*** 1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: log(s(0())) -> 0() log(s(s(x))) -> s(log(s(quot(x,s(s(0())))))) minus(x,0()) -> x minus(x,s(y)) -> pred(minus(x,y)) pred(s(x)) -> x quot(0(),s(y)) -> 0() quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) Weak DP Rules: Weak TRS Rules: Signature: {log/1,minus/2,pred/1,quot/2} / {0/0,s/1} Obligation: Innermost basic terms: {log,minus,pred,quot}/{0,s} Applied Processor: DependencyPairs {dpKind_ = DT} Proof: We add the following dependency tuples: Strict DPs log#(s(0())) -> c_1() log#(s(s(x))) -> c_2(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0())))) minus#(x,0()) -> c_3() minus#(x,s(y)) -> c_4(pred#(minus(x,y)),minus#(x,y)) pred#(s(x)) -> c_5() quot#(0(),s(y)) -> c_6() quot#(s(x),s(y)) -> c_7(quot#(minus(x,y),s(y)),minus#(x,y)) Weak DPs and mark the set of starting terms. *** 1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: log#(s(0())) -> c_1() log#(s(s(x))) -> c_2(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0())))) minus#(x,0()) -> c_3() minus#(x,s(y)) -> c_4(pred#(minus(x,y)),minus#(x,y)) pred#(s(x)) -> c_5() quot#(0(),s(y)) -> c_6() quot#(s(x),s(y)) -> c_7(quot#(minus(x,y),s(y)),minus#(x,y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: log(s(0())) -> 0() log(s(s(x))) -> s(log(s(quot(x,s(s(0())))))) minus(x,0()) -> x minus(x,s(y)) -> pred(minus(x,y)) pred(s(x)) -> x quot(0(),s(y)) -> 0() quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) Signature: {log/1,minus/2,pred/1,quot/2,log#/1,minus#/2,pred#/1,quot#/2} / {0/0,s/1,c_1/0,c_2/2,c_3/0,c_4/2,c_5/0,c_6/0,c_7/2} Obligation: Innermost basic terms: {log#,minus#,pred#,quot#}/{0,s} Applied Processor: UsableRules Proof: We replace rewrite rules by usable rules: minus(x,0()) -> x minus(x,s(y)) -> pred(minus(x,y)) pred(s(x)) -> x quot(0(),s(y)) -> 0() quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) log#(s(0())) -> c_1() log#(s(s(x))) -> c_2(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0())))) minus#(x,0()) -> c_3() minus#(x,s(y)) -> c_4(pred#(minus(x,y)),minus#(x,y)) pred#(s(x)) -> c_5() quot#(0(),s(y)) -> c_6() quot#(s(x),s(y)) -> c_7(quot#(minus(x,y),s(y)),minus#(x,y)) *** 1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: log#(s(0())) -> c_1() log#(s(s(x))) -> c_2(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0())))) minus#(x,0()) -> c_3() minus#(x,s(y)) -> c_4(pred#(minus(x,y)),minus#(x,y)) pred#(s(x)) -> c_5() quot#(0(),s(y)) -> c_6() quot#(s(x),s(y)) -> c_7(quot#(minus(x,y),s(y)),minus#(x,y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: minus(x,0()) -> x minus(x,s(y)) -> pred(minus(x,y)) pred(s(x)) -> x quot(0(),s(y)) -> 0() quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) Signature: {log/1,minus/2,pred/1,quot/2,log#/1,minus#/2,pred#/1,quot#/2} / {0/0,s/1,c_1/0,c_2/2,c_3/0,c_4/2,c_5/0,c_6/0,c_7/2} Obligation: Innermost basic terms: {log#,minus#,pred#,quot#}/{0,s} Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} Proof: We estimate the number of application of {1,3,5,6} by application of Pre({1,3,5,6}) = {2,4,7}. Here rules are labelled as follows: 1: log#(s(0())) -> c_1() 2: log#(s(s(x))) -> c_2(log#(s(quot(x,s(s(0()))))) ,quot#(x,s(s(0())))) 3: minus#(x,0()) -> c_3() 4: minus#(x,s(y)) -> c_4(pred#(minus(x,y)) ,minus#(x,y)) 5: pred#(s(x)) -> c_5() 6: quot#(0(),s(y)) -> c_6() 7: quot#(s(x),s(y)) -> c_7(quot#(minus(x,y),s(y)) ,minus#(x,y)) *** 1.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: log#(s(s(x))) -> c_2(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0())))) minus#(x,s(y)) -> c_4(pred#(minus(x,y)),minus#(x,y)) quot#(s(x),s(y)) -> c_7(quot#(minus(x,y),s(y)),minus#(x,y)) Strict TRS Rules: Weak DP Rules: log#(s(0())) -> c_1() minus#(x,0()) -> c_3() pred#(s(x)) -> c_5() quot#(0(),s(y)) -> c_6() Weak TRS Rules: minus(x,0()) -> x minus(x,s(y)) -> pred(minus(x,y)) pred(s(x)) -> x quot(0(),s(y)) -> 0() quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) Signature: {log/1,minus/2,pred/1,quot/2,log#/1,minus#/2,pred#/1,quot#/2} / {0/0,s/1,c_1/0,c_2/2,c_3/0,c_4/2,c_5/0,c_6/0,c_7/2} Obligation: Innermost basic terms: {log#,minus#,pred#,quot#}/{0,s} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:log#(s(s(x))) -> c_2(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0())))) -->_2 quot#(s(x),s(y)) -> c_7(quot#(minus(x,y),s(y)),minus#(x,y)):3 -->_2 quot#(0(),s(y)) -> c_6():7 -->_1 log#(s(0())) -> c_1():4 -->_1 log#(s(s(x))) -> c_2(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0())))):1 2:S:minus#(x,s(y)) -> c_4(pred#(minus(x,y)),minus#(x,y)) -->_1 pred#(s(x)) -> c_5():6 -->_2 minus#(x,0()) -> c_3():5 -->_2 minus#(x,s(y)) -> c_4(pred#(minus(x,y)),minus#(x,y)):2 3:S:quot#(s(x),s(y)) -> c_7(quot#(minus(x,y),s(y)),minus#(x,y)) -->_1 quot#(0(),s(y)) -> c_6():7 -->_2 minus#(x,0()) -> c_3():5 -->_1 quot#(s(x),s(y)) -> c_7(quot#(minus(x,y),s(y)),minus#(x,y)):3 -->_2 minus#(x,s(y)) -> c_4(pred#(minus(x,y)),minus#(x,y)):2 4:W:log#(s(0())) -> c_1() 5:W:minus#(x,0()) -> c_3() 6:W:pred#(s(x)) -> c_5() 7:W:quot#(0(),s(y)) -> c_6() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 4: log#(s(0())) -> c_1() 6: pred#(s(x)) -> c_5() 5: minus#(x,0()) -> c_3() 7: quot#(0(),s(y)) -> c_6() *** 1.1.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: log#(s(s(x))) -> c_2(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0())))) minus#(x,s(y)) -> c_4(pred#(minus(x,y)),minus#(x,y)) quot#(s(x),s(y)) -> c_7(quot#(minus(x,y),s(y)),minus#(x,y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: minus(x,0()) -> x minus(x,s(y)) -> pred(minus(x,y)) pred(s(x)) -> x quot(0(),s(y)) -> 0() quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) Signature: {log/1,minus/2,pred/1,quot/2,log#/1,minus#/2,pred#/1,quot#/2} / {0/0,s/1,c_1/0,c_2/2,c_3/0,c_4/2,c_5/0,c_6/0,c_7/2} Obligation: Innermost basic terms: {log#,minus#,pred#,quot#}/{0,s} Applied Processor: SimplifyRHS Proof: Consider the dependency graph 1:S:log#(s(s(x))) -> c_2(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0())))) -->_2 quot#(s(x),s(y)) -> c_7(quot#(minus(x,y),s(y)),minus#(x,y)):3 -->_1 log#(s(s(x))) -> c_2(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0())))):1 2:S:minus#(x,s(y)) -> c_4(pred#(minus(x,y)),minus#(x,y)) -->_2 minus#(x,s(y)) -> c_4(pred#(minus(x,y)),minus#(x,y)):2 3:S:quot#(s(x),s(y)) -> c_7(quot#(minus(x,y),s(y)),minus#(x,y)) -->_1 quot#(s(x),s(y)) -> c_7(quot#(minus(x,y),s(y)),minus#(x,y)):3 -->_2 minus#(x,s(y)) -> c_4(pred#(minus(x,y)),minus#(x,y)):2 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: minus#(x,s(y)) -> c_4(minus#(x,y)) *** 1.1.1.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: log#(s(s(x))) -> c_2(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0())))) minus#(x,s(y)) -> c_4(minus#(x,y)) quot#(s(x),s(y)) -> c_7(quot#(minus(x,y),s(y)),minus#(x,y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: minus(x,0()) -> x minus(x,s(y)) -> pred(minus(x,y)) pred(s(x)) -> x quot(0(),s(y)) -> 0() quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) Signature: {log/1,minus/2,pred/1,quot/2,log#/1,minus#/2,pred#/1,quot#/2} / {0/0,s/1,c_1/0,c_2/2,c_3/0,c_4/1,c_5/0,c_6/0,c_7/2} Obligation: Innermost basic terms: {log#,minus#,pred#,quot#}/{0,s} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: log#(s(s(x))) -> c_2(log#(s(quot(x,s(s(0()))))) ,quot#(x,s(s(0())))) 2: minus#(x,s(y)) -> c_4(minus#(x ,y)) 3: quot#(s(x),s(y)) -> c_7(quot#(minus(x,y),s(y)) ,minus#(x,y)) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: log#(s(s(x))) -> c_2(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0())))) minus#(x,s(y)) -> c_4(minus#(x,y)) quot#(s(x),s(y)) -> c_7(quot#(minus(x,y),s(y)),minus#(x,y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: minus(x,0()) -> x minus(x,s(y)) -> pred(minus(x,y)) pred(s(x)) -> x quot(0(),s(y)) -> 0() quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) Signature: {log/1,minus/2,pred/1,quot/2,log#/1,minus#/2,pred#/1,quot#/2} / {0/0,s/1,c_1/0,c_2/2,c_3/0,c_4/1,c_5/0,c_6/0,c_7/2} Obligation: Innermost basic terms: {log#,minus#,pred#,quot#}/{0,s} Applied Processor: NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a polynomial interpretation of kind constructor-based(mixed(2)): The following argument positions are considered usable: uargs(c_2) = {1,2}, uargs(c_4) = {1}, uargs(c_7) = {1,2} Following symbols are considered usable: {minus,pred,quot,log#,minus#,pred#,quot#} TcT has computed the following interpretation: p(0) = 0 p(log) = x1^2 p(minus) = x1 p(pred) = x1 p(quot) = x1 p(s) = 1 + x1 p(log#) = 1 + x1 + x1^2 p(minus#) = x2 p(pred#) = 0 p(quot#) = 2 + x1*x2 p(c_1) = 0 p(c_2) = x1 + x2 p(c_3) = 1 p(c_4) = x1 p(c_5) = 0 p(c_6) = 1 p(c_7) = x1 + x2 Following rules are strictly oriented: log#(s(s(x))) = 7 + 5*x + x^2 > 5 + 5*x + x^2 = c_2(log#(s(quot(x,s(s(0()))))) ,quot#(x,s(s(0())))) minus#(x,s(y)) = 1 + y > y = c_4(minus#(x,y)) quot#(s(x),s(y)) = 3 + x + x*y + y > 2 + x + x*y + y = c_7(quot#(minus(x,y),s(y)) ,minus#(x,y)) Following rules are (at-least) weakly oriented: minus(x,0()) = x >= x = x minus(x,s(y)) = x >= x = pred(minus(x,y)) pred(s(x)) = 1 + x >= x = x quot(0(),s(y)) = 0 >= 0 = 0() quot(s(x),s(y)) = 1 + x >= 1 + x = s(quot(minus(x,y),s(y))) *** 1.1.1.1.1.1.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: log#(s(s(x))) -> c_2(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0())))) minus#(x,s(y)) -> c_4(minus#(x,y)) quot#(s(x),s(y)) -> c_7(quot#(minus(x,y),s(y)),minus#(x,y)) Weak TRS Rules: minus(x,0()) -> x minus(x,s(y)) -> pred(minus(x,y)) pred(s(x)) -> x quot(0(),s(y)) -> 0() quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) Signature: {log/1,minus/2,pred/1,quot/2,log#/1,minus#/2,pred#/1,quot#/2} / {0/0,s/1,c_1/0,c_2/2,c_3/0,c_4/1,c_5/0,c_6/0,c_7/2} Obligation: Innermost basic terms: {log#,minus#,pred#,quot#}/{0,s} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: log#(s(s(x))) -> c_2(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0())))) minus#(x,s(y)) -> c_4(minus#(x,y)) quot#(s(x),s(y)) -> c_7(quot#(minus(x,y),s(y)),minus#(x,y)) Weak TRS Rules: minus(x,0()) -> x minus(x,s(y)) -> pred(minus(x,y)) pred(s(x)) -> x quot(0(),s(y)) -> 0() quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) Signature: {log/1,minus/2,pred/1,quot/2,log#/1,minus#/2,pred#/1,quot#/2} / {0/0,s/1,c_1/0,c_2/2,c_3/0,c_4/1,c_5/0,c_6/0,c_7/2} Obligation: Innermost basic terms: {log#,minus#,pred#,quot#}/{0,s} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:log#(s(s(x))) -> c_2(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0())))) -->_2 quot#(s(x),s(y)) -> c_7(quot#(minus(x,y),s(y)),minus#(x,y)):3 -->_1 log#(s(s(x))) -> c_2(log#(s(quot(x,s(s(0()))))),quot#(x,s(s(0())))):1 2:W:minus#(x,s(y)) -> c_4(minus#(x,y)) -->_1 minus#(x,s(y)) -> c_4(minus#(x,y)):2 3:W:quot#(s(x),s(y)) -> c_7(quot#(minus(x,y),s(y)),minus#(x,y)) -->_1 quot#(s(x),s(y)) -> c_7(quot#(minus(x,y),s(y)),minus#(x,y)):3 -->_2 minus#(x,s(y)) -> c_4(minus#(x,y)):2 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: log#(s(s(x))) -> c_2(log#(s(quot(x,s(s(0()))))) ,quot#(x,s(s(0())))) 3: quot#(s(x),s(y)) -> c_7(quot#(minus(x,y),s(y)) ,minus#(x,y)) 2: minus#(x,s(y)) -> c_4(minus#(x ,y)) *** 1.1.1.1.1.1.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: minus(x,0()) -> x minus(x,s(y)) -> pred(minus(x,y)) pred(s(x)) -> x quot(0(),s(y)) -> 0() quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) Signature: {log/1,minus/2,pred/1,quot/2,log#/1,minus#/2,pred#/1,quot#/2} / {0/0,s/1,c_1/0,c_2/2,c_3/0,c_4/1,c_5/0,c_6/0,c_7/2} Obligation: Innermost basic terms: {log#,minus#,pred#,quot#}/{0,s} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1).