*** 1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        if_mod(false(),s(x),s(y)) -> s(x)
        if_mod(true(),s(x),s(y)) -> mod(minus(x,y),s(y))
        le(0(),y) -> true()
        le(s(x),0()) -> false()
        le(s(x),s(y)) -> le(x,y)
        minus(x,0()) -> x
        minus(x,s(y)) -> pred(minus(x,y))
        mod(0(),y) -> 0()
        mod(s(x),0()) -> 0()
        mod(s(x),s(y)) -> if_mod(le(y,x),s(x),s(y))
        pred(s(x)) -> x
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {if_mod/3,le/2,minus/2,mod/2,pred/1} / {0/0,false/0,s/1,true/0}
      Obligation:
        Innermost
        basic terms: {if_mod,le,minus,mod,pred}/{0,false,s,true}
    Applied Processor:
      DependencyPairs {dpKind_ = DT}
    Proof:
      We add the following dependency tuples:
      
      Strict DPs
        if_mod#(false(),s(x),s(y)) -> c_1()
        if_mod#(true(),s(x),s(y)) -> c_2(mod#(minus(x,y),s(y)),minus#(x,y))
        le#(0(),y) -> c_3()
        le#(s(x),0()) -> c_4()
        le#(s(x),s(y)) -> c_5(le#(x,y))
        minus#(x,0()) -> c_6()
        minus#(x,s(y)) -> c_7(pred#(minus(x,y)),minus#(x,y))
        mod#(0(),y) -> c_8()
        mod#(s(x),0()) -> c_9()
        mod#(s(x),s(y)) -> c_10(if_mod#(le(y,x),s(x),s(y)),le#(y,x))
        pred#(s(x)) -> c_11()
      Weak DPs
        
      
      and mark the set of starting terms.
*** 1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        if_mod#(false(),s(x),s(y)) -> c_1()
        if_mod#(true(),s(x),s(y)) -> c_2(mod#(minus(x,y),s(y)),minus#(x,y))
        le#(0(),y) -> c_3()
        le#(s(x),0()) -> c_4()
        le#(s(x),s(y)) -> c_5(le#(x,y))
        minus#(x,0()) -> c_6()
        minus#(x,s(y)) -> c_7(pred#(minus(x,y)),minus#(x,y))
        mod#(0(),y) -> c_8()
        mod#(s(x),0()) -> c_9()
        mod#(s(x),s(y)) -> c_10(if_mod#(le(y,x),s(x),s(y)),le#(y,x))
        pred#(s(x)) -> c_11()
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        if_mod(false(),s(x),s(y)) -> s(x)
        if_mod(true(),s(x),s(y)) -> mod(minus(x,y),s(y))
        le(0(),y) -> true()
        le(s(x),0()) -> false()
        le(s(x),s(y)) -> le(x,y)
        minus(x,0()) -> x
        minus(x,s(y)) -> pred(minus(x,y))
        mod(0(),y) -> 0()
        mod(s(x),0()) -> 0()
        mod(s(x),s(y)) -> if_mod(le(y,x),s(x),s(y))
        pred(s(x)) -> x
      Signature:
        {if_mod/3,le/2,minus/2,mod/2,pred/1,if_mod#/3,le#/2,minus#/2,mod#/2,pred#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/2,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/0,c_10/2,c_11/0}
      Obligation:
        Innermost
        basic terms: {if_mod#,le#,minus#,mod#,pred#}/{0,false,s,true}
    Applied Processor:
      UsableRules
    Proof:
      We replace rewrite rules by usable rules:
        le(0(),y) -> true()
        le(s(x),0()) -> false()
        le(s(x),s(y)) -> le(x,y)
        minus(x,0()) -> x
        minus(x,s(y)) -> pred(minus(x,y))
        pred(s(x)) -> x
        if_mod#(false(),s(x),s(y)) -> c_1()
        if_mod#(true(),s(x),s(y)) -> c_2(mod#(minus(x,y),s(y)),minus#(x,y))
        le#(0(),y) -> c_3()
        le#(s(x),0()) -> c_4()
        le#(s(x),s(y)) -> c_5(le#(x,y))
        minus#(x,0()) -> c_6()
        minus#(x,s(y)) -> c_7(pred#(minus(x,y)),minus#(x,y))
        mod#(0(),y) -> c_8()
        mod#(s(x),0()) -> c_9()
        mod#(s(x),s(y)) -> c_10(if_mod#(le(y,x),s(x),s(y)),le#(y,x))
        pred#(s(x)) -> c_11()
*** 1.1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        if_mod#(false(),s(x),s(y)) -> c_1()
        if_mod#(true(),s(x),s(y)) -> c_2(mod#(minus(x,y),s(y)),minus#(x,y))
        le#(0(),y) -> c_3()
        le#(s(x),0()) -> c_4()
        le#(s(x),s(y)) -> c_5(le#(x,y))
        minus#(x,0()) -> c_6()
        minus#(x,s(y)) -> c_7(pred#(minus(x,y)),minus#(x,y))
        mod#(0(),y) -> c_8()
        mod#(s(x),0()) -> c_9()
        mod#(s(x),s(y)) -> c_10(if_mod#(le(y,x),s(x),s(y)),le#(y,x))
        pred#(s(x)) -> c_11()
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        le(0(),y) -> true()
        le(s(x),0()) -> false()
        le(s(x),s(y)) -> le(x,y)
        minus(x,0()) -> x
        minus(x,s(y)) -> pred(minus(x,y))
        pred(s(x)) -> x
      Signature:
        {if_mod/3,le/2,minus/2,mod/2,pred/1,if_mod#/3,le#/2,minus#/2,mod#/2,pred#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/2,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/0,c_10/2,c_11/0}
      Obligation:
        Innermost
        basic terms: {if_mod#,le#,minus#,mod#,pred#}/{0,false,s,true}
    Applied Processor:
      PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    Proof:
      We estimate the number of application of
        {1,3,4,6,8,9,11}
      by application of
        Pre({1,3,4,6,8,9,11}) = {2,5,7,10}.
      Here rules are labelled as follows:
        1:  if_mod#(false(),s(x),s(y)) ->    
              c_1()                          
        2:  if_mod#(true(),s(x),s(y)) ->     
              c_2(mod#(minus(x,y),s(y))      
                 ,minus#(x,y))               
        3:  le#(0(),y) -> c_3()              
        4:  le#(s(x),0()) -> c_4()           
        5:  le#(s(x),s(y)) -> c_5(le#(x,y))  
        6:  minus#(x,0()) -> c_6()           
        7:  minus#(x,s(y)) ->                
              c_7(pred#(minus(x,y))          
                 ,minus#(x,y))               
        8:  mod#(0(),y) -> c_8()             
        9:  mod#(s(x),0()) -> c_9()          
        10: mod#(s(x),s(y)) ->               
              c_10(if_mod#(le(y,x),s(x),s(y))
                  ,le#(y,x))                 
        11: pred#(s(x)) -> c_11()            
*** 1.1.1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        if_mod#(true(),s(x),s(y)) -> c_2(mod#(minus(x,y),s(y)),minus#(x,y))
        le#(s(x),s(y)) -> c_5(le#(x,y))
        minus#(x,s(y)) -> c_7(pred#(minus(x,y)),minus#(x,y))
        mod#(s(x),s(y)) -> c_10(if_mod#(le(y,x),s(x),s(y)),le#(y,x))
      Strict TRS Rules:
        
      Weak DP Rules:
        if_mod#(false(),s(x),s(y)) -> c_1()
        le#(0(),y) -> c_3()
        le#(s(x),0()) -> c_4()
        minus#(x,0()) -> c_6()
        mod#(0(),y) -> c_8()
        mod#(s(x),0()) -> c_9()
        pred#(s(x)) -> c_11()
      Weak TRS Rules:
        le(0(),y) -> true()
        le(s(x),0()) -> false()
        le(s(x),s(y)) -> le(x,y)
        minus(x,0()) -> x
        minus(x,s(y)) -> pred(minus(x,y))
        pred(s(x)) -> x
      Signature:
        {if_mod/3,le/2,minus/2,mod/2,pred/1,if_mod#/3,le#/2,minus#/2,mod#/2,pred#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/2,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/0,c_10/2,c_11/0}
      Obligation:
        Innermost
        basic terms: {if_mod#,le#,minus#,mod#,pred#}/{0,false,s,true}
    Applied Processor:
      RemoveWeakSuffixes
    Proof:
      Consider the dependency graph
        1:S:if_mod#(true(),s(x),s(y)) -> c_2(mod#(minus(x,y),s(y)),minus#(x,y))
           -->_1 mod#(s(x),s(y)) -> c_10(if_mod#(le(y,x),s(x),s(y)),le#(y,x)):4
           -->_2 minus#(x,s(y)) -> c_7(pred#(minus(x,y)),minus#(x,y)):3
           -->_1 mod#(0(),y) -> c_8():9
           -->_2 minus#(x,0()) -> c_6():8
        
        2:S:le#(s(x),s(y)) -> c_5(le#(x,y))
           -->_1 le#(s(x),0()) -> c_4():7
           -->_1 le#(0(),y) -> c_3():6
           -->_1 le#(s(x),s(y)) -> c_5(le#(x,y)):2
        
        3:S:minus#(x,s(y)) -> c_7(pred#(minus(x,y)),minus#(x,y))
           -->_1 pred#(s(x)) -> c_11():11
           -->_2 minus#(x,0()) -> c_6():8
           -->_2 minus#(x,s(y)) -> c_7(pred#(minus(x,y)),minus#(x,y)):3
        
        4:S:mod#(s(x),s(y)) -> c_10(if_mod#(le(y,x),s(x),s(y)),le#(y,x))
           -->_2 le#(s(x),0()) -> c_4():7
           -->_2 le#(0(),y) -> c_3():6
           -->_1 if_mod#(false(),s(x),s(y)) -> c_1():5
           -->_2 le#(s(x),s(y)) -> c_5(le#(x,y)):2
           -->_1 if_mod#(true(),s(x),s(y)) -> c_2(mod#(minus(x,y),s(y)),minus#(x,y)):1
        
        5:W:if_mod#(false(),s(x),s(y)) -> c_1()
           
        
        6:W:le#(0(),y) -> c_3()
           
        
        7:W:le#(s(x),0()) -> c_4()
           
        
        8:W:minus#(x,0()) -> c_6()
           
        
        9:W:mod#(0(),y) -> c_8()
           
        
        10:W:mod#(s(x),0()) -> c_9()
           
        
        11:W:pred#(s(x)) -> c_11()
           
        
      The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
        10: mod#(s(x),0()) -> c_9()      
        9:  mod#(0(),y) -> c_8()         
        8:  minus#(x,0()) -> c_6()       
        11: pred#(s(x)) -> c_11()        
        5:  if_mod#(false(),s(x),s(y)) ->
              c_1()                      
        6:  le#(0(),y) -> c_3()          
        7:  le#(s(x),0()) -> c_4()       
*** 1.1.1.1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        if_mod#(true(),s(x),s(y)) -> c_2(mod#(minus(x,y),s(y)),minus#(x,y))
        le#(s(x),s(y)) -> c_5(le#(x,y))
        minus#(x,s(y)) -> c_7(pred#(minus(x,y)),minus#(x,y))
        mod#(s(x),s(y)) -> c_10(if_mod#(le(y,x),s(x),s(y)),le#(y,x))
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        le(0(),y) -> true()
        le(s(x),0()) -> false()
        le(s(x),s(y)) -> le(x,y)
        minus(x,0()) -> x
        minus(x,s(y)) -> pred(minus(x,y))
        pred(s(x)) -> x
      Signature:
        {if_mod/3,le/2,minus/2,mod/2,pred/1,if_mod#/3,le#/2,minus#/2,mod#/2,pred#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/2,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/0,c_10/2,c_11/0}
      Obligation:
        Innermost
        basic terms: {if_mod#,le#,minus#,mod#,pred#}/{0,false,s,true}
    Applied Processor:
      SimplifyRHS
    Proof:
      Consider the dependency graph
        1:S:if_mod#(true(),s(x),s(y)) -> c_2(mod#(minus(x,y),s(y)),minus#(x,y))
           -->_1 mod#(s(x),s(y)) -> c_10(if_mod#(le(y,x),s(x),s(y)),le#(y,x)):4
           -->_2 minus#(x,s(y)) -> c_7(pred#(minus(x,y)),minus#(x,y)):3
        
        2:S:le#(s(x),s(y)) -> c_5(le#(x,y))
           -->_1 le#(s(x),s(y)) -> c_5(le#(x,y)):2
        
        3:S:minus#(x,s(y)) -> c_7(pred#(minus(x,y)),minus#(x,y))
           -->_2 minus#(x,s(y)) -> c_7(pred#(minus(x,y)),minus#(x,y)):3
        
        4:S:mod#(s(x),s(y)) -> c_10(if_mod#(le(y,x),s(x),s(y)),le#(y,x))
           -->_2 le#(s(x),s(y)) -> c_5(le#(x,y)):2
           -->_1 if_mod#(true(),s(x),s(y)) -> c_2(mod#(minus(x,y),s(y)),minus#(x,y)):1
        
      Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
        minus#(x,s(y)) -> c_7(minus#(x,y))
*** 1.1.1.1.1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        if_mod#(true(),s(x),s(y)) -> c_2(mod#(minus(x,y),s(y)),minus#(x,y))
        le#(s(x),s(y)) -> c_5(le#(x,y))
        minus#(x,s(y)) -> c_7(minus#(x,y))
        mod#(s(x),s(y)) -> c_10(if_mod#(le(y,x),s(x),s(y)),le#(y,x))
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        le(0(),y) -> true()
        le(s(x),0()) -> false()
        le(s(x),s(y)) -> le(x,y)
        minus(x,0()) -> x
        minus(x,s(y)) -> pred(minus(x,y))
        pred(s(x)) -> x
      Signature:
        {if_mod/3,le/2,minus/2,mod/2,pred/1,if_mod#/3,le#/2,minus#/2,mod#/2,pred#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/2,c_3/0,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/2,c_11/0}
      Obligation:
        Innermost
        basic terms: {if_mod#,le#,minus#,mod#,pred#}/{0,false,s,true}
    Applied Processor:
      PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 3, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
    Proof:
      We first use the processor NaturalMI {miDimension = 3, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
        1: if_mod#(true(),s(x),s(y)) ->   
             c_2(mod#(minus(x,y),s(y))    
                ,minus#(x,y))             
        2: le#(s(x),s(y)) -> c_5(le#(x,y))
        
      Consider the set of all dependency pairs
        1: if_mod#(true(),s(x),s(y)) ->     
             c_2(mod#(minus(x,y),s(y))      
                ,minus#(x,y))               
        2: le#(s(x),s(y)) -> c_5(le#(x,y))  
        3: minus#(x,s(y)) -> c_7(minus#(x   
                                       ,y)) 
        4: mod#(s(x),s(y)) ->               
             c_10(if_mod#(le(y,x),s(x),s(y))
                 ,le#(y,x))                 
      Processor NaturalMI {miDimension = 3, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}induces the complexity certificateTIME (?,O(n^2))
      SPACE(?,?)on application of the dependency pairs
        {1,2}
      These cover all (indirect) predecessors of dependency pairs
        {1,2,4}
      their number of applications is equally bounded.
      The dependency pairs are shifted into the weak component.
  *** 1.1.1.1.1.1.1 Progress [(?,O(n^2))]  ***
      Considered Problem:
        Strict DP Rules:
          if_mod#(true(),s(x),s(y)) -> c_2(mod#(minus(x,y),s(y)),minus#(x,y))
          le#(s(x),s(y)) -> c_5(le#(x,y))
          minus#(x,s(y)) -> c_7(minus#(x,y))
          mod#(s(x),s(y)) -> c_10(if_mod#(le(y,x),s(x),s(y)),le#(y,x))
        Strict TRS Rules:
          
        Weak DP Rules:
          
        Weak TRS Rules:
          le(0(),y) -> true()
          le(s(x),0()) -> false()
          le(s(x),s(y)) -> le(x,y)
          minus(x,0()) -> x
          minus(x,s(y)) -> pred(minus(x,y))
          pred(s(x)) -> x
        Signature:
          {if_mod/3,le/2,minus/2,mod/2,pred/1,if_mod#/3,le#/2,minus#/2,mod#/2,pred#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/2,c_3/0,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/2,c_11/0}
        Obligation:
          Innermost
          basic terms: {if_mod#,le#,minus#,mod#,pred#}/{0,false,s,true}
      Applied Processor:
        NaturalMI {miDimension = 3, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
      Proof:
        We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 2 non-zero interpretation-entries in the diagonal of the component-wise maxima):
        The following argument positions are considered usable:
          uargs(c_2) = {1,2},
          uargs(c_5) = {1},
          uargs(c_7) = {1},
          uargs(c_10) = {1,2}
        
        Following symbols are considered usable:
          {le,minus,pred,if_mod#,le#,minus#,mod#,pred#}
        TcT has computed the following interpretation:
                p(0) = [0]                           
                       [0]                           
                       [0]                           
            p(false) = [0]                           
                       [0]                           
                       [0]                           
           p(if_mod) = [0]                           
                       [0]                           
                       [0]                           
               p(le) = [0 0 0]      [0 0 0]      [0] 
                       [0 0 1] x1 + [1 0 0] x2 + [0] 
                       [0 0 1]      [1 0 0]      [0] 
            p(minus) = [1 1 0]      [0]              
                       [1 1 0] x1 + [1]              
                       [0 0 1]      [0]              
              p(mod) = [0]                           
                       [0]                           
                       [0]                           
             p(pred) = [1 0 0]      [0]              
                       [1 0 0] x1 + [0]              
                       [0 0 1]      [0]              
                p(s) = [1 1 1]      [1]              
                       [0 0 1] x1 + [0]              
                       [0 0 1]      [1]              
             p(true) = [0]                           
                       [0]                           
                       [0]                           
          p(if_mod#) = [0 0 0]      [1 0 0]      [0 1
                       1]      [0]                   
                       [0 1 1] x1 + [0 0 0] x2 + [0 1
                       0] x3 + [0]                   
                       [0 0 0]      [0 1 0]      [0 0
                       0]      [0]                   
              p(le#) = [0 0 0]      [0 0 1]      [0] 
                       [0 0 0] x1 + [0 0 0] x2 + [1] 
                       [0 0 1]      [0 1 0]      [1] 
           p(minus#) = [0 0 0]      [0 0 0]      [0] 
                       [0 0 0] x1 + [1 0 1] x2 + [0] 
                       [1 0 0]      [1 0 0]      [0] 
             p(mod#) = [1 0 1]      [0 1 1]      [0] 
                       [0 0 0] x1 + [0 0 0] x2 + [0] 
                       [1 0 0]      [0 0 0]      [1] 
            p(pred#) = [0]                           
                       [0]                           
                       [0]                           
              p(c_1) = [0]                           
                       [0]                           
                       [0]                           
              p(c_2) = [1 0 0]      [1 0 0]      [0] 
                       [0 0 0] x1 + [0 0 0] x2 + [0] 
                       [0 0 0]      [0 0 0]      [0] 
              p(c_3) = [0]                           
                       [0]                           
                       [0]                           
              p(c_4) = [0]                           
                       [0]                           
                       [0]                           
              p(c_5) = [1 0 0]      [0]              
                       [0 0 0] x1 + [0]              
                       [0 0 0]      [0]              
              p(c_6) = [0]                           
                       [0]                           
                       [0]                           
              p(c_7) = [1 0 0]      [0]              
                       [0 1 0] x1 + [0]              
                       [0 0 0]      [1]              
              p(c_8) = [0]                           
                       [0]                           
                       [0]                           
              p(c_9) = [0]                           
                       [0]                           
                       [0]                           
             p(c_10) = [1 0 0]      [1 1 0]      [0] 
                       [0 0 0] x1 + [0 0 0] x2 + [0] 
                       [0 0 0]      [0 0 0]      [0] 
             p(c_11) = [0]                           
                       [0]                           
                       [0]                           
        
        Following rules are strictly oriented:
        if_mod#(true(),s(x),s(y)) = [1 1 1]     [0 0 2]     [2]
                                    [0 0 0] x + [0 0 1] y + [0]
                                    [0 0 1]     [0 0 0]     [0]
                                  > [1 1 1]     [0 0 2]     [1]
                                    [0 0 0] x + [0 0 0] y + [0]
                                    [0 0 0]     [0 0 0]     [0]
                                  = c_2(mod#(minus(x,y),s(y))  
                                       ,minus#(x,y))           
        
                   le#(s(x),s(y)) = [0 0 0]     [0 0 1]     [1]
                                    [0 0 0] x + [0 0 0] y + [1]
                                    [0 0 1]     [0 0 1]     [2]
                                  > [0 0 1]     [0]            
                                    [0 0 0] y + [0]            
                                    [0 0 0]     [0]            
                                  = c_5(le#(x,y))              
        
        
        Following rules are (at-least) weakly oriented:
         minus#(x,s(y)) =  [0 0 0]     [0 0 0]     [0]    
                           [0 0 0] x + [1 1 2] y + [2]    
                           [1 0 0]     [1 1 1]     [1]    
                        >= [0 0 0]     [0]                
                           [1 0 1] y + [0]                
                           [0 0 0]     [1]                
                        =  c_7(minus#(x,y))               
        
        mod#(s(x),s(y)) =  [1 1 2]     [0 0 2]     [3]    
                           [0 0 0] x + [0 0 0] y + [0]    
                           [1 1 1]     [0 0 0]     [2]    
                        >= [1 1 2]     [0 0 2]     [3]    
                           [0 0 0] x + [0 0 0] y + [0]    
                           [0 0 0]     [0 0 0]     [0]    
                        =  c_10(if_mod#(le(y,x),s(x),s(y))
                               ,le#(y,x))                 
        
              le(0(),y) =  [0 0 0]     [0]                
                           [1 0 0] y + [0]                
                           [1 0 0]     [0]                
                        >= [0]                            
                           [0]                            
                           [0]                            
                        =  true()                         
        
           le(s(x),0()) =  [0 0 0]     [0]                
                           [0 0 1] x + [1]                
                           [0 0 1]     [1]                
                        >= [0]                            
                           [0]                            
                           [0]                            
                        =  false()                        
        
          le(s(x),s(y)) =  [0 0 0]     [0 0 0]     [0]    
                           [0 0 1] x + [1 1 1] y + [2]    
                           [0 0 1]     [1 1 1]     [2]    
                        >= [0 0 0]     [0 0 0]     [0]    
                           [0 0 1] x + [1 0 0] y + [0]    
                           [0 0 1]     [1 0 0]     [0]    
                        =  le(x,y)                        
        
           minus(x,0()) =  [1 1 0]     [0]                
                           [1 1 0] x + [1]                
                           [0 0 1]     [0]                
                        >= [1 0 0]     [0]                
                           [0 1 0] x + [0]                
                           [0 0 1]     [0]                
                        =  x                              
        
          minus(x,s(y)) =  [1 1 0]     [0]                
                           [1 1 0] x + [1]                
                           [0 0 1]     [0]                
                        >= [1 1 0]     [0]                
                           [1 1 0] x + [0]                
                           [0 0 1]     [0]                
                        =  pred(minus(x,y))               
        
             pred(s(x)) =  [1 1 1]     [1]                
                           [1 1 1] x + [1]                
                           [0 0 1]     [1]                
                        >= [1 0 0]     [0]                
                           [0 1 0] x + [0]                
                           [0 0 1]     [0]                
                        =  x                              
        
  *** 1.1.1.1.1.1.1.1 Progress [(?,O(1))]  ***
      Considered Problem:
        Strict DP Rules:
          minus#(x,s(y)) -> c_7(minus#(x,y))
          mod#(s(x),s(y)) -> c_10(if_mod#(le(y,x),s(x),s(y)),le#(y,x))
        Strict TRS Rules:
          
        Weak DP Rules:
          if_mod#(true(),s(x),s(y)) -> c_2(mod#(minus(x,y),s(y)),minus#(x,y))
          le#(s(x),s(y)) -> c_5(le#(x,y))
        Weak TRS Rules:
          le(0(),y) -> true()
          le(s(x),0()) -> false()
          le(s(x),s(y)) -> le(x,y)
          minus(x,0()) -> x
          minus(x,s(y)) -> pred(minus(x,y))
          pred(s(x)) -> x
        Signature:
          {if_mod/3,le/2,minus/2,mod/2,pred/1,if_mod#/3,le#/2,minus#/2,mod#/2,pred#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/2,c_3/0,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/2,c_11/0}
        Obligation:
          Innermost
          basic terms: {if_mod#,le#,minus#,mod#,pred#}/{0,false,s,true}
      Applied Processor:
        Assumption
      Proof:
        ()
  
  *** 1.1.1.1.1.1.2 Progress [(?,O(n^2))]  ***
      Considered Problem:
        Strict DP Rules:
          minus#(x,s(y)) -> c_7(minus#(x,y))
        Strict TRS Rules:
          
        Weak DP Rules:
          if_mod#(true(),s(x),s(y)) -> c_2(mod#(minus(x,y),s(y)),minus#(x,y))
          le#(s(x),s(y)) -> c_5(le#(x,y))
          mod#(s(x),s(y)) -> c_10(if_mod#(le(y,x),s(x),s(y)),le#(y,x))
        Weak TRS Rules:
          le(0(),y) -> true()
          le(s(x),0()) -> false()
          le(s(x),s(y)) -> le(x,y)
          minus(x,0()) -> x
          minus(x,s(y)) -> pred(minus(x,y))
          pred(s(x)) -> x
        Signature:
          {if_mod/3,le/2,minus/2,mod/2,pred/1,if_mod#/3,le#/2,minus#/2,mod#/2,pred#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/2,c_3/0,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/2,c_11/0}
        Obligation:
          Innermost
          basic terms: {if_mod#,le#,minus#,mod#,pred#}/{0,false,s,true}
      Applied Processor:
        RemoveWeakSuffixes
      Proof:
        Consider the dependency graph
          1:S:minus#(x,s(y)) -> c_7(minus#(x,y))
             -->_1 minus#(x,s(y)) -> c_7(minus#(x,y)):1
          
          2:W:if_mod#(true(),s(x),s(y)) -> c_2(mod#(minus(x,y),s(y)),minus#(x,y))
             -->_1 mod#(s(x),s(y)) -> c_10(if_mod#(le(y,x),s(x),s(y)),le#(y,x)):4
             -->_2 minus#(x,s(y)) -> c_7(minus#(x,y)):1
          
          3:W:le#(s(x),s(y)) -> c_5(le#(x,y))
             -->_1 le#(s(x),s(y)) -> c_5(le#(x,y)):3
          
          4:W:mod#(s(x),s(y)) -> c_10(if_mod#(le(y,x),s(x),s(y)),le#(y,x))
             -->_2 le#(s(x),s(y)) -> c_5(le#(x,y)):3
             -->_1 if_mod#(true(),s(x),s(y)) -> c_2(mod#(minus(x,y),s(y)),minus#(x,y)):2
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          3: le#(s(x),s(y)) -> c_5(le#(x,y))
  *** 1.1.1.1.1.1.2.1 Progress [(?,O(n^2))]  ***
      Considered Problem:
        Strict DP Rules:
          minus#(x,s(y)) -> c_7(minus#(x,y))
        Strict TRS Rules:
          
        Weak DP Rules:
          if_mod#(true(),s(x),s(y)) -> c_2(mod#(minus(x,y),s(y)),minus#(x,y))
          mod#(s(x),s(y)) -> c_10(if_mod#(le(y,x),s(x),s(y)),le#(y,x))
        Weak TRS Rules:
          le(0(),y) -> true()
          le(s(x),0()) -> false()
          le(s(x),s(y)) -> le(x,y)
          minus(x,0()) -> x
          minus(x,s(y)) -> pred(minus(x,y))
          pred(s(x)) -> x
        Signature:
          {if_mod/3,le/2,minus/2,mod/2,pred/1,if_mod#/3,le#/2,minus#/2,mod#/2,pred#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/2,c_3/0,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/2,c_11/0}
        Obligation:
          Innermost
          basic terms: {if_mod#,le#,minus#,mod#,pred#}/{0,false,s,true}
      Applied Processor:
        SimplifyRHS
      Proof:
        Consider the dependency graph
          1:S:minus#(x,s(y)) -> c_7(minus#(x,y))
             -->_1 minus#(x,s(y)) -> c_7(minus#(x,y)):1
          
          2:W:if_mod#(true(),s(x),s(y)) -> c_2(mod#(minus(x,y),s(y)),minus#(x,y))
             -->_1 mod#(s(x),s(y)) -> c_10(if_mod#(le(y,x),s(x),s(y)),le#(y,x)):4
             -->_2 minus#(x,s(y)) -> c_7(minus#(x,y)):1
          
          4:W:mod#(s(x),s(y)) -> c_10(if_mod#(le(y,x),s(x),s(y)),le#(y,x))
             -->_1 if_mod#(true(),s(x),s(y)) -> c_2(mod#(minus(x,y),s(y)),minus#(x,y)):2
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          mod#(s(x),s(y)) -> c_10(if_mod#(le(y,x),s(x),s(y)))
  *** 1.1.1.1.1.1.2.1.1 Progress [(?,O(n^2))]  ***
      Considered Problem:
        Strict DP Rules:
          minus#(x,s(y)) -> c_7(minus#(x,y))
        Strict TRS Rules:
          
        Weak DP Rules:
          if_mod#(true(),s(x),s(y)) -> c_2(mod#(minus(x,y),s(y)),minus#(x,y))
          mod#(s(x),s(y)) -> c_10(if_mod#(le(y,x),s(x),s(y)))
        Weak TRS Rules:
          le(0(),y) -> true()
          le(s(x),0()) -> false()
          le(s(x),s(y)) -> le(x,y)
          minus(x,0()) -> x
          minus(x,s(y)) -> pred(minus(x,y))
          pred(s(x)) -> x
        Signature:
          {if_mod/3,le/2,minus/2,mod/2,pred/1,if_mod#/3,le#/2,minus#/2,mod#/2,pred#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/2,c_3/0,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/1,c_11/0}
        Obligation:
          Innermost
          basic terms: {if_mod#,le#,minus#,mod#,pred#}/{0,false,s,true}
      Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
      Proof:
        We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
          1: minus#(x,s(y)) -> c_7(minus#(x  
                                         ,y))
          
        The strictly oriented rules are moved into the weak component.
    *** 1.1.1.1.1.1.2.1.1.1 Progress [(?,O(n^2))]  ***
        Considered Problem:
          Strict DP Rules:
            minus#(x,s(y)) -> c_7(minus#(x,y))
          Strict TRS Rules:
            
          Weak DP Rules:
            if_mod#(true(),s(x),s(y)) -> c_2(mod#(minus(x,y),s(y)),minus#(x,y))
            mod#(s(x),s(y)) -> c_10(if_mod#(le(y,x),s(x),s(y)))
          Weak TRS Rules:
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            minus(x,0()) -> x
            minus(x,s(y)) -> pred(minus(x,y))
            pred(s(x)) -> x
          Signature:
            {if_mod/3,le/2,minus/2,mod/2,pred/1,if_mod#/3,le#/2,minus#/2,mod#/2,pred#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/2,c_3/0,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/1,c_11/0}
          Obligation:
            Innermost
            basic terms: {if_mod#,le#,minus#,mod#,pred#}/{0,false,s,true}
        Applied Processor:
          NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
        Proof:
          We apply a polynomial interpretation of kind constructor-based(mixed(2)):
          The following argument positions are considered usable:
            uargs(c_2) = {1,2},
            uargs(c_7) = {1},
            uargs(c_10) = {1}
          
          Following symbols are considered usable:
            {minus,pred,if_mod#,le#,minus#,mod#,pred#}
          TcT has computed the following interpretation:
                  p(0) = 0                                            
              p(false) = 0                                            
             p(if_mod) = x1 + x1*x3 + 2*x1^2 + 2*x2*x3 + 2*x2^2 + 4*x3
                 p(le) = 2*x2                                         
              p(minus) = x1                                           
                p(mod) = x1*x2 + 2*x2 + x2^2                          
               p(pred) = x1                                           
                  p(s) = 1 + x1                                       
               p(true) = 0                                            
            p(if_mod#) = 6 + 5*x2*x3 + x3                             
                p(le#) = 1 + 2*x1 + x1*x2 + 2*x2 + x2^2               
             p(minus#) = 4*x2                                         
               p(mod#) = 7 + 5*x1*x2 + x2                             
              p(pred#) = 1                                            
                p(c_1) = 0                                            
                p(c_2) = 1 + x1 + x2                                  
                p(c_3) = 1                                            
                p(c_4) = 0                                            
                p(c_5) = 0                                            
                p(c_6) = 1                                            
                p(c_7) = 1 + x1                                       
                p(c_8) = 0                                            
                p(c_9) = 0                                            
               p(c_10) = 1 + x1                                       
               p(c_11) = 1                                            
          
          Following rules are strictly oriented:
          minus#(x,s(y)) = 4 + 4*y         
                         > 1 + 4*y         
                         = c_7(minus#(x,y))
          
          
          Following rules are (at-least) weakly oriented:
          if_mod#(true(),s(x),s(y)) =  12 + 5*x + 5*x*y + 6*y          
                                    >= 9 + 5*x + 5*x*y + 5*y           
                                    =  c_2(mod#(minus(x,y),s(y))       
                                          ,minus#(x,y))                
          
                    mod#(s(x),s(y)) =  13 + 5*x + 5*x*y + 6*y          
                                    >= 13 + 5*x + 5*x*y + 6*y          
                                    =  c_10(if_mod#(le(y,x),s(x),s(y)))
          
                       minus(x,0()) =  x                               
                                    >= x                               
                                    =  x                               
          
                      minus(x,s(y)) =  x                               
                                    >= x                               
                                    =  pred(minus(x,y))                
          
                         pred(s(x)) =  1 + x                           
                                    >= x                               
                                    =  x                               
          
    *** 1.1.1.1.1.1.2.1.1.1.1 Progress [(?,O(1))]  ***
        Considered Problem:
          Strict DP Rules:
            
          Strict TRS Rules:
            
          Weak DP Rules:
            if_mod#(true(),s(x),s(y)) -> c_2(mod#(minus(x,y),s(y)),minus#(x,y))
            minus#(x,s(y)) -> c_7(minus#(x,y))
            mod#(s(x),s(y)) -> c_10(if_mod#(le(y,x),s(x),s(y)))
          Weak TRS Rules:
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            minus(x,0()) -> x
            minus(x,s(y)) -> pred(minus(x,y))
            pred(s(x)) -> x
          Signature:
            {if_mod/3,le/2,minus/2,mod/2,pred/1,if_mod#/3,le#/2,minus#/2,mod#/2,pred#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/2,c_3/0,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/1,c_11/0}
          Obligation:
            Innermost
            basic terms: {if_mod#,le#,minus#,mod#,pred#}/{0,false,s,true}
        Applied Processor:
          Assumption
        Proof:
          ()
    
    *** 1.1.1.1.1.1.2.1.1.2 Progress [(O(1),O(1))]  ***
        Considered Problem:
          Strict DP Rules:
            
          Strict TRS Rules:
            
          Weak DP Rules:
            if_mod#(true(),s(x),s(y)) -> c_2(mod#(minus(x,y),s(y)),minus#(x,y))
            minus#(x,s(y)) -> c_7(minus#(x,y))
            mod#(s(x),s(y)) -> c_10(if_mod#(le(y,x),s(x),s(y)))
          Weak TRS Rules:
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            minus(x,0()) -> x
            minus(x,s(y)) -> pred(minus(x,y))
            pred(s(x)) -> x
          Signature:
            {if_mod/3,le/2,minus/2,mod/2,pred/1,if_mod#/3,le#/2,minus#/2,mod#/2,pred#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/2,c_3/0,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/1,c_11/0}
          Obligation:
            Innermost
            basic terms: {if_mod#,le#,minus#,mod#,pred#}/{0,false,s,true}
        Applied Processor:
          RemoveWeakSuffixes
        Proof:
          Consider the dependency graph
            1:W:if_mod#(true(),s(x),s(y)) -> c_2(mod#(minus(x,y),s(y)),minus#(x,y))
               -->_1 mod#(s(x),s(y)) -> c_10(if_mod#(le(y,x),s(x),s(y))):3
               -->_2 minus#(x,s(y)) -> c_7(minus#(x,y)):2
            
            2:W:minus#(x,s(y)) -> c_7(minus#(x,y))
               -->_1 minus#(x,s(y)) -> c_7(minus#(x,y)):2
            
            3:W:mod#(s(x),s(y)) -> c_10(if_mod#(le(y,x),s(x),s(y)))
               -->_1 if_mod#(true(),s(x),s(y)) -> c_2(mod#(minus(x,y),s(y)),minus#(x,y)):1
            
          The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
            1: if_mod#(true(),s(x),s(y)) ->      
                 c_2(mod#(minus(x,y),s(y))       
                    ,minus#(x,y))                
            3: mod#(s(x),s(y)) ->                
                 c_10(if_mod#(le(y,x),s(x),s(y)))
            2: minus#(x,s(y)) -> c_7(minus#(x    
                                           ,y))  
    *** 1.1.1.1.1.1.2.1.1.2.1 Progress [(O(1),O(1))]  ***
        Considered Problem:
          Strict DP Rules:
            
          Strict TRS Rules:
            
          Weak DP Rules:
            
          Weak TRS Rules:
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            minus(x,0()) -> x
            minus(x,s(y)) -> pred(minus(x,y))
            pred(s(x)) -> x
          Signature:
            {if_mod/3,le/2,minus/2,mod/2,pred/1,if_mod#/3,le#/2,minus#/2,mod#/2,pred#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/2,c_3/0,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/1,c_11/0}
          Obligation:
            Innermost
            basic terms: {if_mod#,le#,minus#,mod#,pred#}/{0,false,s,true}
        Applied Processor:
          EmptyProcessor
        Proof:
          The problem is already closed. The intended complexity is O(1).