*** 1 Progress [(?,O(n^4))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: if_minus(false(),s(x),y) -> s(minus(x,y)) if_minus(true(),s(x),y) -> 0() le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) log(s(0())) -> 0() log(s(s(x))) -> s(log(s(quot(x,s(s(0())))))) minus(0(),y) -> 0() minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) quot(0(),s(y)) -> 0() quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) Weak DP Rules: Weak TRS Rules: Signature: {if_minus/3,le/2,log/1,minus/2,quot/2} / {0/0,false/0,s/1,true/0} Obligation: Innermost basic terms: {if_minus,le,log,minus,quot}/{0,false,s,true} Applied Processor: DependencyPairs {dpKind_ = DT} Proof: We add the following dependency tuples: Strict DPs if_minus#(false(),s(x),y) -> c_1(minus#(x,y)) if_minus#(true(),s(x),y) -> c_2() le#(0(),y) -> c_3() le#(s(x),0()) -> c_4() le#(s(x),s(y)) -> c_5(le#(x,y)) log#(s(0())) -> c_6() log#(s(s(x))) -> c_7(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0())))) minus#(0(),y) -> c_8() minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y)) quot#(0(),s(y)) -> c_10() quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)) Weak DPs and mark the set of starting terms. *** 1.1 Progress [(?,O(n^4))] *** Considered Problem: Strict DP Rules: if_minus#(false(),s(x),y) -> c_1(minus#(x,y)) if_minus#(true(),s(x),y) -> c_2() le#(0(),y) -> c_3() le#(s(x),0()) -> c_4() le#(s(x),s(y)) -> c_5(le#(x,y)) log#(s(0())) -> c_6() log#(s(s(x))) -> c_7(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0())))) minus#(0(),y) -> c_8() minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y)) quot#(0(),s(y)) -> c_10() quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: if_minus(false(),s(x),y) -> s(minus(x,y)) if_minus(true(),s(x),y) -> 0() le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) log(s(0())) -> 0() log(s(s(x))) -> s(log(s(quot(x,s(s(0())))))) minus(0(),y) -> 0() minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) quot(0(),s(y)) -> 0() quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) Signature: {if_minus/3,le/2,log/1,minus/2,quot/2,if_minus#/3,le#/2,log#/1,minus#/2,quot#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/2,c_10/0,c_11/2} Obligation: Innermost basic terms: {if_minus#,le#,log#,minus#,quot#}/{0,false,s,true} Applied Processor: UsableRules Proof: We replace rewrite rules by usable rules: if_minus(false(),s(x),y) -> s(minus(x,y)) if_minus(true(),s(x),y) -> 0() le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(0(),y) -> 0() minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) quot(0(),s(y)) -> 0() quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) if_minus#(false(),s(x),y) -> c_1(minus#(x,y)) if_minus#(true(),s(x),y) -> c_2() le#(0(),y) -> c_3() le#(s(x),0()) -> c_4() le#(s(x),s(y)) -> c_5(le#(x,y)) log#(s(0())) -> c_6() log#(s(s(x))) -> c_7(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0())))) minus#(0(),y) -> c_8() minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y)) quot#(0(),s(y)) -> c_10() quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)) *** 1.1.1 Progress [(?,O(n^4))] *** Considered Problem: Strict DP Rules: if_minus#(false(),s(x),y) -> c_1(minus#(x,y)) if_minus#(true(),s(x),y) -> c_2() le#(0(),y) -> c_3() le#(s(x),0()) -> c_4() le#(s(x),s(y)) -> c_5(le#(x,y)) log#(s(0())) -> c_6() log#(s(s(x))) -> c_7(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0())))) minus#(0(),y) -> c_8() minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y)) quot#(0(),s(y)) -> c_10() quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: if_minus(false(),s(x),y) -> s(minus(x,y)) if_minus(true(),s(x),y) -> 0() le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(0(),y) -> 0() minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) quot(0(),s(y)) -> 0() quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) Signature: {if_minus/3,le/2,log/1,minus/2,quot/2,if_minus#/3,le#/2,log#/1,minus#/2,quot#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/2,c_10/0,c_11/2} Obligation: Innermost basic terms: {if_minus#,le#,log#,minus#,quot#}/{0,false,s,true} Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} Proof: We estimate the number of application of {2,3,4,6,8,10} by application of Pre({2,3,4,6,8,10}) = {1,5,7,9,11}. Here rules are labelled as follows: 1: if_minus#(false(),s(x),y) -> c_1(minus#(x,y)) 2: if_minus#(true(),s(x),y) -> c_2() 3: le#(0(),y) -> c_3() 4: le#(s(x),0()) -> c_4() 5: le#(s(x),s(y)) -> c_5(le#(x,y)) 6: log#(s(0())) -> c_6() 7: log#(s(s(x))) -> c_7(log#(s(quot(x,s(s(0()))))) ,quot#(x,s(s(0())))) 8: minus#(0(),y) -> c_8() 9: minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y) ,le#(s(x),y)) 10: quot#(0(),s(y)) -> c_10() 11: quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)) ,minus#(x,y)) *** 1.1.1.1 Progress [(?,O(n^4))] *** Considered Problem: Strict DP Rules: if_minus#(false(),s(x),y) -> c_1(minus#(x,y)) le#(s(x),s(y)) -> c_5(le#(x,y)) log#(s(s(x))) -> c_7(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0())))) minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y)) quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)) Strict TRS Rules: Weak DP Rules: if_minus#(true(),s(x),y) -> c_2() le#(0(),y) -> c_3() le#(s(x),0()) -> c_4() log#(s(0())) -> c_6() minus#(0(),y) -> c_8() quot#(0(),s(y)) -> c_10() Weak TRS Rules: if_minus(false(),s(x),y) -> s(minus(x,y)) if_minus(true(),s(x),y) -> 0() le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(0(),y) -> 0() minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) quot(0(),s(y)) -> 0() quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) Signature: {if_minus/3,le/2,log/1,minus/2,quot/2,if_minus#/3,le#/2,log#/1,minus#/2,quot#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/2,c_10/0,c_11/2} Obligation: Innermost basic terms: {if_minus#,le#,log#,minus#,quot#}/{0,false,s,true} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:if_minus#(false(),s(x),y) -> c_1(minus#(x,y)) -->_1 minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y)):4 -->_1 minus#(0(),y) -> c_8():10 2:S:le#(s(x),s(y)) -> c_5(le#(x,y)) -->_1 le#(s(x),0()) -> c_4():8 -->_1 le#(0(),y) -> c_3():7 -->_1 le#(s(x),s(y)) -> c_5(le#(x,y)):2 3:S:log#(s(s(x))) -> c_7(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0())))) -->_2 quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)):5 -->_2 quot#(0(),s(y)) -> c_10():11 -->_1 log#(s(0())) -> c_6():9 -->_1 log#(s(s(x))) -> c_7(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0())))):3 4:S:minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y)) -->_2 le#(s(x),0()) -> c_4():8 -->_1 if_minus#(true(),s(x),y) -> c_2():6 -->_2 le#(s(x),s(y)) -> c_5(le#(x,y)):2 -->_1 if_minus#(false(),s(x),y) -> c_1(minus#(x,y)):1 5:S:quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)) -->_1 quot#(0(),s(y)) -> c_10():11 -->_2 minus#(0(),y) -> c_8():10 -->_1 quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)):5 -->_2 minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y)):4 6:W:if_minus#(true(),s(x),y) -> c_2() 7:W:le#(0(),y) -> c_3() 8:W:le#(s(x),0()) -> c_4() 9:W:log#(s(0())) -> c_6() 10:W:minus#(0(),y) -> c_8() 11:W:quot#(0(),s(y)) -> c_10() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 9: log#(s(0())) -> c_6() 11: quot#(0(),s(y)) -> c_10() 10: minus#(0(),y) -> c_8() 7: le#(0(),y) -> c_3() 6: if_minus#(true(),s(x),y) -> c_2() 8: le#(s(x),0()) -> c_4() *** 1.1.1.1.1 Progress [(?,O(n^4))] *** Considered Problem: Strict DP Rules: if_minus#(false(),s(x),y) -> c_1(minus#(x,y)) le#(s(x),s(y)) -> c_5(le#(x,y)) log#(s(s(x))) -> c_7(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0())))) minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y)) quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: if_minus(false(),s(x),y) -> s(minus(x,y)) if_minus(true(),s(x),y) -> 0() le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(0(),y) -> 0() minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) quot(0(),s(y)) -> 0() quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) Signature: {if_minus/3,le/2,log/1,minus/2,quot/2,if_minus#/3,le#/2,log#/1,minus#/2,quot#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/2,c_10/0,c_11/2} Obligation: Innermost basic terms: {if_minus#,le#,log#,minus#,quot#}/{0,false,s,true} Applied Processor: Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd} Proof: We analyse the complexity of following sub-problems (R) and (S). Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component. Problem (R) Strict DP Rules: if_minus#(false(),s(x),y) -> c_1(minus#(x,y)) le#(s(x),s(y)) -> c_5(le#(x,y)) minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y)) Strict TRS Rules: Weak DP Rules: log#(s(s(x))) -> c_7(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0())))) quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)) Weak TRS Rules: if_minus(false(),s(x),y) -> s(minus(x,y)) if_minus(true(),s(x),y) -> 0() le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(0(),y) -> 0() minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) quot(0(),s(y)) -> 0() quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) Signature: {if_minus/3,le/2,log/1,minus/2,quot/2,if_minus#/3,le#/2,log#/1,minus#/2,quot#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/2,c_10/0,c_11/2} Obligation: Innermost basic terms: {if_minus#,le#,log#,minus#,quot#}/{0,false,s,true} Problem (S) Strict DP Rules: log#(s(s(x))) -> c_7(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0())))) quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)) Strict TRS Rules: Weak DP Rules: if_minus#(false(),s(x),y) -> c_1(minus#(x,y)) le#(s(x),s(y)) -> c_5(le#(x,y)) minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y)) Weak TRS Rules: if_minus(false(),s(x),y) -> s(minus(x,y)) if_minus(true(),s(x),y) -> 0() le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(0(),y) -> 0() minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) quot(0(),s(y)) -> 0() quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) Signature: {if_minus/3,le/2,log/1,minus/2,quot/2,if_minus#/3,le#/2,log#/1,minus#/2,quot#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/2,c_10/0,c_11/2} Obligation: Innermost basic terms: {if_minus#,le#,log#,minus#,quot#}/{0,false,s,true} *** 1.1.1.1.1.1 Progress [(?,O(n^4))] *** Considered Problem: Strict DP Rules: if_minus#(false(),s(x),y) -> c_1(minus#(x,y)) le#(s(x),s(y)) -> c_5(le#(x,y)) minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y)) Strict TRS Rules: Weak DP Rules: log#(s(s(x))) -> c_7(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0())))) quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)) Weak TRS Rules: if_minus(false(),s(x),y) -> s(minus(x,y)) if_minus(true(),s(x),y) -> 0() le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(0(),y) -> 0() minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) quot(0(),s(y)) -> 0() quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) Signature: {if_minus/3,le/2,log/1,minus/2,quot/2,if_minus#/3,le#/2,log#/1,minus#/2,quot#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/2,c_10/0,c_11/2} Obligation: Innermost basic terms: {if_minus#,le#,log#,minus#,quot#}/{0,false,s,true} Applied Processor: DecomposeDG {onSelection = all below first cut in WDG, onUpper = Just someStrategy, onLower = Nothing} Proof: We decompose the input problem according to the dependency graph into the upper component log#(s(s(x))) -> c_7(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0())))) and a lower component if_minus#(false(),s(x),y) -> c_1(minus#(x,y)) le#(s(x),s(y)) -> c_5(le#(x,y)) minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y)) quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)) Further, following extension rules are added to the lower component. log#(s(s(x))) -> log#(s(quot(x,s(s(0()))))) log#(s(s(x))) -> quot#(x,s(s(0()))) *** 1.1.1.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: log#(s(s(x))) -> c_7(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0())))) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: if_minus(false(),s(x),y) -> s(minus(x,y)) if_minus(true(),s(x),y) -> 0() le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(0(),y) -> 0() minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) quot(0(),s(y)) -> 0() quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) Signature: {if_minus/3,le/2,log/1,minus/2,quot/2,if_minus#/3,le#/2,log#/1,minus#/2,quot#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/2,c_10/0,c_11/2} Obligation: Innermost basic terms: {if_minus#,le#,log#,minus#,quot#}/{0,false,s,true} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: log#(s(s(x))) -> c_7(log#(s(quot(x,s(s(0()))))) ,quot#(x,s(s(0())))) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: log#(s(s(x))) -> c_7(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0())))) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: if_minus(false(),s(x),y) -> s(minus(x,y)) if_minus(true(),s(x),y) -> 0() le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(0(),y) -> 0() minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) quot(0(),s(y)) -> 0() quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) Signature: {if_minus/3,le/2,log/1,minus/2,quot/2,if_minus#/3,le#/2,log#/1,minus#/2,quot#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/2,c_10/0,c_11/2} Obligation: Innermost basic terms: {if_minus#,le#,log#,minus#,quot#}/{0,false,s,true} Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_7) = {1} Following symbols are considered usable: {if_minus,minus,quot,if_minus#,le#,log#,minus#,quot#} TcT has computed the following interpretation: p(0) = [1] p(false) = [0] p(if_minus) = [1] x2 + [0] p(le) = [8] x2 + [0] p(log) = [1] p(minus) = [1] x1 + [0] p(quot) = [1] x1 + [0] p(s) = [1] x1 + [1] p(true) = [0] p(if_minus#) = [1] x1 + [2] p(le#) = [1] p(log#) = [1] x1 + [0] p(minus#) = [1] p(quot#) = [1] x1 + [10] p(c_1) = [1] x1 + [0] p(c_2) = [1] p(c_3) = [1] p(c_4) = [0] p(c_5) = [0] p(c_6) = [1] p(c_7) = [1] x1 + [0] p(c_8) = [2] p(c_9) = [1] x1 + [2] x2 + [1] p(c_10) = [1] p(c_11) = [1] x1 + [4] Following rules are strictly oriented: log#(s(s(x))) = [1] x + [2] > [1] x + [1] = c_7(log#(s(quot(x,s(s(0()))))) ,quot#(x,s(s(0())))) Following rules are (at-least) weakly oriented: if_minus(false(),s(x),y) = [1] x + [1] >= [1] x + [1] = s(minus(x,y)) if_minus(true(),s(x),y) = [1] x + [1] >= [1] = 0() minus(0(),y) = [1] >= [1] = 0() minus(s(x),y) = [1] x + [1] >= [1] x + [1] = if_minus(le(s(x),y),s(x),y) quot(0(),s(y)) = [1] >= [1] = 0() quot(s(x),s(y)) = [1] x + [1] >= [1] x + [1] = s(quot(minus(x,y),s(y))) *** 1.1.1.1.1.1.1.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: log#(s(s(x))) -> c_7(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0())))) Weak TRS Rules: if_minus(false(),s(x),y) -> s(minus(x,y)) if_minus(true(),s(x),y) -> 0() le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(0(),y) -> 0() minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) quot(0(),s(y)) -> 0() quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) Signature: {if_minus/3,le/2,log/1,minus/2,quot/2,if_minus#/3,le#/2,log#/1,minus#/2,quot#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/2,c_10/0,c_11/2} Obligation: Innermost basic terms: {if_minus#,le#,log#,minus#,quot#}/{0,false,s,true} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.1.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: log#(s(s(x))) -> c_7(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0())))) Weak TRS Rules: if_minus(false(),s(x),y) -> s(minus(x,y)) if_minus(true(),s(x),y) -> 0() le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(0(),y) -> 0() minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) quot(0(),s(y)) -> 0() quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) Signature: {if_minus/3,le/2,log/1,minus/2,quot/2,if_minus#/3,le#/2,log#/1,minus#/2,quot#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/2,c_10/0,c_11/2} Obligation: Innermost basic terms: {if_minus#,le#,log#,minus#,quot#}/{0,false,s,true} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:log#(s(s(x))) -> c_7(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0())))) -->_1 log#(s(s(x))) -> c_7(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0())))):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: log#(s(s(x))) -> c_7(log#(s(quot(x,s(s(0()))))) ,quot#(x,s(s(0())))) *** 1.1.1.1.1.1.1.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: if_minus(false(),s(x),y) -> s(minus(x,y)) if_minus(true(),s(x),y) -> 0() le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(0(),y) -> 0() minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) quot(0(),s(y)) -> 0() quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) Signature: {if_minus/3,le/2,log/1,minus/2,quot/2,if_minus#/3,le#/2,log#/1,minus#/2,quot#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/2,c_10/0,c_11/2} Obligation: Innermost basic terms: {if_minus#,le#,log#,minus#,quot#}/{0,false,s,true} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1). *** 1.1.1.1.1.1.2 Progress [(?,O(n^3))] *** Considered Problem: Strict DP Rules: if_minus#(false(),s(x),y) -> c_1(minus#(x,y)) le#(s(x),s(y)) -> c_5(le#(x,y)) minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y)) Strict TRS Rules: Weak DP Rules: log#(s(s(x))) -> log#(s(quot(x,s(s(0()))))) log#(s(s(x))) -> quot#(x,s(s(0()))) quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)) Weak TRS Rules: if_minus(false(),s(x),y) -> s(minus(x,y)) if_minus(true(),s(x),y) -> 0() le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(0(),y) -> 0() minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) quot(0(),s(y)) -> 0() quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) Signature: {if_minus/3,le/2,log/1,minus/2,quot/2,if_minus#/3,le#/2,log#/1,minus#/2,quot#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/2,c_10/0,c_11/2} Obligation: Innermost basic terms: {if_minus#,le#,log#,minus#,quot#}/{0,false,s,true} Applied Processor: DecomposeDG {onSelection = all below first cut in WDG, onUpper = Just someStrategy, onLower = Nothing} Proof: We decompose the input problem according to the dependency graph into the upper component log#(s(s(x))) -> log#(s(quot(x,s(s(0()))))) log#(s(s(x))) -> quot#(x,s(s(0()))) quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)) and a lower component if_minus#(false(),s(x),y) -> c_1(minus#(x,y)) le#(s(x),s(y)) -> c_5(le#(x,y)) minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y)) Further, following extension rules are added to the lower component. log#(s(s(x))) -> log#(s(quot(x,s(s(0()))))) log#(s(s(x))) -> quot#(x,s(s(0()))) quot#(s(x),s(y)) -> minus#(x,y) quot#(s(x),s(y)) -> quot#(minus(x,y),s(y)) *** 1.1.1.1.1.1.2.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)) Strict TRS Rules: Weak DP Rules: log#(s(s(x))) -> log#(s(quot(x,s(s(0()))))) log#(s(s(x))) -> quot#(x,s(s(0()))) Weak TRS Rules: if_minus(false(),s(x),y) -> s(minus(x,y)) if_minus(true(),s(x),y) -> 0() le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(0(),y) -> 0() minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) quot(0(),s(y)) -> 0() quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) Signature: {if_minus/3,le/2,log/1,minus/2,quot/2,if_minus#/3,le#/2,log#/1,minus#/2,quot#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/2,c_10/0,c_11/2} Obligation: Innermost basic terms: {if_minus#,le#,log#,minus#,quot#}/{0,false,s,true} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)) ,minus#(x,y)) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.1.2.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)) Strict TRS Rules: Weak DP Rules: log#(s(s(x))) -> log#(s(quot(x,s(s(0()))))) log#(s(s(x))) -> quot#(x,s(s(0()))) Weak TRS Rules: if_minus(false(),s(x),y) -> s(minus(x,y)) if_minus(true(),s(x),y) -> 0() le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(0(),y) -> 0() minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) quot(0(),s(y)) -> 0() quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) Signature: {if_minus/3,le/2,log/1,minus/2,quot/2,if_minus#/3,le#/2,log#/1,minus#/2,quot#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/2,c_10/0,c_11/2} Obligation: Innermost basic terms: {if_minus#,le#,log#,minus#,quot#}/{0,false,s,true} Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_11) = {1} Following symbols are considered usable: {if_minus,minus,quot,if_minus#,le#,log#,minus#,quot#} TcT has computed the following interpretation: p(0) = [0] p(false) = [0] p(if_minus) = [1] x2 + [0] p(le) = [2] x2 + [0] p(log) = [1] p(minus) = [1] x1 + [0] p(quot) = [1] x1 + [4] p(s) = [1] x1 + [4] p(true) = [0] p(if_minus#) = [1] p(le#) = [0] p(log#) = [2] x1 + [0] p(minus#) = [0] p(quot#) = [1] x1 + [0] p(c_1) = [8] x1 + [1] p(c_2) = [0] p(c_3) = [0] p(c_4) = [1] p(c_5) = [2] p(c_6) = [4] p(c_7) = [1] x1 + [1] p(c_8) = [1] p(c_9) = [2] x1 + [4] x2 + [1] p(c_10) = [4] p(c_11) = [1] x1 + [8] x2 + [0] Following rules are strictly oriented: quot#(s(x),s(y)) = [1] x + [4] > [1] x + [0] = c_11(quot#(minus(x,y),s(y)) ,minus#(x,y)) Following rules are (at-least) weakly oriented: log#(s(s(x))) = [2] x + [16] >= [2] x + [16] = log#(s(quot(x,s(s(0()))))) log#(s(s(x))) = [2] x + [16] >= [1] x + [0] = quot#(x,s(s(0()))) if_minus(false(),s(x),y) = [1] x + [4] >= [1] x + [4] = s(minus(x,y)) if_minus(true(),s(x),y) = [1] x + [4] >= [0] = 0() minus(0(),y) = [0] >= [0] = 0() minus(s(x),y) = [1] x + [4] >= [1] x + [4] = if_minus(le(s(x),y),s(x),y) quot(0(),s(y)) = [4] >= [0] = 0() quot(s(x),s(y)) = [1] x + [8] >= [1] x + [8] = s(quot(minus(x,y),s(y))) *** 1.1.1.1.1.1.2.1.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: log#(s(s(x))) -> log#(s(quot(x,s(s(0()))))) log#(s(s(x))) -> quot#(x,s(s(0()))) quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)) Weak TRS Rules: if_minus(false(),s(x),y) -> s(minus(x,y)) if_minus(true(),s(x),y) -> 0() le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(0(),y) -> 0() minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) quot(0(),s(y)) -> 0() quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) Signature: {if_minus/3,le/2,log/1,minus/2,quot/2,if_minus#/3,le#/2,log#/1,minus#/2,quot#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/2,c_10/0,c_11/2} Obligation: Innermost basic terms: {if_minus#,le#,log#,minus#,quot#}/{0,false,s,true} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.2.1.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: log#(s(s(x))) -> log#(s(quot(x,s(s(0()))))) log#(s(s(x))) -> quot#(x,s(s(0()))) quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)) Weak TRS Rules: if_minus(false(),s(x),y) -> s(minus(x,y)) if_minus(true(),s(x),y) -> 0() le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(0(),y) -> 0() minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) quot(0(),s(y)) -> 0() quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) Signature: {if_minus/3,le/2,log/1,minus/2,quot/2,if_minus#/3,le#/2,log#/1,minus#/2,quot#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/2,c_10/0,c_11/2} Obligation: Innermost basic terms: {if_minus#,le#,log#,minus#,quot#}/{0,false,s,true} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:log#(s(s(x))) -> log#(s(quot(x,s(s(0()))))) -->_1 log#(s(s(x))) -> quot#(x,s(s(0()))):2 -->_1 log#(s(s(x))) -> log#(s(quot(x,s(s(0()))))):1 2:W:log#(s(s(x))) -> quot#(x,s(s(0()))) -->_1 quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)):3 3:W:quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)) -->_1 quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)):3 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: log#(s(s(x))) -> log#(s(quot(x ,s(s(0()))))) 2: log#(s(s(x))) -> quot#(x ,s(s(0()))) 3: quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)) ,minus#(x,y)) *** 1.1.1.1.1.1.2.1.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: if_minus(false(),s(x),y) -> s(minus(x,y)) if_minus(true(),s(x),y) -> 0() le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(0(),y) -> 0() minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) quot(0(),s(y)) -> 0() quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) Signature: {if_minus/3,le/2,log/1,minus/2,quot/2,if_minus#/3,le#/2,log#/1,minus#/2,quot#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/2,c_10/0,c_11/2} Obligation: Innermost basic terms: {if_minus#,le#,log#,minus#,quot#}/{0,false,s,true} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1). *** 1.1.1.1.1.1.2.2 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: if_minus#(false(),s(x),y) -> c_1(minus#(x,y)) le#(s(x),s(y)) -> c_5(le#(x,y)) minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y)) Strict TRS Rules: Weak DP Rules: log#(s(s(x))) -> log#(s(quot(x,s(s(0()))))) log#(s(s(x))) -> quot#(x,s(s(0()))) quot#(s(x),s(y)) -> minus#(x,y) quot#(s(x),s(y)) -> quot#(minus(x,y),s(y)) Weak TRS Rules: if_minus(false(),s(x),y) -> s(minus(x,y)) if_minus(true(),s(x),y) -> 0() le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(0(),y) -> 0() minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) quot(0(),s(y)) -> 0() quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) Signature: {if_minus/3,le/2,log/1,minus/2,quot/2,if_minus#/3,le#/2,log#/1,minus#/2,quot#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/2,c_10/0,c_11/2} Obligation: Innermost basic terms: {if_minus#,le#,log#,minus#,quot#}/{0,false,s,true} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 3, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 3, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 2: le#(s(x),s(y)) -> c_5(le#(x,y)) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.1.2.2.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: if_minus#(false(),s(x),y) -> c_1(minus#(x,y)) le#(s(x),s(y)) -> c_5(le#(x,y)) minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y)) Strict TRS Rules: Weak DP Rules: log#(s(s(x))) -> log#(s(quot(x,s(s(0()))))) log#(s(s(x))) -> quot#(x,s(s(0()))) quot#(s(x),s(y)) -> minus#(x,y) quot#(s(x),s(y)) -> quot#(minus(x,y),s(y)) Weak TRS Rules: if_minus(false(),s(x),y) -> s(minus(x,y)) if_minus(true(),s(x),y) -> 0() le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(0(),y) -> 0() minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) quot(0(),s(y)) -> 0() quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) Signature: {if_minus/3,le/2,log/1,minus/2,quot/2,if_minus#/3,le#/2,log#/1,minus#/2,quot#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/2,c_10/0,c_11/2} Obligation: Innermost basic terms: {if_minus#,le#,log#,minus#,quot#}/{0,false,s,true} Applied Processor: NaturalMI {miDimension = 3, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 2 non-zero interpretation-entries in the diagonal of the component-wise maxima): The following argument positions are considered usable: uargs(c_1) = {1}, uargs(c_5) = {1}, uargs(c_9) = {1,2} Following symbols are considered usable: {if_minus,minus,quot,if_minus#,le#,log#,minus#,quot#} TcT has computed the following interpretation: p(0) = [0] [0] [0] p(false) = [0] [0] [0] p(if_minus) = [1 0 0] [0 0 0] [0] [0 0 0] x2 + [0 0 1] x3 + [1] [0 0 1] [0 0 0] [0] p(le) = [0] [0] [0] p(log) = [0] [0] [0] p(minus) = [1 0 0] [0 0 0] [0] [1 0 0] x1 + [1 1 1] x2 + [0] [0 0 1] [0 0 0] [0] p(quot) = [1 0 0] [0] [0 0 0] x1 + [0] [0 0 1] [0] p(s) = [1 0 1] [1] [0 0 0] x1 + [0] [0 0 1] [1] p(true) = [0] [0] [0] p(if_minus#) = [1 0 0] [0] [0 0 0] x2 + [0] [1 0 1] [0] p(le#) = [0 0 1] [1] [0 0 0] x1 + [1] [1 0 0] [1] p(log#) = [1 0 0] [0] [1 0 0] x1 + [0] [1 0 0] [0] p(minus#) = [1 0 1] [1] [0 0 0] x1 + [0] [0 0 0] [0] p(quot#) = [1 0 0] [0 0 1] [1] [0 0 0] x1 + [0 0 1] x2 + [1] [1 0 0] [0 0 0] [0] p(c_1) = [1 0 0] [0] [0 0 0] x1 + [0] [0 0 0] [0] p(c_2) = [0] [0] [0] p(c_3) = [0] [0] [0] p(c_4) = [0] [0] [0] p(c_5) = [1 0 0] [0] [0 0 0] x1 + [1] [0 0 1] [1] p(c_6) = [0] [0] [0] p(c_7) = [0] [0] [0] p(c_8) = [0] [0] [0] p(c_9) = [1 0 0] [1 0 0] [0] [0 0 0] x1 + [0 0 0] x2 + [0] [0 0 0] [0 0 0] [0] p(c_10) = [0] [0] [0] p(c_11) = [0] [0] [0] Following rules are strictly oriented: le#(s(x),s(y)) = [0 0 1] [2] [0 0 0] x + [1] [1 0 1] [2] > [0 0 1] [1] [0 0 0] x + [1] [1 0 0] [2] = c_5(le#(x,y)) Following rules are (at-least) weakly oriented: if_minus#(false(),s(x),y) = [1 0 1] [1] [0 0 0] x + [0] [1 0 2] [2] >= [1 0 1] [1] [0 0 0] x + [0] [0 0 0] [0] = c_1(minus#(x,y)) log#(s(s(x))) = [1 0 2] [3] [1 0 2] x + [3] [1 0 2] [3] >= [1 0 1] [1] [1 0 1] x + [1] [1 0 1] [1] = log#(s(quot(x,s(s(0()))))) log#(s(s(x))) = [1 0 2] [3] [1 0 2] x + [3] [1 0 2] [3] >= [1 0 0] [3] [0 0 0] x + [3] [1 0 0] [0] = quot#(x,s(s(0()))) minus#(s(x),y) = [1 0 2] [3] [0 0 0] x + [0] [0 0 0] [0] >= [1 0 2] [3] [0 0 0] x + [0] [0 0 0] [0] = c_9(if_minus#(le(s(x),y),s(x),y) ,le#(s(x),y)) quot#(s(x),s(y)) = [1 0 1] [0 0 1] [3] [0 0 0] x + [0 0 1] y + [2] [1 0 1] [0 0 0] [1] >= [1 0 1] [1] [0 0 0] x + [0] [0 0 0] [0] = minus#(x,y) quot#(s(x),s(y)) = [1 0 1] [0 0 1] [3] [0 0 0] x + [0 0 1] y + [2] [1 0 1] [0 0 0] [1] >= [1 0 0] [0 0 1] [2] [0 0 0] x + [0 0 1] y + [2] [1 0 0] [0 0 0] [0] = quot#(minus(x,y),s(y)) if_minus(false(),s(x),y) = [1 0 1] [0 0 0] [1] [0 0 0] x + [0 0 1] y + [1] [0 0 1] [0 0 0] [1] >= [1 0 1] [1] [0 0 0] x + [0] [0 0 1] [1] = s(minus(x,y)) if_minus(true(),s(x),y) = [1 0 1] [0 0 0] [1] [0 0 0] x + [0 0 1] y + [1] [0 0 1] [0 0 0] [1] >= [0] [0] [0] = 0() minus(0(),y) = [0 0 0] [0] [1 1 1] y + [0] [0 0 0] [0] >= [0] [0] [0] = 0() minus(s(x),y) = [1 0 1] [0 0 0] [1] [1 0 1] x + [1 1 1] y + [1] [0 0 1] [0 0 0] [1] >= [1 0 1] [0 0 0] [1] [0 0 0] x + [0 0 1] y + [1] [0 0 1] [0 0 0] [1] = if_minus(le(s(x),y),s(x),y) quot(0(),s(y)) = [0] [0] [0] >= [0] [0] [0] = 0() quot(s(x),s(y)) = [1 0 1] [1] [0 0 0] x + [0] [0 0 1] [1] >= [1 0 1] [1] [0 0 0] x + [0] [0 0 1] [1] = s(quot(minus(x,y),s(y))) *** 1.1.1.1.1.1.2.2.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: if_minus#(false(),s(x),y) -> c_1(minus#(x,y)) minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y)) Strict TRS Rules: Weak DP Rules: le#(s(x),s(y)) -> c_5(le#(x,y)) log#(s(s(x))) -> log#(s(quot(x,s(s(0()))))) log#(s(s(x))) -> quot#(x,s(s(0()))) quot#(s(x),s(y)) -> minus#(x,y) quot#(s(x),s(y)) -> quot#(minus(x,y),s(y)) Weak TRS Rules: if_minus(false(),s(x),y) -> s(minus(x,y)) if_minus(true(),s(x),y) -> 0() le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(0(),y) -> 0() minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) quot(0(),s(y)) -> 0() quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) Signature: {if_minus/3,le/2,log/1,minus/2,quot/2,if_minus#/3,le#/2,log#/1,minus#/2,quot#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/2,c_10/0,c_11/2} Obligation: Innermost basic terms: {if_minus#,le#,log#,minus#,quot#}/{0,false,s,true} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.2.2.2 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: if_minus#(false(),s(x),y) -> c_1(minus#(x,y)) minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y)) Strict TRS Rules: Weak DP Rules: le#(s(x),s(y)) -> c_5(le#(x,y)) log#(s(s(x))) -> log#(s(quot(x,s(s(0()))))) log#(s(s(x))) -> quot#(x,s(s(0()))) quot#(s(x),s(y)) -> minus#(x,y) quot#(s(x),s(y)) -> quot#(minus(x,y),s(y)) Weak TRS Rules: if_minus(false(),s(x),y) -> s(minus(x,y)) if_minus(true(),s(x),y) -> 0() le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(0(),y) -> 0() minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) quot(0(),s(y)) -> 0() quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) Signature: {if_minus/3,le/2,log/1,minus/2,quot/2,if_minus#/3,le#/2,log#/1,minus#/2,quot#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/2,c_10/0,c_11/2} Obligation: Innermost basic terms: {if_minus#,le#,log#,minus#,quot#}/{0,false,s,true} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:if_minus#(false(),s(x),y) -> c_1(minus#(x,y)) -->_1 minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y)):2 2:S:minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y)) -->_2 le#(s(x),s(y)) -> c_5(le#(x,y)):3 -->_1 if_minus#(false(),s(x),y) -> c_1(minus#(x,y)):1 3:W:le#(s(x),s(y)) -> c_5(le#(x,y)) -->_1 le#(s(x),s(y)) -> c_5(le#(x,y)):3 4:W:log#(s(s(x))) -> log#(s(quot(x,s(s(0()))))) -->_1 log#(s(s(x))) -> quot#(x,s(s(0()))):5 -->_1 log#(s(s(x))) -> log#(s(quot(x,s(s(0()))))):4 5:W:log#(s(s(x))) -> quot#(x,s(s(0()))) -->_1 quot#(s(x),s(y)) -> quot#(minus(x,y),s(y)):7 -->_1 quot#(s(x),s(y)) -> minus#(x,y):6 6:W:quot#(s(x),s(y)) -> minus#(x,y) -->_1 minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y)):2 7:W:quot#(s(x),s(y)) -> quot#(minus(x,y),s(y)) -->_1 quot#(s(x),s(y)) -> quot#(minus(x,y),s(y)):7 -->_1 quot#(s(x),s(y)) -> minus#(x,y):6 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 3: le#(s(x),s(y)) -> c_5(le#(x,y)) *** 1.1.1.1.1.1.2.2.2.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: if_minus#(false(),s(x),y) -> c_1(minus#(x,y)) minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y)) Strict TRS Rules: Weak DP Rules: log#(s(s(x))) -> log#(s(quot(x,s(s(0()))))) log#(s(s(x))) -> quot#(x,s(s(0()))) quot#(s(x),s(y)) -> minus#(x,y) quot#(s(x),s(y)) -> quot#(minus(x,y),s(y)) Weak TRS Rules: if_minus(false(),s(x),y) -> s(minus(x,y)) if_minus(true(),s(x),y) -> 0() le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(0(),y) -> 0() minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) quot(0(),s(y)) -> 0() quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) Signature: {if_minus/3,le/2,log/1,minus/2,quot/2,if_minus#/3,le#/2,log#/1,minus#/2,quot#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/2,c_10/0,c_11/2} Obligation: Innermost basic terms: {if_minus#,le#,log#,minus#,quot#}/{0,false,s,true} Applied Processor: SimplifyRHS Proof: Consider the dependency graph 1:S:if_minus#(false(),s(x),y) -> c_1(minus#(x,y)) -->_1 minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y)):2 2:S:minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y)) -->_1 if_minus#(false(),s(x),y) -> c_1(minus#(x,y)):1 4:W:log#(s(s(x))) -> log#(s(quot(x,s(s(0()))))) -->_1 log#(s(s(x))) -> quot#(x,s(s(0()))):5 -->_1 log#(s(s(x))) -> log#(s(quot(x,s(s(0()))))):4 5:W:log#(s(s(x))) -> quot#(x,s(s(0()))) -->_1 quot#(s(x),s(y)) -> quot#(minus(x,y),s(y)):7 -->_1 quot#(s(x),s(y)) -> minus#(x,y):6 6:W:quot#(s(x),s(y)) -> minus#(x,y) -->_1 minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y)):2 7:W:quot#(s(x),s(y)) -> quot#(minus(x,y),s(y)) -->_1 quot#(s(x),s(y)) -> quot#(minus(x,y),s(y)):7 -->_1 quot#(s(x),s(y)) -> minus#(x,y):6 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y)) *** 1.1.1.1.1.1.2.2.2.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: if_minus#(false(),s(x),y) -> c_1(minus#(x,y)) minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y)) Strict TRS Rules: Weak DP Rules: log#(s(s(x))) -> log#(s(quot(x,s(s(0()))))) log#(s(s(x))) -> quot#(x,s(s(0()))) quot#(s(x),s(y)) -> minus#(x,y) quot#(s(x),s(y)) -> quot#(minus(x,y),s(y)) Weak TRS Rules: if_minus(false(),s(x),y) -> s(minus(x,y)) if_minus(true(),s(x),y) -> 0() le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(0(),y) -> 0() minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) quot(0(),s(y)) -> 0() quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) Signature: {if_minus/3,le/2,log/1,minus/2,quot/2,if_minus#/3,le#/2,log#/1,minus#/2,quot#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/1,c_10/0,c_11/2} Obligation: Innermost basic terms: {if_minus#,le#,log#,minus#,quot#}/{0,false,s,true} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: if_minus#(false(),s(x),y) -> c_1(minus#(x,y)) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.1.2.2.2.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: if_minus#(false(),s(x),y) -> c_1(minus#(x,y)) minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y)) Strict TRS Rules: Weak DP Rules: log#(s(s(x))) -> log#(s(quot(x,s(s(0()))))) log#(s(s(x))) -> quot#(x,s(s(0()))) quot#(s(x),s(y)) -> minus#(x,y) quot#(s(x),s(y)) -> quot#(minus(x,y),s(y)) Weak TRS Rules: if_minus(false(),s(x),y) -> s(minus(x,y)) if_minus(true(),s(x),y) -> 0() le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(0(),y) -> 0() minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) quot(0(),s(y)) -> 0() quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) Signature: {if_minus/3,le/2,log/1,minus/2,quot/2,if_minus#/3,le#/2,log#/1,minus#/2,quot#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/1,c_10/0,c_11/2} Obligation: Innermost basic terms: {if_minus#,le#,log#,minus#,quot#}/{0,false,s,true} Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_1) = {1}, uargs(c_9) = {1} Following symbols are considered usable: {if_minus,le,minus,quot,if_minus#,le#,log#,minus#,quot#} TcT has computed the following interpretation: p(0) = [0] p(false) = [1] p(if_minus) = [1] x2 + [0] p(le) = [1] p(log) = [1] x1 + [2] p(minus) = [1] x1 + [0] p(quot) = [1] x1 + [1] p(s) = [1] x1 + [1] p(true) = [0] p(if_minus#) = [4] x1 + [1] x2 + [3] p(le#) = [1] x2 + [1] p(log#) = [2] x1 + [1] p(minus#) = [1] x1 + [7] p(quot#) = [2] x1 + [5] p(c_1) = [1] x1 + [0] p(c_2) = [1] p(c_3) = [1] p(c_4) = [1] p(c_5) = [1] p(c_6) = [0] p(c_7) = [2] x2 + [1] p(c_8) = [2] p(c_9) = [1] x1 + [0] p(c_10) = [8] p(c_11) = [1] x1 + [1] Following rules are strictly oriented: if_minus#(false(),s(x),y) = [1] x + [8] > [1] x + [7] = c_1(minus#(x,y)) Following rules are (at-least) weakly oriented: log#(s(s(x))) = [2] x + [5] >= [2] x + [5] = log#(s(quot(x,s(s(0()))))) log#(s(s(x))) = [2] x + [5] >= [2] x + [5] = quot#(x,s(s(0()))) minus#(s(x),y) = [1] x + [8] >= [1] x + [8] = c_9(if_minus#(le(s(x),y) ,s(x) ,y)) quot#(s(x),s(y)) = [2] x + [7] >= [1] x + [7] = minus#(x,y) quot#(s(x),s(y)) = [2] x + [7] >= [2] x + [5] = quot#(minus(x,y),s(y)) if_minus(false(),s(x),y) = [1] x + [1] >= [1] x + [1] = s(minus(x,y)) if_minus(true(),s(x),y) = [1] x + [1] >= [0] = 0() le(0(),y) = [1] >= [0] = true() le(s(x),0()) = [1] >= [1] = false() le(s(x),s(y)) = [1] >= [1] = le(x,y) minus(0(),y) = [0] >= [0] = 0() minus(s(x),y) = [1] x + [1] >= [1] x + [1] = if_minus(le(s(x),y),s(x),y) quot(0(),s(y)) = [1] >= [0] = 0() quot(s(x),s(y)) = [1] x + [2] >= [1] x + [2] = s(quot(minus(x,y),s(y))) *** 1.1.1.1.1.1.2.2.2.1.1.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y)) Strict TRS Rules: Weak DP Rules: if_minus#(false(),s(x),y) -> c_1(minus#(x,y)) log#(s(s(x))) -> log#(s(quot(x,s(s(0()))))) log#(s(s(x))) -> quot#(x,s(s(0()))) quot#(s(x),s(y)) -> minus#(x,y) quot#(s(x),s(y)) -> quot#(minus(x,y),s(y)) Weak TRS Rules: if_minus(false(),s(x),y) -> s(minus(x,y)) if_minus(true(),s(x),y) -> 0() le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(0(),y) -> 0() minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) quot(0(),s(y)) -> 0() quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) Signature: {if_minus/3,le/2,log/1,minus/2,quot/2,if_minus#/3,le#/2,log#/1,minus#/2,quot#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/1,c_10/0,c_11/2} Obligation: Innermost basic terms: {if_minus#,le#,log#,minus#,quot#}/{0,false,s,true} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.2.2.2.1.1.2 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y)) Strict TRS Rules: Weak DP Rules: if_minus#(false(),s(x),y) -> c_1(minus#(x,y)) log#(s(s(x))) -> log#(s(quot(x,s(s(0()))))) log#(s(s(x))) -> quot#(x,s(s(0()))) quot#(s(x),s(y)) -> minus#(x,y) quot#(s(x),s(y)) -> quot#(minus(x,y),s(y)) Weak TRS Rules: if_minus(false(),s(x),y) -> s(minus(x,y)) if_minus(true(),s(x),y) -> 0() le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(0(),y) -> 0() minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) quot(0(),s(y)) -> 0() quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) Signature: {if_minus/3,le/2,log/1,minus/2,quot/2,if_minus#/3,le#/2,log#/1,minus#/2,quot#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/1,c_10/0,c_11/2} Obligation: Innermost basic terms: {if_minus#,le#,log#,minus#,quot#}/{0,false,s,true} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: minus#(s(x),y) -> c_9(if_minus#(le(s(x),y) ,s(x) ,y)) Consider the set of all dependency pairs 1: minus#(s(x),y) -> c_9(if_minus#(le(s(x),y) ,s(x) ,y)) 2: if_minus#(false(),s(x),y) -> c_1(minus#(x,y)) 3: log#(s(s(x))) -> log#(s(quot(x ,s(s(0()))))) 4: log#(s(s(x))) -> quot#(x ,s(s(0()))) 5: quot#(s(x),s(y)) -> minus#(x,y) 6: quot#(s(x),s(y)) -> quot#(minus(x,y),s(y)) Processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}induces the complexity certificateTIME (?,O(n^1)) SPACE(?,?)on application of the dependency pairs {1} These cover all (indirect) predecessors of dependency pairs {1,2} their number of applications is equally bounded. The dependency pairs are shifted into the weak component. *** 1.1.1.1.1.1.2.2.2.1.1.2.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y)) Strict TRS Rules: Weak DP Rules: if_minus#(false(),s(x),y) -> c_1(minus#(x,y)) log#(s(s(x))) -> log#(s(quot(x,s(s(0()))))) log#(s(s(x))) -> quot#(x,s(s(0()))) quot#(s(x),s(y)) -> minus#(x,y) quot#(s(x),s(y)) -> quot#(minus(x,y),s(y)) Weak TRS Rules: if_minus(false(),s(x),y) -> s(minus(x,y)) if_minus(true(),s(x),y) -> 0() le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(0(),y) -> 0() minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) quot(0(),s(y)) -> 0() quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) Signature: {if_minus/3,le/2,log/1,minus/2,quot/2,if_minus#/3,le#/2,log#/1,minus#/2,quot#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/1,c_10/0,c_11/2} Obligation: Innermost basic terms: {if_minus#,le#,log#,minus#,quot#}/{0,false,s,true} Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_1) = {1}, uargs(c_9) = {1} Following symbols are considered usable: {if_minus,le,minus,quot,if_minus#,le#,log#,minus#,quot#} TcT has computed the following interpretation: p(0) = [0] p(false) = [1] p(if_minus) = [1] x2 + [0] p(le) = [1] p(log) = [1] x1 + [1] p(minus) = [1] x1 + [0] p(quot) = [1] x1 + [0] p(s) = [1] x1 + [1] p(true) = [0] p(if_minus#) = [8] x1 + [8] x2 + [0] p(le#) = [2] x2 + [1] p(log#) = [8] x1 + [13] p(minus#) = [8] x1 + [14] p(quot#) = [8] x1 + [5] x2 + [6] p(c_1) = [1] x1 + [2] p(c_2) = [1] p(c_3) = [1] p(c_4) = [1] p(c_5) = [1] p(c_6) = [1] p(c_7) = [1] x1 + [1] x2 + [0] p(c_8) = [1] p(c_9) = [1] x1 + [2] p(c_10) = [0] p(c_11) = [1] x1 + [4] x2 + [1] Following rules are strictly oriented: minus#(s(x),y) = [8] x + [22] > [8] x + [18] = c_9(if_minus#(le(s(x),y) ,s(x) ,y)) Following rules are (at-least) weakly oriented: if_minus#(false(),s(x),y) = [8] x + [16] >= [8] x + [16] = c_1(minus#(x,y)) log#(s(s(x))) = [8] x + [29] >= [8] x + [21] = log#(s(quot(x,s(s(0()))))) log#(s(s(x))) = [8] x + [29] >= [8] x + [16] = quot#(x,s(s(0()))) quot#(s(x),s(y)) = [8] x + [5] y + [19] >= [8] x + [14] = minus#(x,y) quot#(s(x),s(y)) = [8] x + [5] y + [19] >= [8] x + [5] y + [11] = quot#(minus(x,y),s(y)) if_minus(false(),s(x),y) = [1] x + [1] >= [1] x + [1] = s(minus(x,y)) if_minus(true(),s(x),y) = [1] x + [1] >= [0] = 0() le(0(),y) = [1] >= [0] = true() le(s(x),0()) = [1] >= [1] = false() le(s(x),s(y)) = [1] >= [1] = le(x,y) minus(0(),y) = [0] >= [0] = 0() minus(s(x),y) = [1] x + [1] >= [1] x + [1] = if_minus(le(s(x),y),s(x),y) quot(0(),s(y)) = [0] >= [0] = 0() quot(s(x),s(y)) = [1] x + [1] >= [1] x + [1] = s(quot(minus(x,y),s(y))) *** 1.1.1.1.1.1.2.2.2.1.1.2.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: if_minus#(false(),s(x),y) -> c_1(minus#(x,y)) log#(s(s(x))) -> log#(s(quot(x,s(s(0()))))) log#(s(s(x))) -> quot#(x,s(s(0()))) minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y)) quot#(s(x),s(y)) -> minus#(x,y) quot#(s(x),s(y)) -> quot#(minus(x,y),s(y)) Weak TRS Rules: if_minus(false(),s(x),y) -> s(minus(x,y)) if_minus(true(),s(x),y) -> 0() le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(0(),y) -> 0() minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) quot(0(),s(y)) -> 0() quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) Signature: {if_minus/3,le/2,log/1,minus/2,quot/2,if_minus#/3,le#/2,log#/1,minus#/2,quot#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/1,c_10/0,c_11/2} Obligation: Innermost basic terms: {if_minus#,le#,log#,minus#,quot#}/{0,false,s,true} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.2.2.2.1.1.2.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: if_minus#(false(),s(x),y) -> c_1(minus#(x,y)) log#(s(s(x))) -> log#(s(quot(x,s(s(0()))))) log#(s(s(x))) -> quot#(x,s(s(0()))) minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y)) quot#(s(x),s(y)) -> minus#(x,y) quot#(s(x),s(y)) -> quot#(minus(x,y),s(y)) Weak TRS Rules: if_minus(false(),s(x),y) -> s(minus(x,y)) if_minus(true(),s(x),y) -> 0() le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(0(),y) -> 0() minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) quot(0(),s(y)) -> 0() quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) Signature: {if_minus/3,le/2,log/1,minus/2,quot/2,if_minus#/3,le#/2,log#/1,minus#/2,quot#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/1,c_10/0,c_11/2} Obligation: Innermost basic terms: {if_minus#,le#,log#,minus#,quot#}/{0,false,s,true} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:if_minus#(false(),s(x),y) -> c_1(minus#(x,y)) -->_1 minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y)):4 2:W:log#(s(s(x))) -> log#(s(quot(x,s(s(0()))))) -->_1 log#(s(s(x))) -> quot#(x,s(s(0()))):3 -->_1 log#(s(s(x))) -> log#(s(quot(x,s(s(0()))))):2 3:W:log#(s(s(x))) -> quot#(x,s(s(0()))) -->_1 quot#(s(x),s(y)) -> quot#(minus(x,y),s(y)):6 -->_1 quot#(s(x),s(y)) -> minus#(x,y):5 4:W:minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y)) -->_1 if_minus#(false(),s(x),y) -> c_1(minus#(x,y)):1 5:W:quot#(s(x),s(y)) -> minus#(x,y) -->_1 minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y)):4 6:W:quot#(s(x),s(y)) -> quot#(minus(x,y),s(y)) -->_1 quot#(s(x),s(y)) -> quot#(minus(x,y),s(y)):6 -->_1 quot#(s(x),s(y)) -> minus#(x,y):5 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 2: log#(s(s(x))) -> log#(s(quot(x ,s(s(0()))))) 3: log#(s(s(x))) -> quot#(x ,s(s(0()))) 6: quot#(s(x),s(y)) -> quot#(minus(x,y),s(y)) 5: quot#(s(x),s(y)) -> minus#(x,y) 1: if_minus#(false(),s(x),y) -> c_1(minus#(x,y)) 4: minus#(s(x),y) -> c_9(if_minus#(le(s(x),y) ,s(x) ,y)) *** 1.1.1.1.1.1.2.2.2.1.1.2.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: if_minus(false(),s(x),y) -> s(minus(x,y)) if_minus(true(),s(x),y) -> 0() le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(0(),y) -> 0() minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) quot(0(),s(y)) -> 0() quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) Signature: {if_minus/3,le/2,log/1,minus/2,quot/2,if_minus#/3,le#/2,log#/1,minus#/2,quot#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/1,c_10/0,c_11/2} Obligation: Innermost basic terms: {if_minus#,le#,log#,minus#,quot#}/{0,false,s,true} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1). *** 1.1.1.1.1.2 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: log#(s(s(x))) -> c_7(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0())))) quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)) Strict TRS Rules: Weak DP Rules: if_minus#(false(),s(x),y) -> c_1(minus#(x,y)) le#(s(x),s(y)) -> c_5(le#(x,y)) minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y)) Weak TRS Rules: if_minus(false(),s(x),y) -> s(minus(x,y)) if_minus(true(),s(x),y) -> 0() le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(0(),y) -> 0() minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) quot(0(),s(y)) -> 0() quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) Signature: {if_minus/3,le/2,log/1,minus/2,quot/2,if_minus#/3,le#/2,log#/1,minus#/2,quot#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/2,c_10/0,c_11/2} Obligation: Innermost basic terms: {if_minus#,le#,log#,minus#,quot#}/{0,false,s,true} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:log#(s(s(x))) -> c_7(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0())))) -->_2 quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)):2 -->_1 log#(s(s(x))) -> c_7(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0())))):1 2:S:quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)) -->_2 minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y)):5 -->_1 quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)):2 3:W:if_minus#(false(),s(x),y) -> c_1(minus#(x,y)) -->_1 minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y)):5 4:W:le#(s(x),s(y)) -> c_5(le#(x,y)) -->_1 le#(s(x),s(y)) -> c_5(le#(x,y)):4 5:W:minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y)) -->_2 le#(s(x),s(y)) -> c_5(le#(x,y)):4 -->_1 if_minus#(false(),s(x),y) -> c_1(minus#(x,y)):3 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 5: minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y) ,le#(s(x),y)) 3: if_minus#(false(),s(x),y) -> c_1(minus#(x,y)) 4: le#(s(x),s(y)) -> c_5(le#(x,y)) *** 1.1.1.1.1.2.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: log#(s(s(x))) -> c_7(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0())))) quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: if_minus(false(),s(x),y) -> s(minus(x,y)) if_minus(true(),s(x),y) -> 0() le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(0(),y) -> 0() minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) quot(0(),s(y)) -> 0() quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) Signature: {if_minus/3,le/2,log/1,minus/2,quot/2,if_minus#/3,le#/2,log#/1,minus#/2,quot#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/2,c_10/0,c_11/2} Obligation: Innermost basic terms: {if_minus#,le#,log#,minus#,quot#}/{0,false,s,true} Applied Processor: SimplifyRHS Proof: Consider the dependency graph 1:S:log#(s(s(x))) -> c_7(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0())))) -->_2 quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)):2 -->_1 log#(s(s(x))) -> c_7(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0())))):1 2:S:quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)) -->_1 quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)):2 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y))) *** 1.1.1.1.1.2.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: log#(s(s(x))) -> c_7(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0())))) quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y))) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: if_minus(false(),s(x),y) -> s(minus(x,y)) if_minus(true(),s(x),y) -> 0() le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(0(),y) -> 0() minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) quot(0(),s(y)) -> 0() quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) Signature: {if_minus/3,le/2,log/1,minus/2,quot/2,if_minus#/3,le#/2,log#/1,minus#/2,quot#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/2,c_10/0,c_11/1} Obligation: Innermost basic terms: {if_minus#,le#,log#,minus#,quot#}/{0,false,s,true} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: log#(s(s(x))) -> c_7(log#(s(quot(x,s(s(0()))))) ,quot#(x,s(s(0())))) 2: quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y))) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.2.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: log#(s(s(x))) -> c_7(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0())))) quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y))) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: if_minus(false(),s(x),y) -> s(minus(x,y)) if_minus(true(),s(x),y) -> 0() le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(0(),y) -> 0() minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) quot(0(),s(y)) -> 0() quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) Signature: {if_minus/3,le/2,log/1,minus/2,quot/2,if_minus#/3,le#/2,log#/1,minus#/2,quot#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/2,c_10/0,c_11/1} Obligation: Innermost basic terms: {if_minus#,le#,log#,minus#,quot#}/{0,false,s,true} Applied Processor: NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a polynomial interpretation of kind constructor-based(mixed(2)): The following argument positions are considered usable: uargs(c_7) = {1,2}, uargs(c_11) = {1} Following symbols are considered usable: {if_minus,minus,quot,if_minus#,le#,log#,minus#,quot#} TcT has computed the following interpretation: p(0) = 0 p(false) = 0 p(if_minus) = x2 p(le) = 1 + x1*x2 + x2 p(log) = 0 p(minus) = x1 p(quot) = x1 p(s) = 1 + x1 p(true) = 0 p(if_minus#) = 0 p(le#) = 2*x2 p(log#) = 1 + x1 + x1^2 p(minus#) = 2*x1 + 2*x1*x2 p(quot#) = 1 + x1 p(c_1) = x1 p(c_2) = 0 p(c_3) = 1 p(c_4) = 0 p(c_5) = 1 + x1 p(c_6) = 0 p(c_7) = x1 + x2 p(c_8) = 0 p(c_9) = x2 p(c_10) = 0 p(c_11) = x1 Following rules are strictly oriented: log#(s(s(x))) = 7 + 5*x + x^2 > 4 + 4*x + x^2 = c_7(log#(s(quot(x,s(s(0()))))) ,quot#(x,s(s(0())))) quot#(s(x),s(y)) = 2 + x > 1 + x = c_11(quot#(minus(x,y),s(y))) Following rules are (at-least) weakly oriented: if_minus(false(),s(x),y) = 1 + x >= 1 + x = s(minus(x,y)) if_minus(true(),s(x),y) = 1 + x >= 0 = 0() minus(0(),y) = 0 >= 0 = 0() minus(s(x),y) = 1 + x >= 1 + x = if_minus(le(s(x),y),s(x),y) quot(0(),s(y)) = 0 >= 0 = 0() quot(s(x),s(y)) = 1 + x >= 1 + x = s(quot(minus(x,y),s(y))) *** 1.1.1.1.1.2.1.1.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: log#(s(s(x))) -> c_7(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0())))) quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y))) Weak TRS Rules: if_minus(false(),s(x),y) -> s(minus(x,y)) if_minus(true(),s(x),y) -> 0() le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(0(),y) -> 0() minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) quot(0(),s(y)) -> 0() quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) Signature: {if_minus/3,le/2,log/1,minus/2,quot/2,if_minus#/3,le#/2,log#/1,minus#/2,quot#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/2,c_10/0,c_11/1} Obligation: Innermost basic terms: {if_minus#,le#,log#,minus#,quot#}/{0,false,s,true} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.2.1.1.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: log#(s(s(x))) -> c_7(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0())))) quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y))) Weak TRS Rules: if_minus(false(),s(x),y) -> s(minus(x,y)) if_minus(true(),s(x),y) -> 0() le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(0(),y) -> 0() minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) quot(0(),s(y)) -> 0() quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) Signature: {if_minus/3,le/2,log/1,minus/2,quot/2,if_minus#/3,le#/2,log#/1,minus#/2,quot#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/2,c_10/0,c_11/1} Obligation: Innermost basic terms: {if_minus#,le#,log#,minus#,quot#}/{0,false,s,true} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:log#(s(s(x))) -> c_7(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0())))) -->_2 quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y))):2 -->_1 log#(s(s(x))) -> c_7(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0())))):1 2:W:quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y))) -->_1 quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y))):2 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: log#(s(s(x))) -> c_7(log#(s(quot(x,s(s(0()))))) ,quot#(x,s(s(0())))) 2: quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y))) *** 1.1.1.1.1.2.1.1.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: if_minus(false(),s(x),y) -> s(minus(x,y)) if_minus(true(),s(x),y) -> 0() le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(0(),y) -> 0() minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) quot(0(),s(y)) -> 0() quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) Signature: {if_minus/3,le/2,log/1,minus/2,quot/2,if_minus#/3,le#/2,log#/1,minus#/2,quot#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/2,c_10/0,c_11/1} Obligation: Innermost basic terms: {if_minus#,le#,log#,minus#,quot#}/{0,false,s,true} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1).