*** 1 Progress [(?,O(n^2))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
log(s(0())) -> 0()
log(s(s(x))) -> s(log(s(quot(x,s(s(0()))))))
minus(x,0()) -> x
minus(x,s(y)) -> pred(minus(x,y))
pred(s(x)) -> x
quot(0(),s(y)) -> 0()
quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
Weak DP Rules:
Weak TRS Rules:
Signature:
{log/1,minus/2,pred/1,quot/2} / {0/0,s/1}
Obligation:
Innermost
basic terms: {log,minus,pred,quot}/{0,s}
Applied Processor:
DependencyPairs {dpKind_ = DT}
Proof:
We add the following dependency tuples:
Strict DPs
log#(s(0())) -> c_1()
log#(s(s(x))) -> c_2(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0()))))
minus#(x,0()) -> c_3()
minus#(x,s(y)) -> c_4(pred#(minus(x,y)),minus#(x,y))
pred#(s(x)) -> c_5()
quot#(0(),s(y)) -> c_6()
quot#(s(x),s(y)) -> c_7(quot#(minus(x,y),s(y)),minus#(x,y))
Weak DPs
and mark the set of starting terms.
*** 1.1 Progress [(?,O(n^2))] ***
Considered Problem:
Strict DP Rules:
log#(s(0())) -> c_1()
log#(s(s(x))) -> c_2(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0()))))
minus#(x,0()) -> c_3()
minus#(x,s(y)) -> c_4(pred#(minus(x,y)),minus#(x,y))
pred#(s(x)) -> c_5()
quot#(0(),s(y)) -> c_6()
quot#(s(x),s(y)) -> c_7(quot#(minus(x,y),s(y)),minus#(x,y))
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
log(s(0())) -> 0()
log(s(s(x))) -> s(log(s(quot(x,s(s(0()))))))
minus(x,0()) -> x
minus(x,s(y)) -> pred(minus(x,y))
pred(s(x)) -> x
quot(0(),s(y)) -> 0()
quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
Signature:
{log/1,minus/2,pred/1,quot/2,log#/1,minus#/2,pred#/1,quot#/2} / {0/0,s/1,c_1/0,c_2/2,c_3/0,c_4/2,c_5/0,c_6/0,c_7/2}
Obligation:
Innermost
basic terms: {log#,minus#,pred#,quot#}/{0,s}
Applied Processor:
UsableRules
Proof:
We replace rewrite rules by usable rules:
minus(x,0()) -> x
minus(x,s(y)) -> pred(minus(x,y))
pred(s(x)) -> x
quot(0(),s(y)) -> 0()
quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
log#(s(0())) -> c_1()
log#(s(s(x))) -> c_2(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0()))))
minus#(x,0()) -> c_3()
minus#(x,s(y)) -> c_4(pred#(minus(x,y)),minus#(x,y))
pred#(s(x)) -> c_5()
quot#(0(),s(y)) -> c_6()
quot#(s(x),s(y)) -> c_7(quot#(minus(x,y),s(y)),minus#(x,y))
*** 1.1.1 Progress [(?,O(n^2))] ***
Considered Problem:
Strict DP Rules:
log#(s(0())) -> c_1()
log#(s(s(x))) -> c_2(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0()))))
minus#(x,0()) -> c_3()
minus#(x,s(y)) -> c_4(pred#(minus(x,y)),minus#(x,y))
pred#(s(x)) -> c_5()
quot#(0(),s(y)) -> c_6()
quot#(s(x),s(y)) -> c_7(quot#(minus(x,y),s(y)),minus#(x,y))
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
minus(x,0()) -> x
minus(x,s(y)) -> pred(minus(x,y))
pred(s(x)) -> x
quot(0(),s(y)) -> 0()
quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
Signature:
{log/1,minus/2,pred/1,quot/2,log#/1,minus#/2,pred#/1,quot#/2} / {0/0,s/1,c_1/0,c_2/2,c_3/0,c_4/2,c_5/0,c_6/0,c_7/2}
Obligation:
Innermost
basic terms: {log#,minus#,pred#,quot#}/{0,s}
Applied Processor:
PredecessorEstimation {onSelection = all simple predecessor estimation selector}
Proof:
We estimate the number of application of
{1,3,5,6}
by application of
Pre({1,3,5,6}) = {2,4,7}.
Here rules are labelled as follows:
1: log#(s(0())) -> c_1()
2: log#(s(s(x))) ->
c_2(log#(s(quot(x,s(s(0())))))
,quot#(x,s(s(0()))))
3: minus#(x,0()) -> c_3()
4: minus#(x,s(y)) ->
c_4(pred#(minus(x,y))
,minus#(x,y))
5: pred#(s(x)) -> c_5()
6: quot#(0(),s(y)) -> c_6()
7: quot#(s(x),s(y)) ->
c_7(quot#(minus(x,y),s(y))
,minus#(x,y))
*** 1.1.1.1 Progress [(?,O(n^2))] ***
Considered Problem:
Strict DP Rules:
log#(s(s(x))) -> c_2(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0()))))
minus#(x,s(y)) -> c_4(pred#(minus(x,y)),minus#(x,y))
quot#(s(x),s(y)) -> c_7(quot#(minus(x,y),s(y)),minus#(x,y))
Strict TRS Rules:
Weak DP Rules:
log#(s(0())) -> c_1()
minus#(x,0()) -> c_3()
pred#(s(x)) -> c_5()
quot#(0(),s(y)) -> c_6()
Weak TRS Rules:
minus(x,0()) -> x
minus(x,s(y)) -> pred(minus(x,y))
pred(s(x)) -> x
quot(0(),s(y)) -> 0()
quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
Signature:
{log/1,minus/2,pred/1,quot/2,log#/1,minus#/2,pred#/1,quot#/2} / {0/0,s/1,c_1/0,c_2/2,c_3/0,c_4/2,c_5/0,c_6/0,c_7/2}
Obligation:
Innermost
basic terms: {log#,minus#,pred#,quot#}/{0,s}
Applied Processor:
RemoveWeakSuffixes
Proof:
Consider the dependency graph
1:S:log#(s(s(x))) -> c_2(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0()))))
-->_2 quot#(s(x),s(y)) -> c_7(quot#(minus(x,y),s(y)),minus#(x,y)):3
-->_2 quot#(0(),s(y)) -> c_6():7
-->_1 log#(s(0())) -> c_1():4
-->_1 log#(s(s(x))) -> c_2(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0())))):1
2:S:minus#(x,s(y)) -> c_4(pred#(minus(x,y)),minus#(x,y))
-->_1 pred#(s(x)) -> c_5():6
-->_2 minus#(x,0()) -> c_3():5
-->_2 minus#(x,s(y)) -> c_4(pred#(minus(x,y)),minus#(x,y)):2
3:S:quot#(s(x),s(y)) -> c_7(quot#(minus(x,y),s(y)),minus#(x,y))
-->_1 quot#(0(),s(y)) -> c_6():7
-->_2 minus#(x,0()) -> c_3():5
-->_1 quot#(s(x),s(y)) -> c_7(quot#(minus(x,y),s(y)),minus#(x,y)):3
-->_2 minus#(x,s(y)) -> c_4(pred#(minus(x,y)),minus#(x,y)):2
4:W:log#(s(0())) -> c_1()
5:W:minus#(x,0()) -> c_3()
6:W:pred#(s(x)) -> c_5()
7:W:quot#(0(),s(y)) -> c_6()
The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
4: log#(s(0())) -> c_1()
6: pred#(s(x)) -> c_5()
5: minus#(x,0()) -> c_3()
7: quot#(0(),s(y)) -> c_6()
*** 1.1.1.1.1 Progress [(?,O(n^2))] ***
Considered Problem:
Strict DP Rules:
log#(s(s(x))) -> c_2(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0()))))
minus#(x,s(y)) -> c_4(pred#(minus(x,y)),minus#(x,y))
quot#(s(x),s(y)) -> c_7(quot#(minus(x,y),s(y)),minus#(x,y))
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
minus(x,0()) -> x
minus(x,s(y)) -> pred(minus(x,y))
pred(s(x)) -> x
quot(0(),s(y)) -> 0()
quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
Signature:
{log/1,minus/2,pred/1,quot/2,log#/1,minus#/2,pred#/1,quot#/2} / {0/0,s/1,c_1/0,c_2/2,c_3/0,c_4/2,c_5/0,c_6/0,c_7/2}
Obligation:
Innermost
basic terms: {log#,minus#,pred#,quot#}/{0,s}
Applied Processor:
SimplifyRHS
Proof:
Consider the dependency graph
1:S:log#(s(s(x))) -> c_2(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0()))))
-->_2 quot#(s(x),s(y)) -> c_7(quot#(minus(x,y),s(y)),minus#(x,y)):3
-->_1 log#(s(s(x))) -> c_2(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0())))):1
2:S:minus#(x,s(y)) -> c_4(pred#(minus(x,y)),minus#(x,y))
-->_2 minus#(x,s(y)) -> c_4(pred#(minus(x,y)),minus#(x,y)):2
3:S:quot#(s(x),s(y)) -> c_7(quot#(minus(x,y),s(y)),minus#(x,y))
-->_1 quot#(s(x),s(y)) -> c_7(quot#(minus(x,y),s(y)),minus#(x,y)):3
-->_2 minus#(x,s(y)) -> c_4(pred#(minus(x,y)),minus#(x,y)):2
Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
minus#(x,s(y)) -> c_4(minus#(x,y))
*** 1.1.1.1.1.1 Progress [(?,O(n^2))] ***
Considered Problem:
Strict DP Rules:
log#(s(s(x))) -> c_2(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0()))))
minus#(x,s(y)) -> c_4(minus#(x,y))
quot#(s(x),s(y)) -> c_7(quot#(minus(x,y),s(y)),minus#(x,y))
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
minus(x,0()) -> x
minus(x,s(y)) -> pred(minus(x,y))
pred(s(x)) -> x
quot(0(),s(y)) -> 0()
quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
Signature:
{log/1,minus/2,pred/1,quot/2,log#/1,minus#/2,pred#/1,quot#/2} / {0/0,s/1,c_1/0,c_2/2,c_3/0,c_4/1,c_5/0,c_6/0,c_7/2}
Obligation:
Innermost
basic terms: {log#,minus#,pred#,quot#}/{0,s}
Applied Processor:
PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
Proof:
We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
1: log#(s(s(x))) ->
c_2(log#(s(quot(x,s(s(0())))))
,quot#(x,s(s(0()))))
2: minus#(x,s(y)) -> c_4(minus#(x
,y))
3: quot#(s(x),s(y)) ->
c_7(quot#(minus(x,y),s(y))
,minus#(x,y))
The strictly oriented rules are moved into the weak component.
*** 1.1.1.1.1.1.1 Progress [(?,O(n^2))] ***
Considered Problem:
Strict DP Rules:
log#(s(s(x))) -> c_2(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0()))))
minus#(x,s(y)) -> c_4(minus#(x,y))
quot#(s(x),s(y)) -> c_7(quot#(minus(x,y),s(y)),minus#(x,y))
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
minus(x,0()) -> x
minus(x,s(y)) -> pred(minus(x,y))
pred(s(x)) -> x
quot(0(),s(y)) -> 0()
quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
Signature:
{log/1,minus/2,pred/1,quot/2,log#/1,minus#/2,pred#/1,quot#/2} / {0/0,s/1,c_1/0,c_2/2,c_3/0,c_4/1,c_5/0,c_6/0,c_7/2}
Obligation:
Innermost
basic terms: {log#,minus#,pred#,quot#}/{0,s}
Applied Processor:
NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
Proof:
We apply a polynomial interpretation of kind constructor-based(mixed(2)):
The following argument positions are considered usable:
uargs(c_2) = {1,2},
uargs(c_4) = {1},
uargs(c_7) = {1,2}
Following symbols are considered usable:
{minus,pred,quot,log#,minus#,pred#,quot#}
TcT has computed the following interpretation:
p(0) = 0
p(log) = x1^2
p(minus) = x1
p(pred) = x1
p(quot) = x1
p(s) = 1 + x1
p(log#) = 1 + x1 + x1^2
p(minus#) = x2
p(pred#) = 0
p(quot#) = 2 + x1*x2
p(c_1) = 0
p(c_2) = x1 + x2
p(c_3) = 1
p(c_4) = x1
p(c_5) = 0
p(c_6) = 1
p(c_7) = x1 + x2
Following rules are strictly oriented:
log#(s(s(x))) = 7 + 5*x + x^2
> 5 + 5*x + x^2
= c_2(log#(s(quot(x,s(s(0())))))
,quot#(x,s(s(0()))))
minus#(x,s(y)) = 1 + y
> y
= c_4(minus#(x,y))
quot#(s(x),s(y)) = 3 + x + x*y + y
> 2 + x + x*y + y
= c_7(quot#(minus(x,y),s(y))
,minus#(x,y))
Following rules are (at-least) weakly oriented:
minus(x,0()) = x
>= x
= x
minus(x,s(y)) = x
>= x
= pred(minus(x,y))
pred(s(x)) = 1 + x
>= x
= x
quot(0(),s(y)) = 0
>= 0
= 0()
quot(s(x),s(y)) = 1 + x
>= 1 + x
= s(quot(minus(x,y),s(y)))
*** 1.1.1.1.1.1.1.1 Progress [(?,O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
Weak DP Rules:
log#(s(s(x))) -> c_2(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0()))))
minus#(x,s(y)) -> c_4(minus#(x,y))
quot#(s(x),s(y)) -> c_7(quot#(minus(x,y),s(y)),minus#(x,y))
Weak TRS Rules:
minus(x,0()) -> x
minus(x,s(y)) -> pred(minus(x,y))
pred(s(x)) -> x
quot(0(),s(y)) -> 0()
quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
Signature:
{log/1,minus/2,pred/1,quot/2,log#/1,minus#/2,pred#/1,quot#/2} / {0/0,s/1,c_1/0,c_2/2,c_3/0,c_4/1,c_5/0,c_6/0,c_7/2}
Obligation:
Innermost
basic terms: {log#,minus#,pred#,quot#}/{0,s}
Applied Processor:
Assumption
Proof:
()
*** 1.1.1.1.1.1.2 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
Weak DP Rules:
log#(s(s(x))) -> c_2(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0()))))
minus#(x,s(y)) -> c_4(minus#(x,y))
quot#(s(x),s(y)) -> c_7(quot#(minus(x,y),s(y)),minus#(x,y))
Weak TRS Rules:
minus(x,0()) -> x
minus(x,s(y)) -> pred(minus(x,y))
pred(s(x)) -> x
quot(0(),s(y)) -> 0()
quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
Signature:
{log/1,minus/2,pred/1,quot/2,log#/1,minus#/2,pred#/1,quot#/2} / {0/0,s/1,c_1/0,c_2/2,c_3/0,c_4/1,c_5/0,c_6/0,c_7/2}
Obligation:
Innermost
basic terms: {log#,minus#,pred#,quot#}/{0,s}
Applied Processor:
RemoveWeakSuffixes
Proof:
Consider the dependency graph
1:W:log#(s(s(x))) -> c_2(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0()))))
-->_2 quot#(s(x),s(y)) -> c_7(quot#(minus(x,y),s(y)),minus#(x,y)):3
-->_1 log#(s(s(x))) -> c_2(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0())))):1
2:W:minus#(x,s(y)) -> c_4(minus#(x,y))
-->_1 minus#(x,s(y)) -> c_4(minus#(x,y)):2
3:W:quot#(s(x),s(y)) -> c_7(quot#(minus(x,y),s(y)),minus#(x,y))
-->_1 quot#(s(x),s(y)) -> c_7(quot#(minus(x,y),s(y)),minus#(x,y)):3
-->_2 minus#(x,s(y)) -> c_4(minus#(x,y)):2
The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
1: log#(s(s(x))) ->
c_2(log#(s(quot(x,s(s(0())))))
,quot#(x,s(s(0()))))
3: quot#(s(x),s(y)) ->
c_7(quot#(minus(x,y),s(y))
,minus#(x,y))
2: minus#(x,s(y)) -> c_4(minus#(x
,y))
*** 1.1.1.1.1.1.2.1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
minus(x,0()) -> x
minus(x,s(y)) -> pred(minus(x,y))
pred(s(x)) -> x
quot(0(),s(y)) -> 0()
quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
Signature:
{log/1,minus/2,pred/1,quot/2,log#/1,minus#/2,pred#/1,quot#/2} / {0/0,s/1,c_1/0,c_2/2,c_3/0,c_4/1,c_5/0,c_6/0,c_7/2}
Obligation:
Innermost
basic terms: {log#,minus#,pred#,quot#}/{0,s}
Applied Processor:
EmptyProcessor
Proof:
The problem is already closed. The intended complexity is O(1).