*** 1 Progress [(?,O(n^3))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: if_minus(false(),s(x),y) -> s(minus(x,y)) if_minus(true(),s(x),y) -> 0() if_mod(false(),s(x),s(y)) -> s(x) if_mod(true(),s(x),s(y)) -> mod(minus(x,y),s(y)) le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(0(),y) -> 0() minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) mod(0(),y) -> 0() mod(s(x),0()) -> 0() mod(s(x),s(y)) -> if_mod(le(y,x),s(x),s(y)) Weak DP Rules: Weak TRS Rules: Signature: {if_minus/3,if_mod/3,le/2,minus/2,mod/2} / {0/0,false/0,s/1,true/0} Obligation: Innermost basic terms: {if_minus,if_mod,le,minus,mod}/{0,false,s,true} Applied Processor: DependencyPairs {dpKind_ = DT} Proof: We add the following dependency tuples: Strict DPs if_minus#(false(),s(x),y) -> c_1(minus#(x,y)) if_minus#(true(),s(x),y) -> c_2() if_mod#(false(),s(x),s(y)) -> c_3() if_mod#(true(),s(x),s(y)) -> c_4(mod#(minus(x,y),s(y)),minus#(x,y)) le#(0(),y) -> c_5() le#(s(x),0()) -> c_6() le#(s(x),s(y)) -> c_7(le#(x,y)) minus#(0(),y) -> c_8() minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y)) mod#(0(),y) -> c_10() mod#(s(x),0()) -> c_11() mod#(s(x),s(y)) -> c_12(if_mod#(le(y,x),s(x),s(y)),le#(y,x)) Weak DPs and mark the set of starting terms. *** 1.1 Progress [(?,O(n^3))] *** Considered Problem: Strict DP Rules: if_minus#(false(),s(x),y) -> c_1(minus#(x,y)) if_minus#(true(),s(x),y) -> c_2() if_mod#(false(),s(x),s(y)) -> c_3() if_mod#(true(),s(x),s(y)) -> c_4(mod#(minus(x,y),s(y)),minus#(x,y)) le#(0(),y) -> c_5() le#(s(x),0()) -> c_6() le#(s(x),s(y)) -> c_7(le#(x,y)) minus#(0(),y) -> c_8() minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y)) mod#(0(),y) -> c_10() mod#(s(x),0()) -> c_11() mod#(s(x),s(y)) -> c_12(if_mod#(le(y,x),s(x),s(y)),le#(y,x)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: if_minus(false(),s(x),y) -> s(minus(x,y)) if_minus(true(),s(x),y) -> 0() if_mod(false(),s(x),s(y)) -> s(x) if_mod(true(),s(x),s(y)) -> mod(minus(x,y),s(y)) le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(0(),y) -> 0() minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) mod(0(),y) -> 0() mod(s(x),0()) -> 0() mod(s(x),s(y)) -> if_mod(le(y,x),s(x),s(y)) Signature: {if_minus/3,if_mod/3,le/2,minus/2,mod/2,if_minus#/3,if_mod#/3,le#/2,minus#/2,mod#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/0,c_7/1,c_8/0,c_9/2,c_10/0,c_11/0,c_12/2} Obligation: Innermost basic terms: {if_minus#,if_mod#,le#,minus#,mod#}/{0,false,s,true} Applied Processor: UsableRules Proof: We replace rewrite rules by usable rules: if_minus(false(),s(x),y) -> s(minus(x,y)) if_minus(true(),s(x),y) -> 0() le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(0(),y) -> 0() minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) if_minus#(false(),s(x),y) -> c_1(minus#(x,y)) if_minus#(true(),s(x),y) -> c_2() if_mod#(false(),s(x),s(y)) -> c_3() if_mod#(true(),s(x),s(y)) -> c_4(mod#(minus(x,y),s(y)),minus#(x,y)) le#(0(),y) -> c_5() le#(s(x),0()) -> c_6() le#(s(x),s(y)) -> c_7(le#(x,y)) minus#(0(),y) -> c_8() minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y)) mod#(0(),y) -> c_10() mod#(s(x),0()) -> c_11() mod#(s(x),s(y)) -> c_12(if_mod#(le(y,x),s(x),s(y)),le#(y,x)) *** 1.1.1 Progress [(?,O(n^3))] *** Considered Problem: Strict DP Rules: if_minus#(false(),s(x),y) -> c_1(minus#(x,y)) if_minus#(true(),s(x),y) -> c_2() if_mod#(false(),s(x),s(y)) -> c_3() if_mod#(true(),s(x),s(y)) -> c_4(mod#(minus(x,y),s(y)),minus#(x,y)) le#(0(),y) -> c_5() le#(s(x),0()) -> c_6() le#(s(x),s(y)) -> c_7(le#(x,y)) minus#(0(),y) -> c_8() minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y)) mod#(0(),y) -> c_10() mod#(s(x),0()) -> c_11() mod#(s(x),s(y)) -> c_12(if_mod#(le(y,x),s(x),s(y)),le#(y,x)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: if_minus(false(),s(x),y) -> s(minus(x,y)) if_minus(true(),s(x),y) -> 0() le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(0(),y) -> 0() minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) Signature: {if_minus/3,if_mod/3,le/2,minus/2,mod/2,if_minus#/3,if_mod#/3,le#/2,minus#/2,mod#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/0,c_7/1,c_8/0,c_9/2,c_10/0,c_11/0,c_12/2} Obligation: Innermost basic terms: {if_minus#,if_mod#,le#,minus#,mod#}/{0,false,s,true} Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} Proof: We estimate the number of application of {2,3,5,6,8,10,11} by application of Pre({2,3,5,6,8,10,11}) = {1,4,7,9,12}. Here rules are labelled as follows: 1: if_minus#(false(),s(x),y) -> c_1(minus#(x,y)) 2: if_minus#(true(),s(x),y) -> c_2() 3: if_mod#(false(),s(x),s(y)) -> c_3() 4: if_mod#(true(),s(x),s(y)) -> c_4(mod#(minus(x,y),s(y)) ,minus#(x,y)) 5: le#(0(),y) -> c_5() 6: le#(s(x),0()) -> c_6() 7: le#(s(x),s(y)) -> c_7(le#(x,y)) 8: minus#(0(),y) -> c_8() 9: minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y) ,le#(s(x),y)) 10: mod#(0(),y) -> c_10() 11: mod#(s(x),0()) -> c_11() 12: mod#(s(x),s(y)) -> c_12(if_mod#(le(y,x),s(x),s(y)) ,le#(y,x)) *** 1.1.1.1 Progress [(?,O(n^3))] *** Considered Problem: Strict DP Rules: if_minus#(false(),s(x),y) -> c_1(minus#(x,y)) if_mod#(true(),s(x),s(y)) -> c_4(mod#(minus(x,y),s(y)),minus#(x,y)) le#(s(x),s(y)) -> c_7(le#(x,y)) minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y)) mod#(s(x),s(y)) -> c_12(if_mod#(le(y,x),s(x),s(y)),le#(y,x)) Strict TRS Rules: Weak DP Rules: if_minus#(true(),s(x),y) -> c_2() if_mod#(false(),s(x),s(y)) -> c_3() le#(0(),y) -> c_5() le#(s(x),0()) -> c_6() minus#(0(),y) -> c_8() mod#(0(),y) -> c_10() mod#(s(x),0()) -> c_11() Weak TRS Rules: if_minus(false(),s(x),y) -> s(minus(x,y)) if_minus(true(),s(x),y) -> 0() le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(0(),y) -> 0() minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) Signature: {if_minus/3,if_mod/3,le/2,minus/2,mod/2,if_minus#/3,if_mod#/3,le#/2,minus#/2,mod#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/0,c_7/1,c_8/0,c_9/2,c_10/0,c_11/0,c_12/2} Obligation: Innermost basic terms: {if_minus#,if_mod#,le#,minus#,mod#}/{0,false,s,true} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:if_minus#(false(),s(x),y) -> c_1(minus#(x,y)) -->_1 minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y)):4 -->_1 minus#(0(),y) -> c_8():10 2:S:if_mod#(true(),s(x),s(y)) -> c_4(mod#(minus(x,y),s(y)),minus#(x,y)) -->_1 mod#(s(x),s(y)) -> c_12(if_mod#(le(y,x),s(x),s(y)),le#(y,x)):5 -->_2 minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y)):4 -->_1 mod#(0(),y) -> c_10():11 -->_2 minus#(0(),y) -> c_8():10 3:S:le#(s(x),s(y)) -> c_7(le#(x,y)) -->_1 le#(s(x),0()) -> c_6():9 -->_1 le#(0(),y) -> c_5():8 -->_1 le#(s(x),s(y)) -> c_7(le#(x,y)):3 4:S:minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y)) -->_2 le#(s(x),0()) -> c_6():9 -->_1 if_minus#(true(),s(x),y) -> c_2():6 -->_2 le#(s(x),s(y)) -> c_7(le#(x,y)):3 -->_1 if_minus#(false(),s(x),y) -> c_1(minus#(x,y)):1 5:S:mod#(s(x),s(y)) -> c_12(if_mod#(le(y,x),s(x),s(y)),le#(y,x)) -->_2 le#(s(x),0()) -> c_6():9 -->_2 le#(0(),y) -> c_5():8 -->_1 if_mod#(false(),s(x),s(y)) -> c_3():7 -->_2 le#(s(x),s(y)) -> c_7(le#(x,y)):3 -->_1 if_mod#(true(),s(x),s(y)) -> c_4(mod#(minus(x,y),s(y)),minus#(x,y)):2 6:W:if_minus#(true(),s(x),y) -> c_2() 7:W:if_mod#(false(),s(x),s(y)) -> c_3() 8:W:le#(0(),y) -> c_5() 9:W:le#(s(x),0()) -> c_6() 10:W:minus#(0(),y) -> c_8() 11:W:mod#(0(),y) -> c_10() 12:W:mod#(s(x),0()) -> c_11() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 12: mod#(s(x),0()) -> c_11() 11: mod#(0(),y) -> c_10() 7: if_mod#(false(),s(x),s(y)) -> c_3() 10: minus#(0(),y) -> c_8() 8: le#(0(),y) -> c_5() 6: if_minus#(true(),s(x),y) -> c_2() 9: le#(s(x),0()) -> c_6() *** 1.1.1.1.1 Progress [(?,O(n^3))] *** Considered Problem: Strict DP Rules: if_minus#(false(),s(x),y) -> c_1(minus#(x,y)) if_mod#(true(),s(x),s(y)) -> c_4(mod#(minus(x,y),s(y)),minus#(x,y)) le#(s(x),s(y)) -> c_7(le#(x,y)) minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y)) mod#(s(x),s(y)) -> c_12(if_mod#(le(y,x),s(x),s(y)),le#(y,x)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: if_minus(false(),s(x),y) -> s(minus(x,y)) if_minus(true(),s(x),y) -> 0() le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(0(),y) -> 0() minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) Signature: {if_minus/3,if_mod/3,le/2,minus/2,mod/2,if_minus#/3,if_mod#/3,le#/2,minus#/2,mod#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/0,c_7/1,c_8/0,c_9/2,c_10/0,c_11/0,c_12/2} Obligation: Innermost basic terms: {if_minus#,if_mod#,le#,minus#,mod#}/{0,false,s,true} Applied Processor: Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd} Proof: We analyse the complexity of following sub-problems (R) and (S). Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component. Problem (R) Strict DP Rules: if_minus#(false(),s(x),y) -> c_1(minus#(x,y)) le#(s(x),s(y)) -> c_7(le#(x,y)) minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y)) Strict TRS Rules: Weak DP Rules: if_mod#(true(),s(x),s(y)) -> c_4(mod#(minus(x,y),s(y)),minus#(x,y)) mod#(s(x),s(y)) -> c_12(if_mod#(le(y,x),s(x),s(y)),le#(y,x)) Weak TRS Rules: if_minus(false(),s(x),y) -> s(minus(x,y)) if_minus(true(),s(x),y) -> 0() le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(0(),y) -> 0() minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) Signature: {if_minus/3,if_mod/3,le/2,minus/2,mod/2,if_minus#/3,if_mod#/3,le#/2,minus#/2,mod#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/0,c_7/1,c_8/0,c_9/2,c_10/0,c_11/0,c_12/2} Obligation: Innermost basic terms: {if_minus#,if_mod#,le#,minus#,mod#}/{0,false,s,true} Problem (S) Strict DP Rules: if_mod#(true(),s(x),s(y)) -> c_4(mod#(minus(x,y),s(y)),minus#(x,y)) mod#(s(x),s(y)) -> c_12(if_mod#(le(y,x),s(x),s(y)),le#(y,x)) Strict TRS Rules: Weak DP Rules: if_minus#(false(),s(x),y) -> c_1(minus#(x,y)) le#(s(x),s(y)) -> c_7(le#(x,y)) minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y)) Weak TRS Rules: if_minus(false(),s(x),y) -> s(minus(x,y)) if_minus(true(),s(x),y) -> 0() le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(0(),y) -> 0() minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) Signature: {if_minus/3,if_mod/3,le/2,minus/2,mod/2,if_minus#/3,if_mod#/3,le#/2,minus#/2,mod#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/0,c_7/1,c_8/0,c_9/2,c_10/0,c_11/0,c_12/2} Obligation: Innermost basic terms: {if_minus#,if_mod#,le#,minus#,mod#}/{0,false,s,true} *** 1.1.1.1.1.1 Progress [(?,O(n^3))] *** Considered Problem: Strict DP Rules: if_minus#(false(),s(x),y) -> c_1(minus#(x,y)) le#(s(x),s(y)) -> c_7(le#(x,y)) minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y)) Strict TRS Rules: Weak DP Rules: if_mod#(true(),s(x),s(y)) -> c_4(mod#(minus(x,y),s(y)),minus#(x,y)) mod#(s(x),s(y)) -> c_12(if_mod#(le(y,x),s(x),s(y)),le#(y,x)) Weak TRS Rules: if_minus(false(),s(x),y) -> s(minus(x,y)) if_minus(true(),s(x),y) -> 0() le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(0(),y) -> 0() minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) Signature: {if_minus/3,if_mod/3,le/2,minus/2,mod/2,if_minus#/3,if_mod#/3,le#/2,minus#/2,mod#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/0,c_7/1,c_8/0,c_9/2,c_10/0,c_11/0,c_12/2} Obligation: Innermost basic terms: {if_minus#,if_mod#,le#,minus#,mod#}/{0,false,s,true} Applied Processor: DecomposeDG {onSelection = all below first cut in WDG, onUpper = Just someStrategy, onLower = Nothing} Proof: We decompose the input problem according to the dependency graph into the upper component if_mod#(true(),s(x),s(y)) -> c_4(mod#(minus(x,y),s(y)),minus#(x,y)) mod#(s(x),s(y)) -> c_12(if_mod#(le(y,x),s(x),s(y)),le#(y,x)) and a lower component if_minus#(false(),s(x),y) -> c_1(minus#(x,y)) le#(s(x),s(y)) -> c_7(le#(x,y)) minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y)) Further, following extension rules are added to the lower component. if_mod#(true(),s(x),s(y)) -> minus#(x,y) if_mod#(true(),s(x),s(y)) -> mod#(minus(x,y),s(y)) mod#(s(x),s(y)) -> if_mod#(le(y,x),s(x),s(y)) mod#(s(x),s(y)) -> le#(y,x) *** 1.1.1.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: if_mod#(true(),s(x),s(y)) -> c_4(mod#(minus(x,y),s(y)),minus#(x,y)) mod#(s(x),s(y)) -> c_12(if_mod#(le(y,x),s(x),s(y)),le#(y,x)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: if_minus(false(),s(x),y) -> s(minus(x,y)) if_minus(true(),s(x),y) -> 0() le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(0(),y) -> 0() minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) Signature: {if_minus/3,if_mod/3,le/2,minus/2,mod/2,if_minus#/3,if_mod#/3,le#/2,minus#/2,mod#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/0,c_7/1,c_8/0,c_9/2,c_10/0,c_11/0,c_12/2} Obligation: Innermost basic terms: {if_minus#,if_mod#,le#,minus#,mod#}/{0,false,s,true} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 3, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 3, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: if_mod#(true(),s(x),s(y)) -> c_4(mod#(minus(x,y),s(y)) ,minus#(x,y)) Consider the set of all dependency pairs 1: if_mod#(true(),s(x),s(y)) -> c_4(mod#(minus(x,y),s(y)) ,minus#(x,y)) 2: mod#(s(x),s(y)) -> c_12(if_mod#(le(y,x),s(x),s(y)) ,le#(y,x)) Processor NaturalMI {miDimension = 3, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}induces the complexity certificateTIME (?,O(n^1)) SPACE(?,?)on application of the dependency pairs {1} These cover all (indirect) predecessors of dependency pairs {1,2} their number of applications is equally bounded. The dependency pairs are shifted into the weak component. *** 1.1.1.1.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: if_mod#(true(),s(x),s(y)) -> c_4(mod#(minus(x,y),s(y)),minus#(x,y)) mod#(s(x),s(y)) -> c_12(if_mod#(le(y,x),s(x),s(y)),le#(y,x)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: if_minus(false(),s(x),y) -> s(minus(x,y)) if_minus(true(),s(x),y) -> 0() le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(0(),y) -> 0() minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) Signature: {if_minus/3,if_mod/3,le/2,minus/2,mod/2,if_minus#/3,if_mod#/3,le#/2,minus#/2,mod#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/0,c_7/1,c_8/0,c_9/2,c_10/0,c_11/0,c_12/2} Obligation: Innermost basic terms: {if_minus#,if_mod#,le#,minus#,mod#}/{0,false,s,true} Applied Processor: NaturalMI {miDimension = 3, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 1 non-zero interpretation-entries in the diagonal of the component-wise maxima): The following argument positions are considered usable: uargs(c_4) = {1}, uargs(c_12) = {1} Following symbols are considered usable: {if_minus,minus,if_minus#,if_mod#,le#,minus#,mod#} TcT has computed the following interpretation: p(0) = [0] [0] [1] p(false) = [0] [0] [0] p(if_minus) = [1 0 0] [0] [1 0 0] x2 + [0] [0 0 0] [1] p(if_mod) = [0] [0] [0] p(le) = [0 0 0] [0] [0 1 0] x2 + [0] [0 0 0] [0] p(minus) = [0 1 0] [0] [0 1 0] x1 + [0] [0 0 1] [0] p(mod) = [0] [0] [0] p(s) = [0 1 1] [0] [0 1 1] x1 + [0] [0 0 0] [1] p(true) = [0] [0] [0] p(if_minus#) = [0] [0] [0] p(if_mod#) = [1 0 0] [0 0 1] [0] [1 1 1] x2 + [0 0 1] x3 + [1] [1 0 0] [0 0 0] [0] p(le#) = [0 0 0] [0] [0 0 0] x2 + [0] [0 1 0] [1] p(minus#) = [0 0 1] [0] [0 0 0] x1 + [0] [0 1 0] [0] p(mod#) = [1 0 1] [0 0 0] [0] [1 1 1] x1 + [0 1 0] x2 + [1] [0 1 0] [0 0 0] [1] p(c_1) = [0] [0] [0] p(c_2) = [0] [0] [0] p(c_3) = [0] [0] [0] p(c_4) = [1 0 0] [0 0 0] [0] [0 0 0] x1 + [0 0 0] x2 + [0] [0 0 0] [1 0 1] [0] p(c_5) = [0] [0] [0] p(c_6) = [0] [0] [0] p(c_7) = [0] [0] [0] p(c_8) = [0] [0] [0] p(c_9) = [0] [0] [0] p(c_10) = [0] [0] [0] p(c_11) = [0] [0] [0] p(c_12) = [1 0 0] [0 0 0] [0] [1 0 0] x1 + [0 0 1] x2 + [0] [0 0 1] [0 0 0] [0] Following rules are strictly oriented: if_mod#(true(),s(x),s(y)) = [0 1 1] [1] [0 2 2] x + [3] [0 1 1] [0] > [0 1 1] [0] [0 0 0] x + [0] [0 1 1] [0] = c_4(mod#(minus(x,y),s(y)) ,minus#(x,y)) Following rules are (at-least) weakly oriented: mod#(s(x),s(y)) = [0 1 1] [0 0 0] [1] [0 2 2] x + [0 1 1] y + [2] [0 1 1] [0 0 0] [1] >= [0 1 1] [1] [0 2 1] x + [2] [0 1 1] [0] = c_12(if_mod#(le(y,x),s(x),s(y)) ,le#(y,x)) if_minus(false(),s(x),y) = [0 1 1] [0] [0 1 1] x + [0] [0 0 0] [1] >= [0 1 1] [0] [0 1 1] x + [0] [0 0 0] [1] = s(minus(x,y)) if_minus(true(),s(x),y) = [0 1 1] [0] [0 1 1] x + [0] [0 0 0] [1] >= [0] [0] [1] = 0() minus(0(),y) = [0] [0] [1] >= [0] [0] [1] = 0() minus(s(x),y) = [0 1 1] [0] [0 1 1] x + [0] [0 0 0] [1] >= [0 1 1] [0] [0 1 1] x + [0] [0 0 0] [1] = if_minus(le(s(x),y),s(x),y) *** 1.1.1.1.1.1.1.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: mod#(s(x),s(y)) -> c_12(if_mod#(le(y,x),s(x),s(y)),le#(y,x)) Strict TRS Rules: Weak DP Rules: if_mod#(true(),s(x),s(y)) -> c_4(mod#(minus(x,y),s(y)),minus#(x,y)) Weak TRS Rules: if_minus(false(),s(x),y) -> s(minus(x,y)) if_minus(true(),s(x),y) -> 0() le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(0(),y) -> 0() minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) Signature: {if_minus/3,if_mod/3,le/2,minus/2,mod/2,if_minus#/3,if_mod#/3,le#/2,minus#/2,mod#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/0,c_7/1,c_8/0,c_9/2,c_10/0,c_11/0,c_12/2} Obligation: Innermost basic terms: {if_minus#,if_mod#,le#,minus#,mod#}/{0,false,s,true} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.1.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: if_mod#(true(),s(x),s(y)) -> c_4(mod#(minus(x,y),s(y)),minus#(x,y)) mod#(s(x),s(y)) -> c_12(if_mod#(le(y,x),s(x),s(y)),le#(y,x)) Weak TRS Rules: if_minus(false(),s(x),y) -> s(minus(x,y)) if_minus(true(),s(x),y) -> 0() le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(0(),y) -> 0() minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) Signature: {if_minus/3,if_mod/3,le/2,minus/2,mod/2,if_minus#/3,if_mod#/3,le#/2,minus#/2,mod#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/0,c_7/1,c_8/0,c_9/2,c_10/0,c_11/0,c_12/2} Obligation: Innermost basic terms: {if_minus#,if_mod#,le#,minus#,mod#}/{0,false,s,true} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:if_mod#(true(),s(x),s(y)) -> c_4(mod#(minus(x,y),s(y)),minus#(x,y)) -->_1 mod#(s(x),s(y)) -> c_12(if_mod#(le(y,x),s(x),s(y)),le#(y,x)):2 2:W:mod#(s(x),s(y)) -> c_12(if_mod#(le(y,x),s(x),s(y)),le#(y,x)) -->_1 if_mod#(true(),s(x),s(y)) -> c_4(mod#(minus(x,y),s(y)),minus#(x,y)):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: if_mod#(true(),s(x),s(y)) -> c_4(mod#(minus(x,y),s(y)) ,minus#(x,y)) 2: mod#(s(x),s(y)) -> c_12(if_mod#(le(y,x),s(x),s(y)) ,le#(y,x)) *** 1.1.1.1.1.1.1.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: if_minus(false(),s(x),y) -> s(minus(x,y)) if_minus(true(),s(x),y) -> 0() le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(0(),y) -> 0() minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) Signature: {if_minus/3,if_mod/3,le/2,minus/2,mod/2,if_minus#/3,if_mod#/3,le#/2,minus#/2,mod#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/0,c_7/1,c_8/0,c_9/2,c_10/0,c_11/0,c_12/2} Obligation: Innermost basic terms: {if_minus#,if_mod#,le#,minus#,mod#}/{0,false,s,true} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1). *** 1.1.1.1.1.1.2 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: if_minus#(false(),s(x),y) -> c_1(minus#(x,y)) le#(s(x),s(y)) -> c_7(le#(x,y)) minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y)) Strict TRS Rules: Weak DP Rules: if_mod#(true(),s(x),s(y)) -> minus#(x,y) if_mod#(true(),s(x),s(y)) -> mod#(minus(x,y),s(y)) mod#(s(x),s(y)) -> if_mod#(le(y,x),s(x),s(y)) mod#(s(x),s(y)) -> le#(y,x) Weak TRS Rules: if_minus(false(),s(x),y) -> s(minus(x,y)) if_minus(true(),s(x),y) -> 0() le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(0(),y) -> 0() minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) Signature: {if_minus/3,if_mod/3,le/2,minus/2,mod/2,if_minus#/3,if_mod#/3,le#/2,minus#/2,mod#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/0,c_7/1,c_8/0,c_9/2,c_10/0,c_11/0,c_12/2} Obligation: Innermost basic terms: {if_minus#,if_mod#,le#,minus#,mod#}/{0,false,s,true} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 3, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 3, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 2: le#(s(x),s(y)) -> c_7(le#(x,y)) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.1.2.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: if_minus#(false(),s(x),y) -> c_1(minus#(x,y)) le#(s(x),s(y)) -> c_7(le#(x,y)) minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y)) Strict TRS Rules: Weak DP Rules: if_mod#(true(),s(x),s(y)) -> minus#(x,y) if_mod#(true(),s(x),s(y)) -> mod#(minus(x,y),s(y)) mod#(s(x),s(y)) -> if_mod#(le(y,x),s(x),s(y)) mod#(s(x),s(y)) -> le#(y,x) Weak TRS Rules: if_minus(false(),s(x),y) -> s(minus(x,y)) if_minus(true(),s(x),y) -> 0() le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(0(),y) -> 0() minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) Signature: {if_minus/3,if_mod/3,le/2,minus/2,mod/2,if_minus#/3,if_mod#/3,le#/2,minus#/2,mod#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/0,c_7/1,c_8/0,c_9/2,c_10/0,c_11/0,c_12/2} Obligation: Innermost basic terms: {if_minus#,if_mod#,le#,minus#,mod#}/{0,false,s,true} Applied Processor: NaturalMI {miDimension = 3, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 2 non-zero interpretation-entries in the diagonal of the component-wise maxima): The following argument positions are considered usable: uargs(c_1) = {1}, uargs(c_7) = {1}, uargs(c_9) = {1,2} Following symbols are considered usable: {if_minus,minus,if_minus#,if_mod#,le#,minus#,mod#} TcT has computed the following interpretation: p(0) = [0] [0] [0] p(false) = [0] [0] [0] p(if_minus) = [0 1 0] [0] [1 0 0] x2 + [0] [0 0 1] [0] p(if_mod) = [0] [0] [0] p(le) = [1 0 0] [0] [0 1 1] x1 + [1] [0 0 0] [0] p(minus) = [1 0 0] [0] [0 1 0] x1 + [0] [0 0 1] [0] p(mod) = [0] [0] [0] p(s) = [0 1 1] [0] [0 1 1] x1 + [0] [0 0 1] [1] p(true) = [0] [0] [0] p(if_minus#) = [1 0 0] [0 0 0] [0] [0 0 0] x2 + [0 0 1] x3 + [0] [1 0 0] [0 1 0] [1] p(if_mod#) = [0 1 1] [0 0 1] [0] [0 0 0] x2 + [1 0 0] x3 + [0] [1 0 0] [0 0 1] [0] p(le#) = [0 0 1] [0 0 0] [0] [0 0 0] x1 + [0 0 0] x2 + [0] [0 0 0] [0 1 1] [0] p(minus#) = [0 1 1] [0 0 0] [0] [0 0 0] x1 + [0 0 1] x2 + [0] [0 0 1] [0 0 1] [1] p(mod#) = [0 1 1] [0 0 1] [1] [0 0 0] x1 + [0 1 0] x2 + [0] [0 1 0] [0 0 1] [0] p(c_1) = [1 0 0] [0] [0 0 0] x1 + [0] [0 0 0] [0] p(c_2) = [0] [0] [0] p(c_3) = [0] [0] [0] p(c_4) = [0] [0] [0] p(c_5) = [0] [0] [0] p(c_6) = [0] [0] [0] p(c_7) = [1 0 0] [0] [0 0 0] x1 + [0] [0 0 1] [1] p(c_8) = [0] [0] [0] p(c_9) = [1 0 0] [1 0 0] [0] [0 0 0] x1 + [0 0 0] x2 + [0] [0 0 0] [1 0 0] [0] p(c_10) = [0] [0] [0] p(c_11) = [0] [0] [0] p(c_12) = [0] [0] [0] Following rules are strictly oriented: le#(s(x),s(y)) = [0 0 1] [0 0 0] [1] [0 0 0] x + [0 0 0] y + [0] [0 0 0] [0 1 2] [1] > [0 0 1] [0 0 0] [0] [0 0 0] x + [0 0 0] y + [0] [0 0 0] [0 1 1] [1] = c_7(le#(x,y)) Following rules are (at-least) weakly oriented: if_minus#(false(),s(x),y) = [0 1 1] [0 0 0] [0] [0 0 0] x + [0 0 1] y + [0] [0 1 1] [0 1 0] [1] >= [0 1 1] [0] [0 0 0] x + [0] [0 0 0] [0] = c_1(minus#(x,y)) if_mod#(true(),s(x),s(y)) = [0 1 2] [0 0 1] [2] [0 0 0] x + [0 1 1] y + [0] [0 1 1] [0 0 1] [1] >= [0 1 1] [0 0 0] [0] [0 0 0] x + [0 0 1] y + [0] [0 0 1] [0 0 1] [1] = minus#(x,y) if_mod#(true(),s(x),s(y)) = [0 1 2] [0 0 1] [2] [0 0 0] x + [0 1 1] y + [0] [0 1 1] [0 0 1] [1] >= [0 1 1] [0 0 1] [2] [0 0 0] x + [0 1 1] y + [0] [0 1 0] [0 0 1] [1] = mod#(minus(x,y),s(y)) minus#(s(x),y) = [0 1 2] [0 0 0] [1] [0 0 0] x + [0 0 1] y + [0] [0 0 1] [0 0 1] [2] >= [0 1 2] [1] [0 0 0] x + [0] [0 0 1] [1] = c_9(if_minus#(le(s(x),y),s(x),y) ,le#(s(x),y)) mod#(s(x),s(y)) = [0 1 2] [0 0 1] [3] [0 0 0] x + [0 1 1] y + [0] [0 1 1] [0 0 1] [1] >= [0 1 2] [0 0 1] [2] [0 0 0] x + [0 1 1] y + [0] [0 1 1] [0 0 1] [1] = if_mod#(le(y,x),s(x),s(y)) mod#(s(x),s(y)) = [0 1 2] [0 0 1] [3] [0 0 0] x + [0 1 1] y + [0] [0 1 1] [0 0 1] [1] >= [0 0 0] [0 0 1] [0] [0 0 0] x + [0 0 0] y + [0] [0 1 1] [0 0 0] [0] = le#(y,x) if_minus(false(),s(x),y) = [0 1 1] [0] [0 1 1] x + [0] [0 0 1] [1] >= [0 1 1] [0] [0 1 1] x + [0] [0 0 1] [1] = s(minus(x,y)) if_minus(true(),s(x),y) = [0 1 1] [0] [0 1 1] x + [0] [0 0 1] [1] >= [0] [0] [0] = 0() minus(0(),y) = [0] [0] [0] >= [0] [0] [0] = 0() minus(s(x),y) = [0 1 1] [0] [0 1 1] x + [0] [0 0 1] [1] >= [0 1 1] [0] [0 1 1] x + [0] [0 0 1] [1] = if_minus(le(s(x),y),s(x),y) *** 1.1.1.1.1.1.2.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: if_minus#(false(),s(x),y) -> c_1(minus#(x,y)) minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y)) Strict TRS Rules: Weak DP Rules: if_mod#(true(),s(x),s(y)) -> minus#(x,y) if_mod#(true(),s(x),s(y)) -> mod#(minus(x,y),s(y)) le#(s(x),s(y)) -> c_7(le#(x,y)) mod#(s(x),s(y)) -> if_mod#(le(y,x),s(x),s(y)) mod#(s(x),s(y)) -> le#(y,x) Weak TRS Rules: if_minus(false(),s(x),y) -> s(minus(x,y)) if_minus(true(),s(x),y) -> 0() le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(0(),y) -> 0() minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) Signature: {if_minus/3,if_mod/3,le/2,minus/2,mod/2,if_minus#/3,if_mod#/3,le#/2,minus#/2,mod#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/0,c_7/1,c_8/0,c_9/2,c_10/0,c_11/0,c_12/2} Obligation: Innermost basic terms: {if_minus#,if_mod#,le#,minus#,mod#}/{0,false,s,true} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.2.2 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: if_minus#(false(),s(x),y) -> c_1(minus#(x,y)) minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y)) Strict TRS Rules: Weak DP Rules: if_mod#(true(),s(x),s(y)) -> minus#(x,y) if_mod#(true(),s(x),s(y)) -> mod#(minus(x,y),s(y)) le#(s(x),s(y)) -> c_7(le#(x,y)) mod#(s(x),s(y)) -> if_mod#(le(y,x),s(x),s(y)) mod#(s(x),s(y)) -> le#(y,x) Weak TRS Rules: if_minus(false(),s(x),y) -> s(minus(x,y)) if_minus(true(),s(x),y) -> 0() le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(0(),y) -> 0() minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) Signature: {if_minus/3,if_mod/3,le/2,minus/2,mod/2,if_minus#/3,if_mod#/3,le#/2,minus#/2,mod#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/0,c_7/1,c_8/0,c_9/2,c_10/0,c_11/0,c_12/2} Obligation: Innermost basic terms: {if_minus#,if_mod#,le#,minus#,mod#}/{0,false,s,true} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:if_minus#(false(),s(x),y) -> c_1(minus#(x,y)) -->_1 minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y)):2 2:S:minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y)) -->_2 le#(s(x),s(y)) -> c_7(le#(x,y)):5 -->_1 if_minus#(false(),s(x),y) -> c_1(minus#(x,y)):1 3:W:if_mod#(true(),s(x),s(y)) -> minus#(x,y) -->_1 minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y)):2 4:W:if_mod#(true(),s(x),s(y)) -> mod#(minus(x,y),s(y)) -->_1 mod#(s(x),s(y)) -> le#(y,x):7 -->_1 mod#(s(x),s(y)) -> if_mod#(le(y,x),s(x),s(y)):6 5:W:le#(s(x),s(y)) -> c_7(le#(x,y)) -->_1 le#(s(x),s(y)) -> c_7(le#(x,y)):5 6:W:mod#(s(x),s(y)) -> if_mod#(le(y,x),s(x),s(y)) -->_1 if_mod#(true(),s(x),s(y)) -> mod#(minus(x,y),s(y)):4 -->_1 if_mod#(true(),s(x),s(y)) -> minus#(x,y):3 7:W:mod#(s(x),s(y)) -> le#(y,x) -->_1 le#(s(x),s(y)) -> c_7(le#(x,y)):5 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 7: mod#(s(x),s(y)) -> le#(y,x) 5: le#(s(x),s(y)) -> c_7(le#(x,y)) *** 1.1.1.1.1.1.2.2.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: if_minus#(false(),s(x),y) -> c_1(minus#(x,y)) minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y)) Strict TRS Rules: Weak DP Rules: if_mod#(true(),s(x),s(y)) -> minus#(x,y) if_mod#(true(),s(x),s(y)) -> mod#(minus(x,y),s(y)) mod#(s(x),s(y)) -> if_mod#(le(y,x),s(x),s(y)) Weak TRS Rules: if_minus(false(),s(x),y) -> s(minus(x,y)) if_minus(true(),s(x),y) -> 0() le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(0(),y) -> 0() minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) Signature: {if_minus/3,if_mod/3,le/2,minus/2,mod/2,if_minus#/3,if_mod#/3,le#/2,minus#/2,mod#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/0,c_7/1,c_8/0,c_9/2,c_10/0,c_11/0,c_12/2} Obligation: Innermost basic terms: {if_minus#,if_mod#,le#,minus#,mod#}/{0,false,s,true} Applied Processor: SimplifyRHS Proof: Consider the dependency graph 1:S:if_minus#(false(),s(x),y) -> c_1(minus#(x,y)) -->_1 minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y)):2 2:S:minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y)) -->_1 if_minus#(false(),s(x),y) -> c_1(minus#(x,y)):1 3:W:if_mod#(true(),s(x),s(y)) -> minus#(x,y) -->_1 minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y)):2 4:W:if_mod#(true(),s(x),s(y)) -> mod#(minus(x,y),s(y)) -->_1 mod#(s(x),s(y)) -> if_mod#(le(y,x),s(x),s(y)):6 6:W:mod#(s(x),s(y)) -> if_mod#(le(y,x),s(x),s(y)) -->_1 if_mod#(true(),s(x),s(y)) -> mod#(minus(x,y),s(y)):4 -->_1 if_mod#(true(),s(x),s(y)) -> minus#(x,y):3 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y)) *** 1.1.1.1.1.1.2.2.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: if_minus#(false(),s(x),y) -> c_1(minus#(x,y)) minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y)) Strict TRS Rules: Weak DP Rules: if_mod#(true(),s(x),s(y)) -> minus#(x,y) if_mod#(true(),s(x),s(y)) -> mod#(minus(x,y),s(y)) mod#(s(x),s(y)) -> if_mod#(le(y,x),s(x),s(y)) Weak TRS Rules: if_minus(false(),s(x),y) -> s(minus(x,y)) if_minus(true(),s(x),y) -> 0() le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(0(),y) -> 0() minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) Signature: {if_minus/3,if_mod/3,le/2,minus/2,mod/2,if_minus#/3,if_mod#/3,le#/2,minus#/2,mod#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/0,c_7/1,c_8/0,c_9/1,c_10/0,c_11/0,c_12/2} Obligation: Innermost basic terms: {if_minus#,if_mod#,le#,minus#,mod#}/{0,false,s,true} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: if_minus#(false(),s(x),y) -> c_1(minus#(x,y)) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.1.2.2.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: if_minus#(false(),s(x),y) -> c_1(minus#(x,y)) minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y)) Strict TRS Rules: Weak DP Rules: if_mod#(true(),s(x),s(y)) -> minus#(x,y) if_mod#(true(),s(x),s(y)) -> mod#(minus(x,y),s(y)) mod#(s(x),s(y)) -> if_mod#(le(y,x),s(x),s(y)) Weak TRS Rules: if_minus(false(),s(x),y) -> s(minus(x,y)) if_minus(true(),s(x),y) -> 0() le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(0(),y) -> 0() minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) Signature: {if_minus/3,if_mod/3,le/2,minus/2,mod/2,if_minus#/3,if_mod#/3,le#/2,minus#/2,mod#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/0,c_7/1,c_8/0,c_9/1,c_10/0,c_11/0,c_12/2} Obligation: Innermost basic terms: {if_minus#,if_mod#,le#,minus#,mod#}/{0,false,s,true} Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_1) = {1}, uargs(c_9) = {1} Following symbols are considered usable: {if_minus,minus,if_minus#,if_mod#,le#,minus#,mod#} TcT has computed the following interpretation: p(0) = [2] p(false) = [0] p(if_minus) = [1] x2 + [1] p(if_mod) = [2] x1 + [2] p(le) = [0] p(minus) = [1] x1 + [1] p(mod) = [2] p(s) = [1] x1 + [2] p(true) = [0] p(if_minus#) = [8] x2 + [1] p(if_mod#) = [9] x2 + [1] x3 + [4] p(le#) = [1] x1 + [1] x2 + [8] p(minus#) = [8] x1 + [4] p(mod#) = [9] x1 + [1] x2 + [4] p(c_1) = [1] x1 + [12] p(c_2) = [1] p(c_3) = [1] p(c_4) = [2] x2 + [1] p(c_5) = [0] p(c_6) = [1] p(c_7) = [2] x1 + [1] p(c_8) = [1] p(c_9) = [1] x1 + [3] p(c_10) = [4] p(c_11) = [0] p(c_12) = [1] x2 + [2] Following rules are strictly oriented: if_minus#(false(),s(x),y) = [8] x + [17] > [8] x + [16] = c_1(minus#(x,y)) Following rules are (at-least) weakly oriented: if_mod#(true(),s(x),s(y)) = [9] x + [1] y + [24] >= [8] x + [4] = minus#(x,y) if_mod#(true(),s(x),s(y)) = [9] x + [1] y + [24] >= [9] x + [1] y + [15] = mod#(minus(x,y),s(y)) minus#(s(x),y) = [8] x + [20] >= [8] x + [20] = c_9(if_minus#(le(s(x),y) ,s(x) ,y)) mod#(s(x),s(y)) = [9] x + [1] y + [24] >= [9] x + [1] y + [24] = if_mod#(le(y,x),s(x),s(y)) if_minus(false(),s(x),y) = [1] x + [3] >= [1] x + [3] = s(minus(x,y)) if_minus(true(),s(x),y) = [1] x + [3] >= [2] = 0() minus(0(),y) = [3] >= [2] = 0() minus(s(x),y) = [1] x + [3] >= [1] x + [3] = if_minus(le(s(x),y),s(x),y) *** 1.1.1.1.1.1.2.2.1.1.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y)) Strict TRS Rules: Weak DP Rules: if_minus#(false(),s(x),y) -> c_1(minus#(x,y)) if_mod#(true(),s(x),s(y)) -> minus#(x,y) if_mod#(true(),s(x),s(y)) -> mod#(minus(x,y),s(y)) mod#(s(x),s(y)) -> if_mod#(le(y,x),s(x),s(y)) Weak TRS Rules: if_minus(false(),s(x),y) -> s(minus(x,y)) if_minus(true(),s(x),y) -> 0() le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(0(),y) -> 0() minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) Signature: {if_minus/3,if_mod/3,le/2,minus/2,mod/2,if_minus#/3,if_mod#/3,le#/2,minus#/2,mod#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/0,c_7/1,c_8/0,c_9/1,c_10/0,c_11/0,c_12/2} Obligation: Innermost basic terms: {if_minus#,if_mod#,le#,minus#,mod#}/{0,false,s,true} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.2.2.1.1.2 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y)) Strict TRS Rules: Weak DP Rules: if_minus#(false(),s(x),y) -> c_1(minus#(x,y)) if_mod#(true(),s(x),s(y)) -> minus#(x,y) if_mod#(true(),s(x),s(y)) -> mod#(minus(x,y),s(y)) mod#(s(x),s(y)) -> if_mod#(le(y,x),s(x),s(y)) Weak TRS Rules: if_minus(false(),s(x),y) -> s(minus(x,y)) if_minus(true(),s(x),y) -> 0() le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(0(),y) -> 0() minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) Signature: {if_minus/3,if_mod/3,le/2,minus/2,mod/2,if_minus#/3,if_mod#/3,le#/2,minus#/2,mod#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/0,c_7/1,c_8/0,c_9/1,c_10/0,c_11/0,c_12/2} Obligation: Innermost basic terms: {if_minus#,if_mod#,le#,minus#,mod#}/{0,false,s,true} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: minus#(s(x),y) -> c_9(if_minus#(le(s(x),y) ,s(x) ,y)) Consider the set of all dependency pairs 1: minus#(s(x),y) -> c_9(if_minus#(le(s(x),y) ,s(x) ,y)) 2: if_minus#(false(),s(x),y) -> c_1(minus#(x,y)) 3: if_mod#(true(),s(x),s(y)) -> minus#(x,y) 4: if_mod#(true(),s(x),s(y)) -> mod#(minus(x,y),s(y)) 5: mod#(s(x),s(y)) -> if_mod#(le(y ,x) ,s(x) ,s(y)) Processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}induces the complexity certificateTIME (?,O(n^1)) SPACE(?,?)on application of the dependency pairs {1} These cover all (indirect) predecessors of dependency pairs {1,2} their number of applications is equally bounded. The dependency pairs are shifted into the weak component. *** 1.1.1.1.1.1.2.2.1.1.2.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y)) Strict TRS Rules: Weak DP Rules: if_minus#(false(),s(x),y) -> c_1(minus#(x,y)) if_mod#(true(),s(x),s(y)) -> minus#(x,y) if_mod#(true(),s(x),s(y)) -> mod#(minus(x,y),s(y)) mod#(s(x),s(y)) -> if_mod#(le(y,x),s(x),s(y)) Weak TRS Rules: if_minus(false(),s(x),y) -> s(minus(x,y)) if_minus(true(),s(x),y) -> 0() le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(0(),y) -> 0() minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) Signature: {if_minus/3,if_mod/3,le/2,minus/2,mod/2,if_minus#/3,if_mod#/3,le#/2,minus#/2,mod#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/0,c_7/1,c_8/0,c_9/1,c_10/0,c_11/0,c_12/2} Obligation: Innermost basic terms: {if_minus#,if_mod#,le#,minus#,mod#}/{0,false,s,true} Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_1) = {1}, uargs(c_9) = {1} Following symbols are considered usable: {if_minus,minus,if_minus#,if_mod#,le#,minus#,mod#} TcT has computed the following interpretation: p(0) = [0] p(false) = [0] p(if_minus) = [1] x2 + [2] p(if_mod) = [1] x1 + [8] x2 + [8] x3 + [2] p(le) = [0] p(minus) = [1] x1 + [2] p(mod) = [0] p(s) = [1] x1 + [2] p(true) = [0] p(if_minus#) = [1] x2 + [0] p(if_mod#) = [8] x2 + [4] x3 + [2] p(le#) = [2] x2 + [2] p(minus#) = [1] x1 + [1] p(mod#) = [8] x1 + [4] x2 + [2] p(c_1) = [1] x1 + [0] p(c_2) = [1] p(c_3) = [0] p(c_4) = [0] p(c_5) = [1] p(c_6) = [1] p(c_7) = [1] x1 + [0] p(c_8) = [0] p(c_9) = [1] x1 + [0] p(c_10) = [0] p(c_11) = [2] p(c_12) = [2] Following rules are strictly oriented: minus#(s(x),y) = [1] x + [3] > [1] x + [2] = c_9(if_minus#(le(s(x),y) ,s(x) ,y)) Following rules are (at-least) weakly oriented: if_minus#(false(),s(x),y) = [1] x + [2] >= [1] x + [1] = c_1(minus#(x,y)) if_mod#(true(),s(x),s(y)) = [8] x + [4] y + [26] >= [1] x + [1] = minus#(x,y) if_mod#(true(),s(x),s(y)) = [8] x + [4] y + [26] >= [8] x + [4] y + [26] = mod#(minus(x,y),s(y)) mod#(s(x),s(y)) = [8] x + [4] y + [26] >= [8] x + [4] y + [26] = if_mod#(le(y,x),s(x),s(y)) if_minus(false(),s(x),y) = [1] x + [4] >= [1] x + [4] = s(minus(x,y)) if_minus(true(),s(x),y) = [1] x + [4] >= [0] = 0() minus(0(),y) = [2] >= [0] = 0() minus(s(x),y) = [1] x + [4] >= [1] x + [4] = if_minus(le(s(x),y),s(x),y) *** 1.1.1.1.1.1.2.2.1.1.2.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: if_minus#(false(),s(x),y) -> c_1(minus#(x,y)) if_mod#(true(),s(x),s(y)) -> minus#(x,y) if_mod#(true(),s(x),s(y)) -> mod#(minus(x,y),s(y)) minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y)) mod#(s(x),s(y)) -> if_mod#(le(y,x),s(x),s(y)) Weak TRS Rules: if_minus(false(),s(x),y) -> s(minus(x,y)) if_minus(true(),s(x),y) -> 0() le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(0(),y) -> 0() minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) Signature: {if_minus/3,if_mod/3,le/2,minus/2,mod/2,if_minus#/3,if_mod#/3,le#/2,minus#/2,mod#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/0,c_7/1,c_8/0,c_9/1,c_10/0,c_11/0,c_12/2} Obligation: Innermost basic terms: {if_minus#,if_mod#,le#,minus#,mod#}/{0,false,s,true} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.2.2.1.1.2.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: if_minus#(false(),s(x),y) -> c_1(minus#(x,y)) if_mod#(true(),s(x),s(y)) -> minus#(x,y) if_mod#(true(),s(x),s(y)) -> mod#(minus(x,y),s(y)) minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y)) mod#(s(x),s(y)) -> if_mod#(le(y,x),s(x),s(y)) Weak TRS Rules: if_minus(false(),s(x),y) -> s(minus(x,y)) if_minus(true(),s(x),y) -> 0() le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(0(),y) -> 0() minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) Signature: {if_minus/3,if_mod/3,le/2,minus/2,mod/2,if_minus#/3,if_mod#/3,le#/2,minus#/2,mod#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/0,c_7/1,c_8/0,c_9/1,c_10/0,c_11/0,c_12/2} Obligation: Innermost basic terms: {if_minus#,if_mod#,le#,minus#,mod#}/{0,false,s,true} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:if_minus#(false(),s(x),y) -> c_1(minus#(x,y)) -->_1 minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y)):4 2:W:if_mod#(true(),s(x),s(y)) -> minus#(x,y) -->_1 minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y)):4 3:W:if_mod#(true(),s(x),s(y)) -> mod#(minus(x,y),s(y)) -->_1 mod#(s(x),s(y)) -> if_mod#(le(y,x),s(x),s(y)):5 4:W:minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y)) -->_1 if_minus#(false(),s(x),y) -> c_1(minus#(x,y)):1 5:W:mod#(s(x),s(y)) -> if_mod#(le(y,x),s(x),s(y)) -->_1 if_mod#(true(),s(x),s(y)) -> mod#(minus(x,y),s(y)):3 -->_1 if_mod#(true(),s(x),s(y)) -> minus#(x,y):2 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 3: if_mod#(true(),s(x),s(y)) -> mod#(minus(x,y),s(y)) 5: mod#(s(x),s(y)) -> if_mod#(le(y ,x) ,s(x) ,s(y)) 2: if_mod#(true(),s(x),s(y)) -> minus#(x,y) 1: if_minus#(false(),s(x),y) -> c_1(minus#(x,y)) 4: minus#(s(x),y) -> c_9(if_minus#(le(s(x),y) ,s(x) ,y)) *** 1.1.1.1.1.1.2.2.1.1.2.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: if_minus(false(),s(x),y) -> s(minus(x,y)) if_minus(true(),s(x),y) -> 0() le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(0(),y) -> 0() minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) Signature: {if_minus/3,if_mod/3,le/2,minus/2,mod/2,if_minus#/3,if_mod#/3,le#/2,minus#/2,mod#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/0,c_7/1,c_8/0,c_9/1,c_10/0,c_11/0,c_12/2} Obligation: Innermost basic terms: {if_minus#,if_mod#,le#,minus#,mod#}/{0,false,s,true} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1). *** 1.1.1.1.1.2 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: if_mod#(true(),s(x),s(y)) -> c_4(mod#(minus(x,y),s(y)),minus#(x,y)) mod#(s(x),s(y)) -> c_12(if_mod#(le(y,x),s(x),s(y)),le#(y,x)) Strict TRS Rules: Weak DP Rules: if_minus#(false(),s(x),y) -> c_1(minus#(x,y)) le#(s(x),s(y)) -> c_7(le#(x,y)) minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y)) Weak TRS Rules: if_minus(false(),s(x),y) -> s(minus(x,y)) if_minus(true(),s(x),y) -> 0() le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(0(),y) -> 0() minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) Signature: {if_minus/3,if_mod/3,le/2,minus/2,mod/2,if_minus#/3,if_mod#/3,le#/2,minus#/2,mod#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/0,c_7/1,c_8/0,c_9/2,c_10/0,c_11/0,c_12/2} Obligation: Innermost basic terms: {if_minus#,if_mod#,le#,minus#,mod#}/{0,false,s,true} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:if_mod#(true(),s(x),s(y)) -> c_4(mod#(minus(x,y),s(y)),minus#(x,y)) -->_2 minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y)):5 -->_1 mod#(s(x),s(y)) -> c_12(if_mod#(le(y,x),s(x),s(y)),le#(y,x)):2 2:S:mod#(s(x),s(y)) -> c_12(if_mod#(le(y,x),s(x),s(y)),le#(y,x)) -->_2 le#(s(x),s(y)) -> c_7(le#(x,y)):4 -->_1 if_mod#(true(),s(x),s(y)) -> c_4(mod#(minus(x,y),s(y)),minus#(x,y)):1 3:W:if_minus#(false(),s(x),y) -> c_1(minus#(x,y)) -->_1 minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y)):5 4:W:le#(s(x),s(y)) -> c_7(le#(x,y)) -->_1 le#(s(x),s(y)) -> c_7(le#(x,y)):4 5:W:minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y),le#(s(x),y)) -->_2 le#(s(x),s(y)) -> c_7(le#(x,y)):4 -->_1 if_minus#(false(),s(x),y) -> c_1(minus#(x,y)):3 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 5: minus#(s(x),y) -> c_9(if_minus#(le(s(x),y),s(x),y) ,le#(s(x),y)) 3: if_minus#(false(),s(x),y) -> c_1(minus#(x,y)) 4: le#(s(x),s(y)) -> c_7(le#(x,y)) *** 1.1.1.1.1.2.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: if_mod#(true(),s(x),s(y)) -> c_4(mod#(minus(x,y),s(y)),minus#(x,y)) mod#(s(x),s(y)) -> c_12(if_mod#(le(y,x),s(x),s(y)),le#(y,x)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: if_minus(false(),s(x),y) -> s(minus(x,y)) if_minus(true(),s(x),y) -> 0() le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(0(),y) -> 0() minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) Signature: {if_minus/3,if_mod/3,le/2,minus/2,mod/2,if_minus#/3,if_mod#/3,le#/2,minus#/2,mod#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/0,c_7/1,c_8/0,c_9/2,c_10/0,c_11/0,c_12/2} Obligation: Innermost basic terms: {if_minus#,if_mod#,le#,minus#,mod#}/{0,false,s,true} Applied Processor: SimplifyRHS Proof: Consider the dependency graph 1:S:if_mod#(true(),s(x),s(y)) -> c_4(mod#(minus(x,y),s(y)),minus#(x,y)) -->_1 mod#(s(x),s(y)) -> c_12(if_mod#(le(y,x),s(x),s(y)),le#(y,x)):2 2:S:mod#(s(x),s(y)) -> c_12(if_mod#(le(y,x),s(x),s(y)),le#(y,x)) -->_1 if_mod#(true(),s(x),s(y)) -> c_4(mod#(minus(x,y),s(y)),minus#(x,y)):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: if_mod#(true(),s(x),s(y)) -> c_4(mod#(minus(x,y),s(y))) mod#(s(x),s(y)) -> c_12(if_mod#(le(y,x),s(x),s(y))) *** 1.1.1.1.1.2.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: if_mod#(true(),s(x),s(y)) -> c_4(mod#(minus(x,y),s(y))) mod#(s(x),s(y)) -> c_12(if_mod#(le(y,x),s(x),s(y))) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: if_minus(false(),s(x),y) -> s(minus(x,y)) if_minus(true(),s(x),y) -> 0() le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(0(),y) -> 0() minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) Signature: {if_minus/3,if_mod/3,le/2,minus/2,mod/2,if_minus#/3,if_mod#/3,le#/2,minus#/2,mod#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/1,c_5/0,c_6/0,c_7/1,c_8/0,c_9/2,c_10/0,c_11/0,c_12/1} Obligation: Innermost basic terms: {if_minus#,if_mod#,le#,minus#,mod#}/{0,false,s,true} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: if_mod#(true(),s(x),s(y)) -> c_4(mod#(minus(x,y),s(y))) Consider the set of all dependency pairs 1: if_mod#(true(),s(x),s(y)) -> c_4(mod#(minus(x,y),s(y))) 2: mod#(s(x),s(y)) -> c_12(if_mod#(le(y,x),s(x),s(y))) Processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}induces the complexity certificateTIME (?,O(n^1)) SPACE(?,?)on application of the dependency pairs {1} These cover all (indirect) predecessors of dependency pairs {1,2} their number of applications is equally bounded. The dependency pairs are shifted into the weak component. *** 1.1.1.1.1.2.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: if_mod#(true(),s(x),s(y)) -> c_4(mod#(minus(x,y),s(y))) mod#(s(x),s(y)) -> c_12(if_mod#(le(y,x),s(x),s(y))) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: if_minus(false(),s(x),y) -> s(minus(x,y)) if_minus(true(),s(x),y) -> 0() le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(0(),y) -> 0() minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) Signature: {if_minus/3,if_mod/3,le/2,minus/2,mod/2,if_minus#/3,if_mod#/3,le#/2,minus#/2,mod#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/1,c_5/0,c_6/0,c_7/1,c_8/0,c_9/2,c_10/0,c_11/0,c_12/1} Obligation: Innermost basic terms: {if_minus#,if_mod#,le#,minus#,mod#}/{0,false,s,true} Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_4) = {1}, uargs(c_12) = {1} Following symbols are considered usable: {if_minus,minus,if_minus#,if_mod#,le#,minus#,mod#} TcT has computed the following interpretation: p(0) = [0] p(false) = [0] p(if_minus) = [1] x2 + [0] p(if_mod) = [1] x1 + [1] x3 + [1] p(le) = [0] p(minus) = [1] x1 + [0] p(mod) = [2] x1 + [1] x2 + [1] p(s) = [1] x1 + [4] p(true) = [0] p(if_minus#) = [2] x1 + [0] p(if_mod#) = [4] x2 + [3] x3 + [0] p(le#) = [1] x2 + [0] p(minus#) = [0] p(mod#) = [4] x1 + [3] x2 + [0] p(c_1) = [1] x1 + [2] p(c_2) = [0] p(c_3) = [1] p(c_4) = [1] x1 + [15] p(c_5) = [1] p(c_6) = [1] p(c_7) = [8] x1 + [2] p(c_8) = [0] p(c_9) = [1] x2 + [0] p(c_10) = [2] p(c_11) = [1] p(c_12) = [1] x1 + [0] Following rules are strictly oriented: if_mod#(true(),s(x),s(y)) = [4] x + [3] y + [28] > [4] x + [3] y + [27] = c_4(mod#(minus(x,y),s(y))) Following rules are (at-least) weakly oriented: mod#(s(x),s(y)) = [4] x + [3] y + [28] >= [4] x + [3] y + [28] = c_12(if_mod#(le(y,x),s(x),s(y))) if_minus(false(),s(x),y) = [1] x + [4] >= [1] x + [4] = s(minus(x,y)) if_minus(true(),s(x),y) = [1] x + [4] >= [0] = 0() minus(0(),y) = [0] >= [0] = 0() minus(s(x),y) = [1] x + [4] >= [1] x + [4] = if_minus(le(s(x),y),s(x),y) *** 1.1.1.1.1.2.1.1.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: mod#(s(x),s(y)) -> c_12(if_mod#(le(y,x),s(x),s(y))) Strict TRS Rules: Weak DP Rules: if_mod#(true(),s(x),s(y)) -> c_4(mod#(minus(x,y),s(y))) Weak TRS Rules: if_minus(false(),s(x),y) -> s(minus(x,y)) if_minus(true(),s(x),y) -> 0() le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(0(),y) -> 0() minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) Signature: {if_minus/3,if_mod/3,le/2,minus/2,mod/2,if_minus#/3,if_mod#/3,le#/2,minus#/2,mod#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/1,c_5/0,c_6/0,c_7/1,c_8/0,c_9/2,c_10/0,c_11/0,c_12/1} Obligation: Innermost basic terms: {if_minus#,if_mod#,le#,minus#,mod#}/{0,false,s,true} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.2.1.1.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: if_mod#(true(),s(x),s(y)) -> c_4(mod#(minus(x,y),s(y))) mod#(s(x),s(y)) -> c_12(if_mod#(le(y,x),s(x),s(y))) Weak TRS Rules: if_minus(false(),s(x),y) -> s(minus(x,y)) if_minus(true(),s(x),y) -> 0() le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(0(),y) -> 0() minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) Signature: {if_minus/3,if_mod/3,le/2,minus/2,mod/2,if_minus#/3,if_mod#/3,le#/2,minus#/2,mod#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/1,c_5/0,c_6/0,c_7/1,c_8/0,c_9/2,c_10/0,c_11/0,c_12/1} Obligation: Innermost basic terms: {if_minus#,if_mod#,le#,minus#,mod#}/{0,false,s,true} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:if_mod#(true(),s(x),s(y)) -> c_4(mod#(minus(x,y),s(y))) -->_1 mod#(s(x),s(y)) -> c_12(if_mod#(le(y,x),s(x),s(y))):2 2:W:mod#(s(x),s(y)) -> c_12(if_mod#(le(y,x),s(x),s(y))) -->_1 if_mod#(true(),s(x),s(y)) -> c_4(mod#(minus(x,y),s(y))):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: if_mod#(true(),s(x),s(y)) -> c_4(mod#(minus(x,y),s(y))) 2: mod#(s(x),s(y)) -> c_12(if_mod#(le(y,x),s(x),s(y))) *** 1.1.1.1.1.2.1.1.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: if_minus(false(),s(x),y) -> s(minus(x,y)) if_minus(true(),s(x),y) -> 0() le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(0(),y) -> 0() minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) Signature: {if_minus/3,if_mod/3,le/2,minus/2,mod/2,if_minus#/3,if_mod#/3,le#/2,minus#/2,mod#/2} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/1,c_5/0,c_6/0,c_7/1,c_8/0,c_9/2,c_10/0,c_11/0,c_12/1} Obligation: Innermost basic terms: {if_minus#,if_mod#,le#,minus#,mod#}/{0,false,s,true} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1).