quot#(minus(x,y),s(y))
                  Weak TRS Rules:
                    if_minus(false(),s(x),y) -> s(minus(x,y))
                    if_minus(true(),s(x),y) -> 0()
                    le(0(),y) -> true()
                    le(s(x),0()) -> false()
                    le(s(x),s(y)) -> le(x,y)
                    minus(0(),y) -> 0()
                    minus(s(x),y) -> if_minus(le(s(x),y),s(x),y)
                    quot(0(),s(y)) -> 0()
                    quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
                  Signature:
                    {if_minus/3,le/2,log/1,minus/2,quot/2,if_minus#/3,le#/2,log#/1,minus#/2,quot#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/1,c_10/0,c_11/2}
                  Obligation:
                    Innermost
                    basic terms: {if_minus#,le#,log#,minus#,quot#}/{0,false,s,true}
                Applied Processor:
                  RemoveWeakSuffixes
                Proof:
                  Consider the dependency graph
                    1:W:if_minus#(false(),s(x),y) -> c_1(minus#(x,y))
                       -->_1 minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y)):4
                    
                    2:W:log#(s(s(x))) -> log#(s(quot(x,s(s(0())))))
                       -->_1 log#(s(s(x))) -> quot#(x,s(s(0()))):3
                       -->_1 log#(s(s(x))) -> log#(s(quot(x,s(s(0()))))):2
                    
                    3:W:log#(s(s(x))) -> quot#(x,s(s(0())))
                       -->_1 quot#(s(x),s(y)) -> quot#(minus(x,y),s(y)):6
                       -->_1 quot#(s(x),s(y)) -> minus#(x,y):5
                    
                    4:W:minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y))
                       -->_1 if_minus#(false(),s(x),y) -> c_1(minus#(x,y)):1
                    
                    5:W:quot#(s(x),s(y)) -> minus#(x,y)
                       -->_1 minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y)):4
                    
                    6:W:quot#(s(x),s(y)) -> quot#(minus(x,y),s(y))
                       -->_1 quot#(s(x),s(y)) -> quot#(minus(x,y),s(y)):6
                       -->_1 quot#(s(x),s(y)) -> minus#(x,y):5
                    
                  The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
                    2: log#(s(s(x))) -> log#(s(quot(x           
                                                   ,s(s(0())))))
                    3: log#(s(s(x))) -> quot#(x                 
                                             ,s(s(0())))        
                    6: quot#(s(x),s(y)) ->                      
                         quot#(minus(x,y),s(y))                 
                    5: quot#(s(x),s(y)) -> minus#(x,y)          
                    1: if_minus#(false(),s(x),y) ->             
                         c_1(minus#(x,y))                       
                    4: minus#(s(x),y) ->                        
                         c_9(if_minus#(le(s(x),y)               
                                      ,s(x)                     
                                      ,y))                      
            *** 1.1.1.1.1.1.2.2.2.1.1.2.2.1 Progress [(O(1),O(1))]  ***
                Considered Problem:
                  Strict DP Rules:
                    
                  Strict TRS Rules:
                    
                  Weak DP Rules:
                    
                  Weak TRS Rules:
                    if_minus(false(),s(x),y) -> s(minus(x,y))
                    if_minus(true(),s(x),y) -> 0()
                    le(0(),y) -> true()
                    le(s(x),0()) -> false()
                    le(s(x),s(y)) -> le(x,y)
                    minus(0(),y) -> 0()
                    minus(s(x),y) -> if_minus(le(s(x),y),s(x),y)
                    quot(0(),s(y)) -> 0()
                    quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
                  Signature:
                    {if_minus/3,le/2,log/1,minus/2,quot/2,if_minus#/3,le#/2,log#/1,minus#/2,quot#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/1,c_10/0,c_11/2}
                  Obligation:
                    Innermost
                    basic terms: {if_minus#,le#,log#,minus#,quot#}/{0,false,s,true}
                Applied Processor:
                  EmptyProcessor
                Proof:
                  The problem is already closed. The intended complexity is O(1).
            
  *** 1.1.1.1.1.2 Progress [(?,O(n^2))]  ***
      Considered Problem:
        Strict DP Rules:
          log#(s(s(x))) -> c_7(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0()))))
          quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y))
        Strict TRS Rules:
          
        Weak DP Rules:
          if_minus#(false(),s(x),y) -> c_1(minus#(x,y))
          le#(s(x),s(y)) -> c_5(le#(x,y))
          minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y))
        Weak TRS Rules:
          if_minus(false(),s(x),y) -> s(minus(x,y))
          if_minus(true(),s(x),y) -> 0()
          le(0(),y) -> true()
          le(s(x),0()) -> false()
          le(s(x),s(y)) -> le(x,y)
          minus(0(),y) -> 0()
          minus(s(x),y) -> if_minus(le(s(x),y),s(x),y)
          quot(0(),s(y)) -> 0()
          quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
        Signature:
          {if_minus/3,le/2,log/1,minus/2,quot/2,if_minus#/3,le#/2,log#/1,minus#/2,quot#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/2,c_10/0,c_11/2}
        Obligation:
          Innermost
          basic terms: {if_minus#,le#,log#,minus#,quot#}/{0,false,s,true}
      Applied Processor:
        RemoveWeakSuffixes
      Proof:
        Consider the dependency graph
          1:S:log#(s(s(x))) -> c_7(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0()))))
             -->_2 quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)):2
             -->_1 log#(s(s(x))) -> c_7(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0())))):1
          
          2:S:quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y))
             -->_2 minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y)):5
             -->_1 quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)):2
          
          3:W:if_minus#(false(),s(x),y) -> c_1(minus#(x,y))
             -->_1 minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y)):5
          
          4:W:le#(s(x),s(y)) -> c_5(le#(x,y))
             -->_1 le#(s(x),s(y)) -> c_5(le#(x,y)):4
          
          5:W:minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y))
             -->_2 le#(s(x),s(y)) -> c_5(le#(x,y)):4
             -->_1 if_minus#(false(),s(x),y) -> c_1(minus#(x,y)):3
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          5: minus#(s(x),y) ->                 
               c_9(if_minus#(le(s(x),y),s(x),y)
                  ,le#(s(x),y))                
          3: if_minus#(false(),s(x),y) ->      
               c_1(minus#(x,y))                
          4: le#(s(x),s(y)) -> c_5(le#(x,y))   
  *** 1.1.1.1.1.2.1 Progress [(?,O(n^2))]  ***
      Considered Problem:
        Strict DP Rules:
          log#(s(s(x))) -> c_7(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0()))))
          quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y))
        Strict TRS Rules:
          
        Weak DP Rules:
          
        Weak TRS Rules:
          if_minus(false(),s(x),y) -> s(minus(x,y))
          if_minus(true(),s(x),y) -> 0()
          le(0(),y) -> true()
          le(s(x),0()) -> false()
          le(s(x),s(y)) -> le(x,y)
          minus(0(),y) -> 0()
          minus(s(x),y) -> if_minus(le(s(x),y),s(x),y)
          quot(0(),s(y)) -> 0()
          quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
        Signature:
          {if_minus/3,le/2,log/1,minus/2,quot/2,if_minus#/3,le#/2,log#/1,minus#/2,quot#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/2,c_10/0,c_11/2}
        Obligation:
          Innermost
          basic terms: {if_minus#,le#,log#,minus#,quot#}/{0,false,s,true}
      Applied Processor:
        SimplifyRHS
      Proof:
        Consider the dependency graph
          1:S:log#(s(s(x))) -> c_7(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0()))))
             -->_2 quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)):2
             -->_1 log#(s(s(x))) -> c_7(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0())))):1
          
          2:S:quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y))
             -->_1 quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)):2
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)))
  *** 1.1.1.1.1.2.1.1 Progress [(?,O(n^2))]  ***
      Considered Problem:
        Strict DP Rules:
          log#(s(s(x))) -> c_7(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0()))))
          quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)))
        Strict TRS Rules:
          
        Weak DP Rules:
          
        Weak TRS Rules:
          if_minus(false(),s(x),y) -> s(minus(x,y))
          if_minus(true(),s(x),y) -> 0()
          le(0(),y) -> true()
          le(s(x),0()) -> false()
          le(s(x),s(y)) -> le(x,y)
          minus(0(),y) -> 0()
          minus(s(x),y) -> if_minus(le(s(x),y),s(x),y)
          quot(0(),s(y)) -> 0()
          quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
        Signature:
          {if_minus/3,le/2,log/1,minus/2,quot/2,if_minus#/3,le#/2,log#/1,minus#/2,quot#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/2,c_10/0,c_11/1}
        Obligation:
          Innermost
          basic terms: {if_minus#,le#,log#,minus#,quot#}/{0,false,s,true}
      Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
      Proof:
        We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
          1: log#(s(s(x))) ->                
               c_7(log#(s(quot(x,s(s(0())))))
                  ,quot#(x,s(s(0()))))       
          2: quot#(s(x),s(y)) ->             
               c_11(quot#(minus(x,y),s(y)))  
          
        The strictly oriented rules are moved into the weak component.
    *** 1.1.1.1.1.2.1.1.1 Progress [(?,O(n^2))]  ***
        Considered Problem:
          Strict DP Rules:
            log#(s(s(x))) -> c_7(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0()))))
            quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)))
          Strict TRS Rules:
            
          Weak DP Rules:
            
          Weak TRS Rules:
            if_minus(false(),s(x),y) -> s(minus(x,y))
            if_minus(true(),s(x),y) -> 0()
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            minus(0(),y) -> 0()
            minus(s(x),y) -> if_minus(le(s(x),y),s(x),y)
            quot(0(),s(y)) -> 0()
            quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
          Signature:
            {if_minus/3,le/2,log/1,minus/2,quot/2,if_minus#/3,le#/2,log#/1,minus#/2,quot#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/2,c_10/0,c_11/1}
          Obligation:
            Innermost
            basic terms: {if_minus#,le#,log#,minus#,quot#}/{0,false,s,true}
        Applied Processor:
          NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
        Proof:
          We apply a polynomial interpretation of kind constructor-based(mixed(2)):
          The following argument positions are considered usable:
            uargs(c_7) = {1,2},
            uargs(c_11) = {1}
          
          Following symbols are considered usable:
            {if_minus,minus,quot,if_minus#,le#,log#,minus#,quot#}
          TcT has computed the following interpretation:
                    p(0) = 0             
                p(false) = 0             
             p(if_minus) = x2            
                   p(le) = 1 + x1*x2 + x2
                  p(log) = 0             
                p(minus) = x1            
                 p(quot) = x1            
                    p(s) = 1 + x1        
                 p(true) = 0             
            p(if_minus#) = 0             
                  p(le#) = 2*x2          
                 p(log#) = 1 + x1 + x1^2 
               p(minus#) = 2*x1 + 2*x1*x2
                p(quot#) = 1 + x1        
                  p(c_1) = x1            
                  p(c_2) = 0             
                  p(c_3) = 1             
                  p(c_4) = 0             
                  p(c_5) = 1 + x1        
                  p(c_6) = 0             
                  p(c_7) = x1 + x2       
                  p(c_8) = 0             
                  p(c_9) = x2            
                 p(c_10) = 0             
                 p(c_11) = x1            
          
          Following rules are strictly oriented:
             log#(s(s(x))) = 7 + 5*x + x^2                 
                           > 4 + 4*x + x^2                 
                           = c_7(log#(s(quot(x,s(s(0())))))
                                ,quot#(x,s(s(0()))))       
          
          quot#(s(x),s(y)) = 2 + x                         
                           > 1 + x                         
                           = c_11(quot#(minus(x,y),s(y)))  
          
          
          Following rules are (at-least) weakly oriented:
          if_minus(false(),s(x),y) =  1 + x                      
                                   >= 1 + x                      
                                   =  s(minus(x,y))              
          
           if_minus(true(),s(x),y) =  1 + x                      
                                   >= 0                          
                                   =  0()                        
          
                      minus(0(),y) =  0                          
                                   >= 0                          
                                   =  0()                        
          
                     minus(s(x),y) =  1 + x                      
                                   >= 1 + x                      
                                   =  if_minus(le(s(x),y),s(x),y)
          
                    quot(0(),s(y)) =  0                          
                                   >= 0                          
                                   =  0()                        
          
                   quot(s(x),s(y)) =  1 + x                      
                                   >= 1 + x                      
                                   =  s(quot(minus(x,y),s(y)))   
          
    *** 1.1.1.1.1.2.1.1.1.1 Progress [(?,O(1))]  ***
        Considered Problem:
          Strict DP Rules:
            
          Strict TRS Rules:
            
          Weak DP Rules:
            log#(s(s(x))) -> c_7(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0()))))
            quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)))
          Weak TRS Rules:
            if_minus(false(),s(x),y) -> s(minus(x,y))
            if_minus(true(),s(x),y) -> 0()
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            minus(0(),y) -> 0()
            minus(s(x),y) -> if_minus(le(s(x),y),s(x),y)
            quot(0(),s(y)) -> 0()
            quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
          Signature:
            {if_minus/3,le/2,log/1,minus/2,quot/2,if_minus#/3,le#/2,log#/1,minus#/2,quot#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/2,c_10/0,c_11/1}
          Obligation:
            Innermost
            basic terms: {if_minus#,le#,log#,minus#,quot#}/{0,false,s,true}
        Applied Processor:
          Assumption
        Proof:
          ()
    
    *** 1.1.1.1.1.2.1.1.2 Progress [(O(1),O(1))]  ***
        Considered Problem:
          Strict DP Rules:
            
          Strict TRS Rules:
            
          Weak DP Rules:
            log#(s(s(x))) -> c_7(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0()))))
            quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)))
          Weak TRS Rules:
            if_minus(false(),s(x),y) -> s(minus(x,y))
            if_minus(true(),s(x),y) -> 0()
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            minus(0(),y) -> 0()
            minus(s(x),y) -> if_minus(le(s(x),y),s(x),y)
            quot(0(),s(y)) -> 0()
            quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
          Signature:
            {if_minus/3,le/2,log/1,minus/2,quot/2,if_minus#/3,le#/2,log#/1,minus#/2,quot#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/2,c_10/0,c_11/1}
          Obligation:
            Innermost
            basic terms: {if_minus#,le#,log#,minus#,quot#}/{0,false,s,true}
        Applied Processor:
          RemoveWeakSuffixes
        Proof:
          Consider the dependency graph
            1:W:log#(s(s(x))) -> c_7(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0()))))
               -->_2 quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y))):2
               -->_1 log#(s(s(x))) -> c_7(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0())))):1
            
            2:W:quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)))
               -->_1 quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y))):2
            
          The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
            1: log#(s(s(x))) ->                
                 c_7(log#(s(quot(x,s(s(0())))))
                    ,quot#(x,s(s(0()))))       
            2: quot#(s(x),s(y)) ->             
                 c_11(quot#(minus(x,y),s(y)))  
    *** 1.1.1.1.1.2.1.1.2.1 Progress [(O(1),O(1))]  ***
        Considered Problem:
          Strict DP Rules:
            
          Strict TRS Rules:
            
          Weak DP Rules:
            
          Weak TRS Rules:
            if_minus(false(),s(x),y) -> s(minus(x,y))
            if_minus(true(),s(x),y) -> 0()
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            minus(0(),y) -> 0()
            minus(s(x),y) -> if_minus(le(s(x),y),s(x),y)
            quot(0(),s(y)) -> 0()
            quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
          Signature:
            {if_minus/3,le/2,log/1,minus/2,quot/2,if_minus#/3,le#/2,log#/1,minus#/2,quot#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/2,c_10/0,c_11/1}
          Obligation:
            Innermost
            basic terms: {if_minus#,le#,log#,minus#,quot#}/{0,false,s,true}
        Applied Processor:
          EmptyProcessor
        Proof:
          The problem is already closed. The intended complexity is O(1).