*** 1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        gcd(0(),y) -> y
        gcd(s(x),0()) -> s(x)
        gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y))
        if_gcd(false(),s(x),s(y)) -> gcd(minus(y,x),s(x))
        if_gcd(true(),s(x),s(y)) -> gcd(minus(x,y),s(y))
        le(0(),y) -> true()
        le(s(x),0()) -> false()
        le(s(x),s(y)) -> le(x,y)
        minus(x,0()) -> x
        minus(x,s(y)) -> pred(minus(x,y))
        pred(s(x)) -> x
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {gcd/2,if_gcd/3,le/2,minus/2,pred/1} / {0/0,false/0,s/1,true/0}
      Obligation:
        Innermost
        basic terms: {gcd,if_gcd,le,minus,pred}/{0,false,s,true}
    Applied Processor:
      DependencyPairs {dpKind_ = DT}
    Proof:
      We add the following dependency tuples:
      
      Strict DPs
        gcd#(0(),y) -> c_1()
        gcd#(s(x),0()) -> c_2()
        gcd#(s(x),s(y)) -> c_3(if_gcd#(le(y,x),s(x),s(y)),le#(y,x))
        if_gcd#(false(),s(x),s(y)) -> c_4(gcd#(minus(y,x),s(x)),minus#(y,x))
        if_gcd#(true(),s(x),s(y)) -> c_5(gcd#(minus(x,y),s(y)),minus#(x,y))
        le#(0(),y) -> c_6()
        le#(s(x),0()) -> c_7()
        le#(s(x),s(y)) -> c_8(le#(x,y))
        minus#(x,0()) -> c_9()
        minus#(x,s(y)) -> c_10(pred#(minus(x,y)),minus#(x,y))
        pred#(s(x)) -> c_11()
      Weak DPs
        
      
      and mark the set of starting terms.
*** 1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        gcd#(0(),y) -> c_1()
        gcd#(s(x),0()) -> c_2()
        gcd#(s(x),s(y)) -> c_3(if_gcd#(le(y,x),s(x),s(y)),le#(y,x))
        if_gcd#(false(),s(x),s(y)) -> c_4(gcd#(minus(y,x),s(x)),minus#(y,x))
        if_gcd#(true(),s(x),s(y)) -> c_5(gcd#(minus(x,y),s(y)),minus#(x,y))
        le#(0(),y) -> c_6()
        le#(s(x),0()) -> c_7()
        le#(s(x),s(y)) -> c_8(le#(x,y))
        minus#(x,0()) -> c_9()
        minus#(x,s(y)) -> c_10(pred#(minus(x,y)),minus#(x,y))
        pred#(s(x)) -> c_11()
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        gcd(0(),y) -> y
        gcd(s(x),0()) -> s(x)
        gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y))
        if_gcd(false(),s(x),s(y)) -> gcd(minus(y,x),s(x))
        if_gcd(true(),s(x),s(y)) -> gcd(minus(x,y),s(y))
        le(0(),y) -> true()
        le(s(x),0()) -> false()
        le(s(x),s(y)) -> le(x,y)
        minus(x,0()) -> x
        minus(x,s(y)) -> pred(minus(x,y))
        pred(s(x)) -> x
      Signature:
        {gcd/2,if_gcd/3,le/2,minus/2,pred/1,gcd#/2,if_gcd#/3,le#/2,minus#/2,pred#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0,c_3/2,c_4/2,c_5/2,c_6/0,c_7/0,c_8/1,c_9/0,c_10/2,c_11/0}
      Obligation:
        Innermost
        basic terms: {gcd#,if_gcd#,le#,minus#,pred#}/{0,false,s,true}
    Applied Processor:
      UsableRules
    Proof:
      We replace rewrite rules by usable rules:
        le(0(),y) -> true()
        le(s(x),0()) -> false()
        le(s(x),s(y)) -> le(x,y)
        minus(x,0()) -> x
        minus(x,s(y)) -> pred(minus(x,y))
        pred(s(x)) -> x
        gcd#(0(),y) -> c_1()
        gcd#(s(x),0()) -> c_2()
        gcd#(s(x),s(y)) -> c_3(if_gcd#(le(y,x),s(x),s(y)),le#(y,x))
        if_gcd#(false(),s(x),s(y)) -> c_4(gcd#(minus(y,x),s(x)),minus#(y,x))
        if_gcd#(true(),s(x),s(y)) -> c_5(gcd#(minus(x,y),s(y)),minus#(x,y))
        le#(0(),y) -> c_6()
        le#(s(x),0()) -> c_7()
        le#(s(x),s(y)) -> c_8(le#(x,y))
        minus#(x,0()) -> c_9()
        minus#(x,s(y)) -> c_10(pred#(minus(x,y)),minus#(x,y))
        pred#(s(x)) -> c_11()
*** 1.1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        gcd#(0(),y) -> c_1()
        gcd#(s(x),0()) -> c_2()
        gcd#(s(x),s(y)) -> c_3(if_gcd#(le(y,x),s(x),s(y)),le#(y,x))
        if_gcd#(false(),s(x),s(y)) -> c_4(gcd#(minus(y,x),s(x)),minus#(y,x))
        if_gcd#(true(),s(x),s(y)) -> c_5(gcd#(minus(x,y),s(y)),minus#(x,y))
        le#(0(),y) -> c_6()
        le#(s(x),0()) -> c_7()
        le#(s(x),s(y)) -> c_8(le#(x,y))
        minus#(x,0()) -> c_9()
        minus#(x,s(y)) -> c_10(pred#(minus(x,y)),minus#(x,y))
        pred#(s(x)) -> c_11()
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        le(0(),y) -> true()
        le(s(x),0()) -> false()
        le(s(x),s(y)) -> le(x,y)
        minus(x,0()) -> x
        minus(x,s(y)) -> pred(minus(x,y))
        pred(s(x)) -> x
      Signature:
        {gcd/2,if_gcd/3,le/2,minus/2,pred/1,gcd#/2,if_gcd#/3,le#/2,minus#/2,pred#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0,c_3/2,c_4/2,c_5/2,c_6/0,c_7/0,c_8/1,c_9/0,c_10/2,c_11/0}
      Obligation:
        Innermost
        basic terms: {gcd#,if_gcd#,le#,minus#,pred#}/{0,false,s,true}
    Applied Processor:
      PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    Proof:
      We estimate the number of application of
        {1,2,6,7,9,11}
      by application of
        Pre({1,2,6,7,9,11}) = {3,4,5,8,10}.
      Here rules are labelled as follows:
        1:  gcd#(0(),y) -> c_1()            
        2:  gcd#(s(x),0()) -> c_2()         
        3:  gcd#(s(x),s(y)) ->              
              c_3(if_gcd#(le(y,x),s(x),s(y))
                 ,le#(y,x))                 
        4:  if_gcd#(false(),s(x),s(y)) ->   
              c_4(gcd#(minus(y,x),s(x))     
                 ,minus#(y,x))              
        5:  if_gcd#(true(),s(x),s(y)) ->    
              c_5(gcd#(minus(x,y),s(y))     
                 ,minus#(x,y))              
        6:  le#(0(),y) -> c_6()             
        7:  le#(s(x),0()) -> c_7()          
        8:  le#(s(x),s(y)) -> c_8(le#(x,y)) 
        9:  minus#(x,0()) -> c_9()          
        10: minus#(x,s(y)) ->               
              c_10(pred#(minus(x,y))        
                  ,minus#(x,y))             
        11: pred#(s(x)) -> c_11()           
*** 1.1.1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        gcd#(s(x),s(y)) -> c_3(if_gcd#(le(y,x),s(x),s(y)),le#(y,x))
        if_gcd#(false(),s(x),s(y)) -> c_4(gcd#(minus(y,x),s(x)),minus#(y,x))
        if_gcd#(true(),s(x),s(y)) -> c_5(gcd#(minus(x,y),s(y)),minus#(x,y))
        le#(s(x),s(y)) -> c_8(le#(x,y))
        minus#(x,s(y)) -> c_10(pred#(minus(x,y)),minus#(x,y))
      Strict TRS Rules:
        
      Weak DP Rules:
        gcd#(0(),y) -> c_1()
        gcd#(s(x),0()) -> c_2()
        le#(0(),y) -> c_6()
        le#(s(x),0()) -> c_7()
        minus#(x,0()) -> c_9()
        pred#(s(x)) -> c_11()
      Weak TRS Rules:
        le(0(),y) -> true()
        le(s(x),0()) -> false()
        le(s(x),s(y)) -> le(x,y)
        minus(x,0()) -> x
        minus(x,s(y)) -> pred(minus(x,y))
        pred(s(x)) -> x
      Signature:
        {gcd/2,if_gcd/3,le/2,minus/2,pred/1,gcd#/2,if_gcd#/3,le#/2,minus#/2,pred#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0,c_3/2,c_4/2,c_5/2,c_6/0,c_7/0,c_8/1,c_9/0,c_10/2,c_11/0}
      Obligation:
        Innermost
        basic terms: {gcd#,if_gcd#,le#,minus#,pred#}/{0,false,s,true}
    Applied Processor:
      RemoveWeakSuffixes
    Proof:
      Consider the dependency graph
        1:S:gcd#(s(x),s(y)) -> c_3(if_gcd#(le(y,x),s(x),s(y)),le#(y,x))
           -->_2 le#(s(x),s(y)) -> c_8(le#(x,y)):4
           -->_1 if_gcd#(true(),s(x),s(y)) -> c_5(gcd#(minus(x,y),s(y)),minus#(x,y)):3
           -->_1 if_gcd#(false(),s(x),s(y)) -> c_4(gcd#(minus(y,x),s(x)),minus#(y,x)):2
           -->_2 le#(s(x),0()) -> c_7():9
           -->_2 le#(0(),y) -> c_6():8
        
        2:S:if_gcd#(false(),s(x),s(y)) -> c_4(gcd#(minus(y,x),s(x)),minus#(y,x))
           -->_2 minus#(x,s(y)) -> c_10(pred#(minus(x,y)),minus#(x,y)):5
           -->_2 minus#(x,0()) -> c_9():10
           -->_1 gcd#(0(),y) -> c_1():6
           -->_1 gcd#(s(x),s(y)) -> c_3(if_gcd#(le(y,x),s(x),s(y)),le#(y,x)):1
        
        3:S:if_gcd#(true(),s(x),s(y)) -> c_5(gcd#(minus(x,y),s(y)),minus#(x,y))
           -->_2 minus#(x,s(y)) -> c_10(pred#(minus(x,y)),minus#(x,y)):5
           -->_2 minus#(x,0()) -> c_9():10
           -->_1 gcd#(0(),y) -> c_1():6
           -->_1 gcd#(s(x),s(y)) -> c_3(if_gcd#(le(y,x),s(x),s(y)),le#(y,x)):1
        
        4:S:le#(s(x),s(y)) -> c_8(le#(x,y))
           -->_1 le#(s(x),0()) -> c_7():9
           -->_1 le#(0(),y) -> c_6():8
           -->_1 le#(s(x),s(y)) -> c_8(le#(x,y)):4
        
        5:S:minus#(x,s(y)) -> c_10(pred#(minus(x,y)),minus#(x,y))
           -->_1 pred#(s(x)) -> c_11():11
           -->_2 minus#(x,0()) -> c_9():10
           -->_2 minus#(x,s(y)) -> c_10(pred#(minus(x,y)),minus#(x,y)):5
        
        6:W:gcd#(0(),y) -> c_1()
           
        
        7:W:gcd#(s(x),0()) -> c_2()
           
        
        8:W:le#(0(),y) -> c_6()
           
        
        9:W:le#(s(x),0()) -> c_7()
           
        
        10:W:minus#(x,0()) -> c_9()
           
        
        11:W:pred#(s(x)) -> c_11()
           
        
      The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
        7:  gcd#(s(x),0()) -> c_2()
        6:  gcd#(0(),y) -> c_1()   
        10: minus#(x,0()) -> c_9() 
        11: pred#(s(x)) -> c_11()  
        8:  le#(0(),y) -> c_6()    
        9:  le#(s(x),0()) -> c_7() 
*** 1.1.1.1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        gcd#(s(x),s(y)) -> c_3(if_gcd#(le(y,x),s(x),s(y)),le#(y,x))
        if_gcd#(false(),s(x),s(y)) -> c_4(gcd#(minus(y,x),s(x)),minus#(y,x))
        if_gcd#(true(),s(x),s(y)) -> c_5(gcd#(minus(x,y),s(y)),minus#(x,y))
        le#(s(x),s(y)) -> c_8(le#(x,y))
        minus#(x,s(y)) -> c_10(pred#(minus(x,y)),minus#(x,y))
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        le(0(),y) -> true()
        le(s(x),0()) -> false()
        le(s(x),s(y)) -> le(x,y)
        minus(x,0()) -> x
        minus(x,s(y)) -> pred(minus(x,y))
        pred(s(x)) -> x
      Signature:
        {gcd/2,if_gcd/3,le/2,minus/2,pred/1,gcd#/2,if_gcd#/3,le#/2,minus#/2,pred#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0,c_3/2,c_4/2,c_5/2,c_6/0,c_7/0,c_8/1,c_9/0,c_10/2,c_11/0}
      Obligation:
        Innermost
        basic terms: {gcd#,if_gcd#,le#,minus#,pred#}/{0,false,s,true}
    Applied Processor:
      SimplifyRHS
    Proof:
      Consider the dependency graph
        1:S:gcd#(s(x),s(y)) -> c_3(if_gcd#(le(y,x),s(x),s(y)),le#(y,x))
           -->_2 le#(s(x),s(y)) -> c_8(le#(x,y)):4
           -->_1 if_gcd#(true(),s(x),s(y)) -> c_5(gcd#(minus(x,y),s(y)),minus#(x,y)):3
           -->_1 if_gcd#(false(),s(x),s(y)) -> c_4(gcd#(minus(y,x),s(x)),minus#(y,x)):2
        
        2:S:if_gcd#(false(),s(x),s(y)) -> c_4(gcd#(minus(y,x),s(x)),minus#(y,x))
           -->_2 minus#(x,s(y)) -> c_10(pred#(minus(x,y)),minus#(x,y)):5
           -->_1 gcd#(s(x),s(y)) -> c_3(if_gcd#(le(y,x),s(x),s(y)),le#(y,x)):1
        
        3:S:if_gcd#(true(),s(x),s(y)) -> c_5(gcd#(minus(x,y),s(y)),minus#(x,y))
           -->_2 minus#(x,s(y)) -> c_10(pred#(minus(x,y)),minus#(x,y)):5
           -->_1 gcd#(s(x),s(y)) -> c_3(if_gcd#(le(y,x),s(x),s(y)),le#(y,x)):1
        
        4:S:le#(s(x),s(y)) -> c_8(le#(x,y))
           -->_1 le#(s(x),s(y)) -> c_8(le#(x,y)):4
        
        5:S:minus#(x,s(y)) -> c_10(pred#(minus(x,y)),minus#(x,y))
           -->_2 minus#(x,s(y)) -> c_10(pred#(minus(x,y)),minus#(x,y)):5
        
      Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
        minus#(x,s(y)) -> c_10(minus#(x,y))
*** 1.1.1.1.1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        gcd#(s(x),s(y)) -> c_3(if_gcd#(le(y,x),s(x),s(y)),le#(y,x))
        if_gcd#(false(),s(x),s(y)) -> c_4(gcd#(minus(y,x),s(x)),minus#(y,x))
        if_gcd#(true(),s(x),s(y)) -> c_5(gcd#(minus(x,y),s(y)),minus#(x,y))
        le#(s(x),s(y)) -> c_8(le#(x,y))
        minus#(x,s(y)) -> c_10(minus#(x,y))
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        le(0(),y) -> true()
        le(s(x),0()) -> false()
        le(s(x),s(y)) -> le(x,y)
        minus(x,0()) -> x
        minus(x,s(y)) -> pred(minus(x,y))
        pred(s(x)) -> x
      Signature:
        {gcd/2,if_gcd/3,le/2,minus/2,pred/1,gcd#/2,if_gcd#/3,le#/2,minus#/2,pred#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0,c_3/2,c_4/2,c_5/2,c_6/0,c_7/0,c_8/1,c_9/0,c_10/1,c_11/0}
      Obligation:
        Innermost
        basic terms: {gcd#,if_gcd#,le#,minus#,pred#}/{0,false,s,true}
    Applied Processor:
      PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 3, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
    Proof:
      We first use the processor NaturalMI {miDimension = 3, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
        4: le#(s(x),s(y)) -> c_8(le#(x,y))
        
      The strictly oriented rules are moved into the weak component.
  *** 1.1.1.1.1.1.1 Progress [(?,O(n^2))]  ***
      Considered Problem:
        Strict DP Rules:
          gcd#(s(x),s(y)) -> c_3(if_gcd#(le(y,x),s(x),s(y)),le#(y,x))
          if_gcd#(false(),s(x),s(y)) -> c_4(gcd#(minus(y,x),s(x)),minus#(y,x))
          if_gcd#(true(),s(x),s(y)) -> c_5(gcd#(minus(x,y),s(y)),minus#(x,y))
          le#(s(x),s(y)) -> c_8(le#(x,y))
          minus#(x,s(y)) -> c_10(minus#(x,y))
        Strict TRS Rules:
          
        Weak DP Rules:
          
        Weak TRS Rules:
          le(0(),y) -> true()
          le(s(x),0()) -> false()
          le(s(x),s(y)) -> le(x,y)
          minus(x,0()) -> x
          minus(x,s(y)) -> pred(minus(x,y))
          pred(s(x)) -> x
        Signature:
          {gcd/2,if_gcd/3,le/2,minus/2,pred/1,gcd#/2,if_gcd#/3,le#/2,minus#/2,pred#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0,c_3/2,c_4/2,c_5/2,c_6/0,c_7/0,c_8/1,c_9/0,c_10/1,c_11/0}
        Obligation:
          Innermost
          basic terms: {gcd#,if_gcd#,le#,minus#,pred#}/{0,false,s,true}
      Applied Processor:
        NaturalMI {miDimension = 3, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
      Proof:
        We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 2 non-zero interpretation-entries in the diagonal of the component-wise maxima):
        The following argument positions are considered usable:
          uargs(c_3) = {1,2},
          uargs(c_4) = {1,2},
          uargs(c_5) = {1,2},
          uargs(c_8) = {1},
          uargs(c_10) = {1}
        
        Following symbols are considered usable:
          {le,minus,pred,gcd#,if_gcd#,le#,minus#,pred#}
        TcT has computed the following interpretation:
                p(0) = [1]                           
                       [0]                           
                       [0]                           
            p(false) = [1]                           
                       [0]                           
                       [0]                           
              p(gcd) = [0]                           
                       [0]                           
                       [0]                           
           p(if_gcd) = [0]                           
                       [0]                           
                       [0]                           
               p(le) = [1 0 0]      [1]              
                       [0 0 0] x1 + [1]              
                       [1 1 0]      [1]              
            p(minus) = [1 0 0]      [0 0 0]      [1] 
                       [1 1 0] x1 + [0 0 1] x2 + [0] 
                       [0 1 1]      [0 0 0]      [0] 
             p(pred) = [1 0 0]      [0]              
                       [1 0 0] x1 + [0]              
                       [0 0 1]      [0]              
                p(s) = [1 1 1]      [0]              
                       [0 0 1] x1 + [0]              
                       [0 0 1]      [1]              
             p(true) = [0]                           
                       [0]                           
                       [0]                           
             p(gcd#) = [1 0 1]      [1 0 0]      [0] 
                       [0 0 0] x1 + [0 1 1] x2 + [0] 
                       [0 0 0]      [1 0 1]      [1] 
          p(if_gcd#) = [0 0 0]      [1 0 0]      [1 0
                       0]      [1]                   
                       [0 0 0] x1 + [1 0 1] x2 + [0 0
                       0] x3 + [0]                   
                       [0 0 1]      [1 1 1]      [1 1
                       1]      [0]                   
              p(le#) = [0 0 0]      [0 0 1]      [0] 
                       [1 0 0] x1 + [0 0 0] x2 + [0] 
                       [0 0 0]      [0 1 1]      [1] 
           p(minus#) = [0 0 0]      [0 0 0]      [0] 
                       [0 0 0] x1 + [1 1 1] x2 + [0] 
                       [1 1 0]      [0 0 0]      [0] 
            p(pred#) = [0]                           
                       [0]                           
                       [0]                           
              p(c_1) = [0]                           
                       [0]                           
                       [0]                           
              p(c_2) = [0]                           
                       [0]                           
                       [0]                           
              p(c_3) = [1 0 0]      [1 0 0]      [0] 
                       [0 0 0] x1 + [0 0 0] x2 + [1] 
                       [0 0 0]      [0 1 0]      [0] 
              p(c_4) = [1 0 0]      [1 0 0]      [0] 
                       [0 0 0] x1 + [0 1 0] x2 + [1] 
                       [1 1 0]      [0 0 0]      [0] 
              p(c_5) = [1 0 0]      [1 0 0]      [0] 
                       [0 0 0] x1 + [0 0 1] x2 + [0] 
                       [1 0 0]      [0 0 0]      [0] 
              p(c_6) = [0]                           
                       [0]                           
                       [0]                           
              p(c_7) = [0]                           
                       [0]                           
                       [0]                           
              p(c_8) = [1 0 0]      [0]              
                       [0 1 0] x1 + [0]              
                       [1 0 0]      [0]              
              p(c_9) = [0]                           
                       [0]                           
                       [0]                           
             p(c_10) = [1 0 0]      [0]              
                       [0 0 0] x1 + [0]              
                       [0 0 1]      [0]              
             p(c_11) = [0]                           
                       [0]                           
                       [0]                           
        
        Following rules are strictly oriented:
        le#(s(x),s(y)) = [0 0 0]     [0 0 1]     [1]
                         [1 1 1] x + [0 0 0] y + [0]
                         [0 0 0]     [0 0 2]     [2]
                       > [0 0 0]     [0 0 1]     [0]
                         [1 0 0] x + [0 0 0] y + [0]
                         [0 0 0]     [0 0 1]     [0]
                       = c_8(le#(x,y))              
        
        
        Following rules are (at-least) weakly oriented:
                   gcd#(s(x),s(y)) =  [1 1 2]     [1 1 1]     [1]   
                                      [0 0 0] x + [0 0 2] y + [1]   
                                      [0 0 0]     [1 1 2]     [2]   
                                   >= [1 1 2]     [1 1 1]     [1]   
                                      [0 0 0] x + [0 0 0] y + [1]   
                                      [0 0 0]     [1 0 0]     [0]   
                                   =  c_3(if_gcd#(le(y,x),s(x),s(y))
                                         ,le#(y,x))                 
        
        if_gcd#(false(),s(x),s(y)) =  [1 1 1]     [1 1 1]     [1]   
                                      [1 1 2] x + [0 0 0] y + [1]   
                                      [1 1 3]     [1 1 3]     [2]   
                                   >= [1 1 1]     [1 1 1]     [1]   
                                      [1 1 1] x + [0 0 0] y + [1]   
                                      [1 1 3]     [1 1 1]     [2]   
                                   =  c_4(gcd#(minus(y,x),s(x))     
                                         ,minus#(y,x))              
        
         if_gcd#(true(),s(x),s(y)) =  [1 1 1]     [1 1 1]     [1]   
                                      [1 1 2] x + [0 0 0] y + [1]   
                                      [1 1 3]     [1 1 3]     [2]   
                                   >= [1 1 1]     [1 1 1]     [1]   
                                      [1 1 0] x + [0 0 0] y + [0]   
                                      [1 1 1]     [1 1 1]     [1]   
                                   =  c_5(gcd#(minus(x,y),s(y))     
                                         ,minus#(x,y))              
        
                    minus#(x,s(y)) =  [0 0 0]     [0 0 0]     [0]   
                                      [0 0 0] x + [1 1 3] y + [1]   
                                      [1 1 0]     [0 0 0]     [0]   
                                   >= [0 0 0]     [0]               
                                      [0 0 0] x + [0]               
                                      [1 1 0]     [0]               
                                   =  c_10(minus#(x,y))             
        
                         le(0(),y) =  [2]                           
                                      [1]                           
                                      [2]                           
                                   >= [0]                           
                                      [0]                           
                                      [0]                           
                                   =  true()                        
        
                      le(s(x),0()) =  [1 1 1]     [1]               
                                      [0 0 0] x + [1]               
                                      [1 1 2]     [1]               
                                   >= [1]                           
                                      [0]                           
                                      [0]                           
                                   =  false()                       
        
                     le(s(x),s(y)) =  [1 1 1]     [1]               
                                      [0 0 0] x + [1]               
                                      [1 1 2]     [1]               
                                   >= [1 0 0]     [1]               
                                      [0 0 0] x + [1]               
                                      [1 1 0]     [1]               
                                   =  le(x,y)                       
        
                      minus(x,0()) =  [1 0 0]     [1]               
                                      [1 1 0] x + [0]               
                                      [0 1 1]     [0]               
                                   >= [1 0 0]     [0]               
                                      [0 1 0] x + [0]               
                                      [0 0 1]     [0]               
                                   =  x                             
        
                     minus(x,s(y)) =  [1 0 0]     [0 0 0]     [1]   
                                      [1 1 0] x + [0 0 1] y + [1]   
                                      [0 1 1]     [0 0 0]     [0]   
                                   >= [1 0 0]     [1]               
                                      [1 0 0] x + [1]               
                                      [0 1 1]     [0]               
                                   =  pred(minus(x,y))              
        
                        pred(s(x)) =  [1 1 1]     [0]               
                                      [1 1 1] x + [0]               
                                      [0 0 1]     [1]               
                                   >= [1 0 0]     [0]               
                                      [0 1 0] x + [0]               
                                      [0 0 1]     [0]               
                                   =  x                             
        
  *** 1.1.1.1.1.1.1.1 Progress [(?,O(1))]  ***
      Considered Problem:
        Strict DP Rules:
          gcd#(s(x),s(y)) -> c_3(if_gcd#(le(y,x),s(x),s(y)),le#(y,x))
          if_gcd#(false(),s(x),s(y)) -> c_4(gcd#(minus(y,x),s(x)),minus#(y,x))
          if_gcd#(true(),s(x),s(y)) -> c_5(gcd#(minus(x,y),s(y)),minus#(x,y))
          minus#(x,s(y)) -> c_10(minus#(x,y))
        Strict TRS Rules:
          
        Weak DP Rules:
          le#(s(x),s(y)) -> c_8(le#(x,y))
        Weak TRS Rules:
          le(0(),y) -> true()
          le(s(x),0()) -> false()
          le(s(x),s(y)) -> le(x,y)
          minus(x,0()) -> x
          minus(x,s(y)) -> pred(minus(x,y))
          pred(s(x)) -> x
        Signature:
          {gcd/2,if_gcd/3,le/2,minus/2,pred/1,gcd#/2,if_gcd#/3,le#/2,minus#/2,pred#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0,c_3/2,c_4/2,c_5/2,c_6/0,c_7/0,c_8/1,c_9/0,c_10/1,c_11/0}
        Obligation:
          Innermost
          basic terms: {gcd#,if_gcd#,le#,minus#,pred#}/{0,false,s,true}
      Applied Processor:
        Assumption
      Proof:
        ()
  
  *** 1.1.1.1.1.1.2 Progress [(?,O(n^2))]  ***
      Considered Problem:
        Strict DP Rules:
          gcd#(s(x),s(y)) -> c_3(if_gcd#(le(y,x),s(x),s(y)),le#(y,x))
          if_gcd#(false(),s(x),s(y)) -> c_4(gcd#(minus(y,x),s(x)),minus#(y,x))
          if_gcd#(true(),s(x),s(y)) -> c_5(gcd#(minus(x,y),s(y)),minus#(x,y))
          minus#(x,s(y)) -> c_10(minus#(x,y))
        Strict TRS Rules:
          
        Weak DP Rules:
          le#(s(x),s(y)) -> c_8(le#(x,y))
        Weak TRS Rules:
          le(0(),y) -> true()
          le(s(x),0()) -> false()
          le(s(x),s(y)) -> le(x,y)
          minus(x,0()) -> x
          minus(x,s(y)) -> pred(minus(x,y))
          pred(s(x)) -> x
        Signature:
          {gcd/2,if_gcd/3,le/2,minus/2,pred/1,gcd#/2,if_gcd#/3,le#/2,minus#/2,pred#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0,c_3/2,c_4/2,c_5/2,c_6/0,c_7/0,c_8/1,c_9/0,c_10/1,c_11/0}
        Obligation:
          Innermost
          basic terms: {gcd#,if_gcd#,le#,minus#,pred#}/{0,false,s,true}
      Applied Processor:
        RemoveWeakSuffixes
      Proof:
        Consider the dependency graph
          1:S:gcd#(s(x),s(y)) -> c_3(if_gcd#(le(y,x),s(x),s(y)),le#(y,x))
             -->_2 le#(s(x),s(y)) -> c_8(le#(x,y)):5
             -->_1 if_gcd#(true(),s(x),s(y)) -> c_5(gcd#(minus(x,y),s(y)),minus#(x,y)):3
             -->_1 if_gcd#(false(),s(x),s(y)) -> c_4(gcd#(minus(y,x),s(x)),minus#(y,x)):2
          
          2:S:if_gcd#(false(),s(x),s(y)) -> c_4(gcd#(minus(y,x),s(x)),minus#(y,x))
             -->_2 minus#(x,s(y)) -> c_10(minus#(x,y)):4
             -->_1 gcd#(s(x),s(y)) -> c_3(if_gcd#(le(y,x),s(x),s(y)),le#(y,x)):1
          
          3:S:if_gcd#(true(),s(x),s(y)) -> c_5(gcd#(minus(x,y),s(y)),minus#(x,y))
             -->_2 minus#(x,s(y)) -> c_10(minus#(x,y)):4
             -->_1 gcd#(s(x),s(y)) -> c_3(if_gcd#(le(y,x),s(x),s(y)),le#(y,x)):1
          
          4:S:minus#(x,s(y)) -> c_10(minus#(x,y))
             -->_1 minus#(x,s(y)) -> c_10(minus#(x,y)):4
          
          5:W:le#(s(x),s(y)) -> c_8(le#(x,y))
             -->_1 le#(s(x),s(y)) -> c_8(le#(x,y)):5
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          5: le#(s(x),s(y)) -> c_8(le#(x,y))
  *** 1.1.1.1.1.1.2.1 Progress [(?,O(n^2))]  ***
      Considered Problem:
        Strict DP Rules:
          gcd#(s(x),s(y)) -> c_3(if_gcd#(le(y,x),s(x),s(y)),le#(y,x))
          if_gcd#(false(),s(x),s(y)) -> c_4(gcd#(minus(y,x),s(x)),minus#(y,x))
          if_gcd#(true(),s(x),s(y)) -> c_5(gcd#(minus(x,y),s(y)),minus#(x,y))
          minus#(x,s(y)) -> c_10(minus#(x,y))
        Strict TRS Rules:
          
        Weak DP Rules:
          
        Weak TRS Rules:
          le(0(),y) -> true()
          le(s(x),0()) -> false()
          le(s(x),s(y)) -> le(x,y)
          minus(x,0()) -> x
          minus(x,s(y)) -> pred(minus(x,y))
          pred(s(x)) -> x
        Signature:
          {gcd/2,if_gcd/3,le/2,minus/2,pred/1,gcd#/2,if_gcd#/3,le#/2,minus#/2,pred#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0,c_3/2,c_4/2,c_5/2,c_6/0,c_7/0,c_8/1,c_9/0,c_10/1,c_11/0}
        Obligation:
          Innermost
          basic terms: {gcd#,if_gcd#,le#,minus#,pred#}/{0,false,s,true}
      Applied Processor:
        SimplifyRHS
      Proof:
        Consider the dependency graph
          1:S:gcd#(s(x),s(y)) -> c_3(if_gcd#(le(y,x),s(x),s(y)),le#(y,x))
             -->_1 if_gcd#(true(),s(x),s(y)) -> c_5(gcd#(minus(x,y),s(y)),minus#(x,y)):3
             -->_1 if_gcd#(false(),s(x),s(y)) -> c_4(gcd#(minus(y,x),s(x)),minus#(y,x)):2
          
          2:S:if_gcd#(false(),s(x),s(y)) -> c_4(gcd#(minus(y,x),s(x)),minus#(y,x))
             -->_2 minus#(x,s(y)) -> c_10(minus#(x,y)):4
             -->_1 gcd#(s(x),s(y)) -> c_3(if_gcd#(le(y,x),s(x),s(y)),le#(y,x)):1
          
          3:S:if_gcd#(true(),s(x),s(y)) -> c_5(gcd#(minus(x,y),s(y)),minus#(x,y))
             -->_2 minus#(x,s(y)) -> c_10(minus#(x,y)):4
             -->_1 gcd#(s(x),s(y)) -> c_3(if_gcd#(le(y,x),s(x),s(y)),le#(y,x)):1
          
          4:S:minus#(x,s(y)) -> c_10(minus#(x,y))
             -->_1 minus#(x,s(y)) -> c_10(minus#(x,y)):4
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          gcd#(s(x),s(y)) -> c_3(if_gcd#(le(y,x),s(x),s(y)))
  *** 1.1.1.1.1.1.2.1.1 Progress [(?,O(n^2))]  ***
      Considered Problem:
        Strict DP Rules:
          gcd#(s(x),s(y)) -> c_3(if_gcd#(le(y,x),s(x),s(y)))
          if_gcd#(false(),s(x),s(y)) -> c_4(gcd#(minus(y,x),s(x)),minus#(y,x))
          if_gcd#(true(),s(x),s(y)) -> c_5(gcd#(minus(x,y),s(y)),minus#(x,y))
          minus#(x,s(y)) -> c_10(minus#(x,y))
        Strict TRS Rules:
          
        Weak DP Rules:
          
        Weak TRS Rules:
          le(0(),y) -> true()
          le(s(x),0()) -> false()
          le(s(x),s(y)) -> le(x,y)
          minus(x,0()) -> x
          minus(x,s(y)) -> pred(minus(x,y))
          pred(s(x)) -> x
        Signature:
          {gcd/2,if_gcd/3,le/2,minus/2,pred/1,gcd#/2,if_gcd#/3,le#/2,minus#/2,pred#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/2,c_5/2,c_6/0,c_7/0,c_8/1,c_9/0,c_10/1,c_11/0}
        Obligation:
          Innermost
          basic terms: {gcd#,if_gcd#,le#,minus#,pred#}/{0,false,s,true}
      Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
      Proof:
        We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
          1: gcd#(s(x),s(y)) ->               
               c_3(if_gcd#(le(y,x),s(x),s(y)))
          4: minus#(x,s(y)) -> c_10(minus#(x  
                                          ,y))
          
        Consider the set of all dependency pairs
          1: gcd#(s(x),s(y)) ->               
               c_3(if_gcd#(le(y,x),s(x),s(y)))
          2: if_gcd#(false(),s(x),s(y)) ->    
               c_4(gcd#(minus(y,x),s(x))      
                  ,minus#(y,x))               
          3: if_gcd#(true(),s(x),s(y)) ->     
               c_5(gcd#(minus(x,y),s(y))      
                  ,minus#(x,y))               
          4: minus#(x,s(y)) -> c_10(minus#(x  
                                          ,y))
        Processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}induces the complexity certificateTIME (?,O(n^2))
        SPACE(?,?)on application of the dependency pairs
          {1,4}
        These cover all (indirect) predecessors of dependency pairs
          {1,2,3,4}
        their number of applications is equally bounded.
        The dependency pairs are shifted into the weak component.
    *** 1.1.1.1.1.1.2.1.1.1 Progress [(?,O(n^2))]  ***
        Considered Problem:
          Strict DP Rules:
            gcd#(s(x),s(y)) -> c_3(if_gcd#(le(y,x),s(x),s(y)))
            if_gcd#(false(),s(x),s(y)) -> c_4(gcd#(minus(y,x),s(x)),minus#(y,x))
            if_gcd#(true(),s(x),s(y)) -> c_5(gcd#(minus(x,y),s(y)),minus#(x,y))
            minus#(x,s(y)) -> c_10(minus#(x,y))
          Strict TRS Rules:
            
          Weak DP Rules:
            
          Weak TRS Rules:
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            minus(x,0()) -> x
            minus(x,s(y)) -> pred(minus(x,y))
            pred(s(x)) -> x
          Signature:
            {gcd/2,if_gcd/3,le/2,minus/2,pred/1,gcd#/2,if_gcd#/3,le#/2,minus#/2,pred#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/2,c_5/2,c_6/0,c_7/0,c_8/1,c_9/0,c_10/1,c_11/0}
          Obligation:
            Innermost
            basic terms: {gcd#,if_gcd#,le#,minus#,pred#}/{0,false,s,true}
        Applied Processor:
          NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
        Proof:
          We apply a polynomial interpretation of kind constructor-based(mixed(2)):
          The following argument positions are considered usable:
            uargs(c_3) = {1},
            uargs(c_4) = {1,2},
            uargs(c_5) = {1,2},
            uargs(c_10) = {1}
          
          Following symbols are considered usable:
            {minus,pred,gcd#,if_gcd#,le#,minus#,pred#}
          TcT has computed the following interpretation:
                  p(0) = 0                             
              p(false) = 0                             
                p(gcd) = 2 + x1*x2                     
             p(if_gcd) = x1*x3 + x1^2 + 2*x2^2 + 2*x3^2
                 p(le) = 0                             
              p(minus) = x1                            
               p(pred) = x1                            
                  p(s) = 1 + x1                        
               p(true) = 0                             
               p(gcd#) = 2 + x1*x2                     
            p(if_gcd#) = 1 + x2*x3                     
                p(le#) = x1^2 + x2 + x2^2              
             p(minus#) = x2                            
              p(pred#) = 2 + 2*x1                      
                p(c_1) = 1                             
                p(c_2) = 1                             
                p(c_3) = x1                            
                p(c_4) = x1 + x2                       
                p(c_5) = x1 + x2                       
                p(c_6) = 0                             
                p(c_7) = 1                             
                p(c_8) = 1                             
                p(c_9) = 0                             
               p(c_10) = x1                            
               p(c_11) = 0                             
          
          Following rules are strictly oriented:
          gcd#(s(x),s(y)) = 3 + x + x*y + y                
                          > 2 + x + x*y + y                
                          = c_3(if_gcd#(le(y,x),s(x),s(y)))
          
           minus#(x,s(y)) = 1 + y                          
                          > y                              
                          = c_10(minus#(x,y))              
          
          
          Following rules are (at-least) weakly oriented:
          if_gcd#(false(),s(x),s(y)) =  2 + x + x*y + y          
                                     >= 2 + x + x*y + y          
                                     =  c_4(gcd#(minus(y,x),s(x))
                                           ,minus#(y,x))         
          
           if_gcd#(true(),s(x),s(y)) =  2 + x + x*y + y          
                                     >= 2 + x + x*y + y          
                                     =  c_5(gcd#(minus(x,y),s(y))
                                           ,minus#(x,y))         
          
                        minus(x,0()) =  x                        
                                     >= x                        
                                     =  x                        
          
                       minus(x,s(y)) =  x                        
                                     >= x                        
                                     =  pred(minus(x,y))         
          
                          pred(s(x)) =  1 + x                    
                                     >= x                        
                                     =  x                        
          
    *** 1.1.1.1.1.1.2.1.1.1.1 Progress [(?,O(1))]  ***
        Considered Problem:
          Strict DP Rules:
            if_gcd#(false(),s(x),s(y)) -> c_4(gcd#(minus(y,x),s(x)),minus#(y,x))
            if_gcd#(true(),s(x),s(y)) -> c_5(gcd#(minus(x,y),s(y)),minus#(x,y))
          Strict TRS Rules:
            
          Weak DP Rules:
            gcd#(s(x),s(y)) -> c_3(if_gcd#(le(y,x),s(x),s(y)))
            minus#(x,s(y)) -> c_10(minus#(x,y))
          Weak TRS Rules:
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            minus(x,0()) -> x
            minus(x,s(y)) -> pred(minus(x,y))
            pred(s(x)) -> x
          Signature:
            {gcd/2,if_gcd/3,le/2,minus/2,pred/1,gcd#/2,if_gcd#/3,le#/2,minus#/2,pred#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/2,c_5/2,c_6/0,c_7/0,c_8/1,c_9/0,c_10/1,c_11/0}
          Obligation:
            Innermost
            basic terms: {gcd#,if_gcd#,le#,minus#,pred#}/{0,false,s,true}
        Applied Processor:
          Assumption
        Proof:
          ()
    
    *** 1.1.1.1.1.1.2.1.1.2 Progress [(O(1),O(1))]  ***
        Considered Problem:
          Strict DP Rules:
            
          Strict TRS Rules:
            
          Weak DP Rules:
            gcd#(s(x),s(y)) -> c_3(if_gcd#(le(y,x),s(x),s(y)))
            if_gcd#(false(),s(x),s(y)) -> c_4(gcd#(minus(y,x),s(x)),minus#(y,x))
            if_gcd#(true(),s(x),s(y)) -> c_5(gcd#(minus(x,y),s(y)),minus#(x,y))
            minus#(x,s(y)) -> c_10(minus#(x,y))
          Weak TRS Rules:
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            minus(x,0()) -> x
            minus(x,s(y)) -> pred(minus(x,y))
            pred(s(x)) -> x
          Signature:
            {gcd/2,if_gcd/3,le/2,minus/2,pred/1,gcd#/2,if_gcd#/3,le#/2,minus#/2,pred#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/2,c_5/2,c_6/0,c_7/0,c_8/1,c_9/0,c_10/1,c_11/0}
          Obligation:
            Innermost
            basic terms: {gcd#,if_gcd#,le#,minus#,pred#}/{0,false,s,true}
        Applied Processor:
          RemoveWeakSuffixes
        Proof:
          Consider the dependency graph
            1:W:gcd#(s(x),s(y)) -> c_3(if_gcd#(le(y,x),s(x),s(y)))
               -->_1 if_gcd#(true(),s(x),s(y)) -> c_5(gcd#(minus(x,y),s(y)),minus#(x,y)):3
               -->_1 if_gcd#(false(),s(x),s(y)) -> c_4(gcd#(minus(y,x),s(x)),minus#(y,x)):2
            
            2:W:if_gcd#(false(),s(x),s(y)) -> c_4(gcd#(minus(y,x),s(x)),minus#(y,x))
               -->_2 minus#(x,s(y)) -> c_10(minus#(x,y)):4
               -->_1 gcd#(s(x),s(y)) -> c_3(if_gcd#(le(y,x),s(x),s(y))):1
            
            3:W:if_gcd#(true(),s(x),s(y)) -> c_5(gcd#(minus(x,y),s(y)),minus#(x,y))
               -->_2 minus#(x,s(y)) -> c_10(minus#(x,y)):4
               -->_1 gcd#(s(x),s(y)) -> c_3(if_gcd#(le(y,x),s(x),s(y))):1
            
            4:W:minus#(x,s(y)) -> c_10(minus#(x,y))
               -->_1 minus#(x,s(y)) -> c_10(minus#(x,y)):4
            
          The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
            1: gcd#(s(x),s(y)) ->               
                 c_3(if_gcd#(le(y,x),s(x),s(y)))
            3: if_gcd#(true(),s(x),s(y)) ->     
                 c_5(gcd#(minus(x,y),s(y))      
                    ,minus#(x,y))               
            2: if_gcd#(false(),s(x),s(y)) ->    
                 c_4(gcd#(minus(y,x),s(x))      
                    ,minus#(y,x))               
            4: minus#(x,s(y)) -> c_10(minus#(x  
                                            ,y))
    *** 1.1.1.1.1.1.2.1.1.2.1 Progress [(O(1),O(1))]  ***
        Considered Problem:
          Strict DP Rules:
            
          Strict TRS Rules:
            
          Weak DP Rules:
            
          Weak TRS Rules:
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            minus(x,0()) -> x
            minus(x,s(y)) -> pred(minus(x,y))
            pred(s(x)) -> x
          Signature:
            {gcd/2,if_gcd/3,le/2,minus/2,pred/1,gcd#/2,if_gcd#/3,le#/2,minus#/2,pred#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/2,c_5/2,c_6/0,c_7/0,c_8/1,c_9/0,c_10/1,c_11/0}
          Obligation:
            Innermost
            basic terms: {gcd#,if_gcd#,le#,minus#,pred#}/{0,false,s,true}
        Applied Processor:
          EmptyProcessor
        Proof:
          The problem is already closed. The intended complexity is O(1).