*** 1 Progress [(?,O(n^3))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y concat(cons(u,v),y) -> cons(u,concat(v,y)) concat(leaf(),y) -> y less_leaves(x,leaf()) -> false() less_leaves(cons(u,v),cons(w,z)) -> less_leaves(concat(u,v),concat(w,z)) less_leaves(leaf(),cons(w,z)) -> true() minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) quot(0(),s(y)) -> 0() quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() shuffle(add(n,x)) -> add(n,shuffle(reverse(x))) shuffle(nil()) -> nil() Weak DP Rules: Weak TRS Rules: Signature: {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0} Obligation: Innermost basic terms: {app,concat,less_leaves,minus,quot,reverse,shuffle}/{0,add,cons,false,leaf,nil,s,true} Applied Processor: DependencyPairs {dpKind_ = DT} Proof: We add the following dependency tuples: Strict DPs app#(add(n,x),y) -> c_1(app#(x,y)) app#(nil(),y) -> c_2() concat#(cons(u,v),y) -> c_3(concat#(v,y)) concat#(leaf(),y) -> c_4() less_leaves#(x,leaf()) -> c_5() less_leaves#(cons(u,v),cons(w,z)) -> c_6(less_leaves#(concat(u,v),concat(w,z)),concat#(u,v),concat#(w,z)) less_leaves#(leaf(),cons(w,z)) -> c_7() minus#(x,0()) -> c_8() minus#(s(x),s(y)) -> c_9(minus#(x,y)) quot#(0(),s(y)) -> c_10() quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)) reverse#(add(n,x)) -> c_12(app#(reverse(x),add(n,nil())),reverse#(x)) reverse#(nil()) -> c_13() shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x)) shuffle#(nil()) -> c_15() Weak DPs and mark the set of starting terms. *** 1.1 Progress [(?,O(n^3))] *** Considered Problem: Strict DP Rules: app#(add(n,x),y) -> c_1(app#(x,y)) app#(nil(),y) -> c_2() concat#(cons(u,v),y) -> c_3(concat#(v,y)) concat#(leaf(),y) -> c_4() less_leaves#(x,leaf()) -> c_5() less_leaves#(cons(u,v),cons(w,z)) -> c_6(less_leaves#(concat(u,v),concat(w,z)),concat#(u,v),concat#(w,z)) less_leaves#(leaf(),cons(w,z)) -> c_7() minus#(x,0()) -> c_8() minus#(s(x),s(y)) -> c_9(minus#(x,y)) quot#(0(),s(y)) -> c_10() quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)) reverse#(add(n,x)) -> c_12(app#(reverse(x),add(n,nil())),reverse#(x)) reverse#(nil()) -> c_13() shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x)) shuffle#(nil()) -> c_15() Strict TRS Rules: Weak DP Rules: Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y concat(cons(u,v),y) -> cons(u,concat(v,y)) concat(leaf(),y) -> y less_leaves(x,leaf()) -> false() less_leaves(cons(u,v),cons(w,z)) -> less_leaves(concat(u,v),concat(w,z)) less_leaves(leaf(),cons(w,z)) -> true() minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) quot(0(),s(y)) -> 0() quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() shuffle(add(n,x)) -> add(n,shuffle(reverse(x))) shuffle(nil()) -> nil() Signature: {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/0,c_6/3,c_7/0,c_8/0,c_9/1,c_10/0,c_11/2,c_12/2,c_13/0,c_14/2,c_15/0} Obligation: Innermost basic terms: {app#,concat#,less_leaves#,minus#,quot#,reverse#,shuffle#}/{0,add,cons,false,leaf,nil,s,true} Applied Processor: UsableRules Proof: We replace rewrite rules by usable rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y concat(cons(u,v),y) -> cons(u,concat(v,y)) concat(leaf(),y) -> y minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() app#(add(n,x),y) -> c_1(app#(x,y)) app#(nil(),y) -> c_2() concat#(cons(u,v),y) -> c_3(concat#(v,y)) concat#(leaf(),y) -> c_4() less_leaves#(x,leaf()) -> c_5() less_leaves#(cons(u,v),cons(w,z)) -> c_6(less_leaves#(concat(u,v),concat(w,z)),concat#(u,v),concat#(w,z)) less_leaves#(leaf(),cons(w,z)) -> c_7() minus#(x,0()) -> c_8() minus#(s(x),s(y)) -> c_9(minus#(x,y)) quot#(0(),s(y)) -> c_10() quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)) reverse#(add(n,x)) -> c_12(app#(reverse(x),add(n,nil())),reverse#(x)) reverse#(nil()) -> c_13() shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x)) shuffle#(nil()) -> c_15() *** 1.1.1 Progress [(?,O(n^3))] *** Considered Problem: Strict DP Rules: app#(add(n,x),y) -> c_1(app#(x,y)) app#(nil(),y) -> c_2() concat#(cons(u,v),y) -> c_3(concat#(v,y)) concat#(leaf(),y) -> c_4() less_leaves#(x,leaf()) -> c_5() less_leaves#(cons(u,v),cons(w,z)) -> c_6(less_leaves#(concat(u,v),concat(w,z)),concat#(u,v),concat#(w,z)) less_leaves#(leaf(),cons(w,z)) -> c_7() minus#(x,0()) -> c_8() minus#(s(x),s(y)) -> c_9(minus#(x,y)) quot#(0(),s(y)) -> c_10() quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)) reverse#(add(n,x)) -> c_12(app#(reverse(x),add(n,nil())),reverse#(x)) reverse#(nil()) -> c_13() shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x)) shuffle#(nil()) -> c_15() Strict TRS Rules: Weak DP Rules: Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y concat(cons(u,v),y) -> cons(u,concat(v,y)) concat(leaf(),y) -> y minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/0,c_6/3,c_7/0,c_8/0,c_9/1,c_10/0,c_11/2,c_12/2,c_13/0,c_14/2,c_15/0} Obligation: Innermost basic terms: {app#,concat#,less_leaves#,minus#,quot#,reverse#,shuffle#}/{0,add,cons,false,leaf,nil,s,true} Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} Proof: We estimate the number of application of {2,4,5,7,8,10,13,15} by application of Pre({2,4,5,7,8,10,13,15}) = {1,3,6,9,11,12,14}. Here rules are labelled as follows: 1: app#(add(n,x),y) -> c_1(app#(x ,y)) 2: app#(nil(),y) -> c_2() 3: concat#(cons(u,v),y) -> c_3(concat#(v,y)) 4: concat#(leaf(),y) -> c_4() 5: less_leaves#(x,leaf()) -> c_5() 6: less_leaves#(cons(u,v) ,cons(w,z)) -> c_6(less_leaves#(concat(u,v) ,concat(w,z)) ,concat#(u,v) ,concat#(w,z)) 7: less_leaves#(leaf() ,cons(w,z)) -> c_7() 8: minus#(x,0()) -> c_8() 9: minus#(s(x),s(y)) -> c_9(minus#(x,y)) 10: quot#(0(),s(y)) -> c_10() 11: quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)) ,minus#(x,y)) 12: reverse#(add(n,x)) -> c_12(app#(reverse(x) ,add(n,nil())) ,reverse#(x)) 13: reverse#(nil()) -> c_13() 14: shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)) ,reverse#(x)) 15: shuffle#(nil()) -> c_15() *** 1.1.1.1 Progress [(?,O(n^3))] *** Considered Problem: Strict DP Rules: app#(add(n,x),y) -> c_1(app#(x,y)) concat#(cons(u,v),y) -> c_3(concat#(v,y)) less_leaves#(cons(u,v),cons(w,z)) -> c_6(less_leaves#(concat(u,v),concat(w,z)),concat#(u,v),concat#(w,z)) minus#(s(x),s(y)) -> c_9(minus#(x,y)) quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)) reverse#(add(n,x)) -> c_12(app#(reverse(x),add(n,nil())),reverse#(x)) shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x)) Strict TRS Rules: Weak DP Rules: app#(nil(),y) -> c_2() concat#(leaf(),y) -> c_4() less_leaves#(x,leaf()) -> c_5() less_leaves#(leaf(),cons(w,z)) -> c_7() minus#(x,0()) -> c_8() quot#(0(),s(y)) -> c_10() reverse#(nil()) -> c_13() shuffle#(nil()) -> c_15() Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y concat(cons(u,v),y) -> cons(u,concat(v,y)) concat(leaf(),y) -> y minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/0,c_6/3,c_7/0,c_8/0,c_9/1,c_10/0,c_11/2,c_12/2,c_13/0,c_14/2,c_15/0} Obligation: Innermost basic terms: {app#,concat#,less_leaves#,minus#,quot#,reverse#,shuffle#}/{0,add,cons,false,leaf,nil,s,true} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:app#(add(n,x),y) -> c_1(app#(x,y)) -->_1 app#(nil(),y) -> c_2():8 -->_1 app#(add(n,x),y) -> c_1(app#(x,y)):1 2:S:concat#(cons(u,v),y) -> c_3(concat#(v,y)) -->_1 concat#(leaf(),y) -> c_4():9 -->_1 concat#(cons(u,v),y) -> c_3(concat#(v,y)):2 3:S:less_leaves#(cons(u,v),cons(w,z)) -> c_6(less_leaves#(concat(u,v),concat(w,z)),concat#(u,v),concat#(w,z)) -->_1 less_leaves#(leaf(),cons(w,z)) -> c_7():11 -->_1 less_leaves#(x,leaf()) -> c_5():10 -->_3 concat#(leaf(),y) -> c_4():9 -->_2 concat#(leaf(),y) -> c_4():9 -->_1 less_leaves#(cons(u,v),cons(w,z)) -> c_6(less_leaves#(concat(u,v),concat(w,z)),concat#(u,v),concat#(w,z)):3 -->_3 concat#(cons(u,v),y) -> c_3(concat#(v,y)):2 -->_2 concat#(cons(u,v),y) -> c_3(concat#(v,y)):2 4:S:minus#(s(x),s(y)) -> c_9(minus#(x,y)) -->_1 minus#(x,0()) -> c_8():12 -->_1 minus#(s(x),s(y)) -> c_9(minus#(x,y)):4 5:S:quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)) -->_1 quot#(0(),s(y)) -> c_10():13 -->_2 minus#(x,0()) -> c_8():12 -->_1 quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)):5 -->_2 minus#(s(x),s(y)) -> c_9(minus#(x,y)):4 6:S:reverse#(add(n,x)) -> c_12(app#(reverse(x),add(n,nil())),reverse#(x)) -->_2 reverse#(nil()) -> c_13():14 -->_1 app#(nil(),y) -> c_2():8 -->_2 reverse#(add(n,x)) -> c_12(app#(reverse(x),add(n,nil())),reverse#(x)):6 -->_1 app#(add(n,x),y) -> c_1(app#(x,y)):1 7:S:shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x)) -->_1 shuffle#(nil()) -> c_15():15 -->_2 reverse#(nil()) -> c_13():14 -->_1 shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x)):7 -->_2 reverse#(add(n,x)) -> c_12(app#(reverse(x),add(n,nil())),reverse#(x)):6 8:W:app#(nil(),y) -> c_2() 9:W:concat#(leaf(),y) -> c_4() 10:W:less_leaves#(x,leaf()) -> c_5() 11:W:less_leaves#(leaf(),cons(w,z)) -> c_7() 12:W:minus#(x,0()) -> c_8() 13:W:quot#(0(),s(y)) -> c_10() 14:W:reverse#(nil()) -> c_13() 15:W:shuffle#(nil()) -> c_15() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 15: shuffle#(nil()) -> c_15() 14: reverse#(nil()) -> c_13() 13: quot#(0(),s(y)) -> c_10() 12: minus#(x,0()) -> c_8() 10: less_leaves#(x,leaf()) -> c_5() 11: less_leaves#(leaf() ,cons(w,z)) -> c_7() 9: concat#(leaf(),y) -> c_4() 8: app#(nil(),y) -> c_2() *** 1.1.1.1.1 Progress [(?,O(n^3))] *** Considered Problem: Strict DP Rules: app#(add(n,x),y) -> c_1(app#(x,y)) concat#(cons(u,v),y) -> c_3(concat#(v,y)) less_leaves#(cons(u,v),cons(w,z)) -> c_6(less_leaves#(concat(u,v),concat(w,z)),concat#(u,v),concat#(w,z)) minus#(s(x),s(y)) -> c_9(minus#(x,y)) quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)) reverse#(add(n,x)) -> c_12(app#(reverse(x),add(n,nil())),reverse#(x)) shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y concat(cons(u,v),y) -> cons(u,concat(v,y)) concat(leaf(),y) -> y minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/0,c_6/3,c_7/0,c_8/0,c_9/1,c_10/0,c_11/2,c_12/2,c_13/0,c_14/2,c_15/0} Obligation: Innermost basic terms: {app#,concat#,less_leaves#,minus#,quot#,reverse#,shuffle#}/{0,add,cons,false,leaf,nil,s,true} Applied Processor: Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd} Proof: We analyse the complexity of following sub-problems (R) and (S). Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component. Problem (R) Strict DP Rules: app#(add(n,x),y) -> c_1(app#(x,y)) Strict TRS Rules: Weak DP Rules: concat#(cons(u,v),y) -> c_3(concat#(v,y)) less_leaves#(cons(u,v),cons(w,z)) -> c_6(less_leaves#(concat(u,v),concat(w,z)),concat#(u,v),concat#(w,z)) minus#(s(x),s(y)) -> c_9(minus#(x,y)) quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)) reverse#(add(n,x)) -> c_12(app#(reverse(x),add(n,nil())),reverse#(x)) shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x)) Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y concat(cons(u,v),y) -> cons(u,concat(v,y)) concat(leaf(),y) -> y minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/0,c_6/3,c_7/0,c_8/0,c_9/1,c_10/0,c_11/2,c_12/2,c_13/0,c_14/2,c_15/0} Obligation: Innermost basic terms: {app#,concat#,less_leaves#,minus#,quot#,reverse#,shuffle#}/{0,add,cons,false,leaf,nil,s,true} Problem (S) Strict DP Rules: concat#(cons(u,v),y) -> c_3(concat#(v,y)) less_leaves#(cons(u,v),cons(w,z)) -> c_6(less_leaves#(concat(u,v),concat(w,z)),concat#(u,v),concat#(w,z)) minus#(s(x),s(y)) -> c_9(minus#(x,y)) quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)) reverse#(add(n,x)) -> c_12(app#(reverse(x),add(n,nil())),reverse#(x)) shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x)) Strict TRS Rules: Weak DP Rules: app#(add(n,x),y) -> c_1(app#(x,y)) Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y concat(cons(u,v),y) -> cons(u,concat(v,y)) concat(leaf(),y) -> y minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/0,c_6/3,c_7/0,c_8/0,c_9/1,c_10/0,c_11/2,c_12/2,c_13/0,c_14/2,c_15/0} Obligation: Innermost basic terms: {app#,concat#,less_leaves#,minus#,quot#,reverse#,shuffle#}/{0,add,cons,false,leaf,nil,s,true} *** 1.1.1.1.1.1 Progress [(?,O(n^3))] *** Considered Problem: Strict DP Rules: app#(add(n,x),y) -> c_1(app#(x,y)) Strict TRS Rules: Weak DP Rules: concat#(cons(u,v),y) -> c_3(concat#(v,y)) less_leaves#(cons(u,v),cons(w,z)) -> c_6(less_leaves#(concat(u,v),concat(w,z)),concat#(u,v),concat#(w,z)) minus#(s(x),s(y)) -> c_9(minus#(x,y)) quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)) reverse#(add(n,x)) -> c_12(app#(reverse(x),add(n,nil())),reverse#(x)) shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x)) Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y concat(cons(u,v),y) -> cons(u,concat(v,y)) concat(leaf(),y) -> y minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/0,c_6/3,c_7/0,c_8/0,c_9/1,c_10/0,c_11/2,c_12/2,c_13/0,c_14/2,c_15/0} Obligation: Innermost basic terms: {app#,concat#,less_leaves#,minus#,quot#,reverse#,shuffle#}/{0,add,cons,false,leaf,nil,s,true} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:app#(add(n,x),y) -> c_1(app#(x,y)) -->_1 app#(add(n,x),y) -> c_1(app#(x,y)):1 2:W:concat#(cons(u,v),y) -> c_3(concat#(v,y)) -->_1 concat#(cons(u,v),y) -> c_3(concat#(v,y)):2 3:W:less_leaves#(cons(u,v),cons(w,z)) -> c_6(less_leaves#(concat(u,v),concat(w,z)),concat#(u,v),concat#(w,z)) -->_1 less_leaves#(cons(u,v),cons(w,z)) -> c_6(less_leaves#(concat(u,v),concat(w,z)),concat#(u,v),concat#(w,z)):3 -->_3 concat#(cons(u,v),y) -> c_3(concat#(v,y)):2 -->_2 concat#(cons(u,v),y) -> c_3(concat#(v,y)):2 4:W:minus#(s(x),s(y)) -> c_9(minus#(x,y)) -->_1 minus#(s(x),s(y)) -> c_9(minus#(x,y)):4 5:W:quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)) -->_1 quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)):5 -->_2 minus#(s(x),s(y)) -> c_9(minus#(x,y)):4 6:W:reverse#(add(n,x)) -> c_12(app#(reverse(x),add(n,nil())),reverse#(x)) -->_2 reverse#(add(n,x)) -> c_12(app#(reverse(x),add(n,nil())),reverse#(x)):6 -->_1 app#(add(n,x),y) -> c_1(app#(x,y)):1 7:W:shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x)) -->_2 reverse#(add(n,x)) -> c_12(app#(reverse(x),add(n,nil())),reverse#(x)):6 -->_1 shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x)):7 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 5: quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)) ,minus#(x,y)) 4: minus#(s(x),s(y)) -> c_9(minus#(x,y)) 3: less_leaves#(cons(u,v) ,cons(w,z)) -> c_6(less_leaves#(concat(u,v) ,concat(w,z)) ,concat#(u,v) ,concat#(w,z)) 2: concat#(cons(u,v),y) -> c_3(concat#(v,y)) *** 1.1.1.1.1.1.1 Progress [(?,O(n^3))] *** Considered Problem: Strict DP Rules: app#(add(n,x),y) -> c_1(app#(x,y)) Strict TRS Rules: Weak DP Rules: reverse#(add(n,x)) -> c_12(app#(reverse(x),add(n,nil())),reverse#(x)) shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x)) Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y concat(cons(u,v),y) -> cons(u,concat(v,y)) concat(leaf(),y) -> y minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/0,c_6/3,c_7/0,c_8/0,c_9/1,c_10/0,c_11/2,c_12/2,c_13/0,c_14/2,c_15/0} Obligation: Innermost basic terms: {app#,concat#,less_leaves#,minus#,quot#,reverse#,shuffle#}/{0,add,cons,false,leaf,nil,s,true} Applied Processor: UsableRules Proof: We replace rewrite rules by usable rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() app#(add(n,x),y) -> c_1(app#(x,y)) reverse#(add(n,x)) -> c_12(app#(reverse(x),add(n,nil())),reverse#(x)) shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x)) *** 1.1.1.1.1.1.1.1 Progress [(?,O(n^3))] *** Considered Problem: Strict DP Rules: app#(add(n,x),y) -> c_1(app#(x,y)) Strict TRS Rules: Weak DP Rules: reverse#(add(n,x)) -> c_12(app#(reverse(x),add(n,nil())),reverse#(x)) shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x)) Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/0,c_6/3,c_7/0,c_8/0,c_9/1,c_10/0,c_11/2,c_12/2,c_13/0,c_14/2,c_15/0} Obligation: Innermost basic terms: {app#,concat#,less_leaves#,minus#,quot#,reverse#,shuffle#}/{0,add,cons,false,leaf,nil,s,true} Applied Processor: DecomposeDG {onSelection = all below first cut in WDG, onUpper = Just someStrategy, onLower = Nothing} Proof: We decompose the input problem according to the dependency graph into the upper component shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x)) and a lower component app#(add(n,x),y) -> c_1(app#(x,y)) reverse#(add(n,x)) -> c_12(app#(reverse(x),add(n,nil())),reverse#(x)) Further, following extension rules are added to the lower component. shuffle#(add(n,x)) -> reverse#(x) shuffle#(add(n,x)) -> shuffle#(reverse(x)) *** 1.1.1.1.1.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/0,c_6/3,c_7/0,c_8/0,c_9/1,c_10/0,c_11/2,c_12/2,c_13/0,c_14/2,c_15/0} Obligation: Innermost basic terms: {app#,concat#,less_leaves#,minus#,quot#,reverse#,shuffle#}/{0,add,cons,false,leaf,nil,s,true} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)) ,reverse#(x)) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.1.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/0,c_6/3,c_7/0,c_8/0,c_9/1,c_10/0,c_11/2,c_12/2,c_13/0,c_14/2,c_15/0} Obligation: Innermost basic terms: {app#,concat#,less_leaves#,minus#,quot#,reverse#,shuffle#}/{0,add,cons,false,leaf,nil,s,true} Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_14) = {1} Following symbols are considered usable: {app,reverse,app#,concat#,less_leaves#,minus#,quot#,reverse#,shuffle#} TcT has computed the following interpretation: p(0) = [0] p(add) = [1] x2 + [2] p(app) = [1] x1 + [1] x2 + [0] p(concat) = [2] x2 + [1] p(cons) = [1] p(false) = [1] p(leaf) = [1] p(less_leaves) = [1] x1 + [0] p(minus) = [1] x1 + [2] p(nil) = [0] p(quot) = [2] p(reverse) = [1] x1 + [0] p(s) = [1] x1 + [1] p(shuffle) = [1] x1 + [1] p(true) = [1] p(app#) = [2] x2 + [0] p(concat#) = [1] p(less_leaves#) = [8] x1 + [4] p(minus#) = [0] p(quot#) = [1] x1 + [0] p(reverse#) = [1] x1 + [0] p(shuffle#) = [2] x1 + [2] p(c_1) = [2] p(c_2) = [1] p(c_3) = [1] x1 + [1] p(c_4) = [1] p(c_5) = [1] p(c_6) = [2] x1 + [1] x2 + [1] x3 + [2] p(c_7) = [2] p(c_8) = [2] p(c_9) = [2] x1 + [0] p(c_10) = [1] p(c_11) = [4] x1 + [1] x2 + [0] p(c_12) = [8] x1 + [1] p(c_13) = [2] p(c_14) = [1] x1 + [0] p(c_15) = [0] Following rules are strictly oriented: shuffle#(add(n,x)) = [2] x + [6] > [2] x + [2] = c_14(shuffle#(reverse(x)) ,reverse#(x)) Following rules are (at-least) weakly oriented: app(add(n,x),y) = [1] x + [1] y + [2] >= [1] x + [1] y + [2] = add(n,app(x,y)) app(nil(),y) = [1] y + [0] >= [1] y + [0] = y reverse(add(n,x)) = [1] x + [2] >= [1] x + [2] = app(reverse(x),add(n,nil())) reverse(nil()) = [0] >= [0] = nil() *** 1.1.1.1.1.1.1.1.1.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x)) Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/0,c_6/3,c_7/0,c_8/0,c_9/1,c_10/0,c_11/2,c_12/2,c_13/0,c_14/2,c_15/0} Obligation: Innermost basic terms: {app#,concat#,less_leaves#,minus#,quot#,reverse#,shuffle#}/{0,add,cons,false,leaf,nil,s,true} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.1.1.1.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x)) Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/0,c_6/3,c_7/0,c_8/0,c_9/1,c_10/0,c_11/2,c_12/2,c_13/0,c_14/2,c_15/0} Obligation: Innermost basic terms: {app#,concat#,less_leaves#,minus#,quot#,reverse#,shuffle#}/{0,add,cons,false,leaf,nil,s,true} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x)) -->_1 shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x)):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)) ,reverse#(x)) *** 1.1.1.1.1.1.1.1.1.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/0,c_6/3,c_7/0,c_8/0,c_9/1,c_10/0,c_11/2,c_12/2,c_13/0,c_14/2,c_15/0} Obligation: Innermost basic terms: {app#,concat#,less_leaves#,minus#,quot#,reverse#,shuffle#}/{0,add,cons,false,leaf,nil,s,true} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1). *** 1.1.1.1.1.1.1.1.2 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: app#(add(n,x),y) -> c_1(app#(x,y)) Strict TRS Rules: Weak DP Rules: reverse#(add(n,x)) -> c_12(app#(reverse(x),add(n,nil())),reverse#(x)) shuffle#(add(n,x)) -> reverse#(x) shuffle#(add(n,x)) -> shuffle#(reverse(x)) Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/0,c_6/3,c_7/0,c_8/0,c_9/1,c_10/0,c_11/2,c_12/2,c_13/0,c_14/2,c_15/0} Obligation: Innermost basic terms: {app#,concat#,less_leaves#,minus#,quot#,reverse#,shuffle#}/{0,add,cons,false,leaf,nil,s,true} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: app#(add(n,x),y) -> c_1(app#(x ,y)) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.1.1.1.2.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: app#(add(n,x),y) -> c_1(app#(x,y)) Strict TRS Rules: Weak DP Rules: reverse#(add(n,x)) -> c_12(app#(reverse(x),add(n,nil())),reverse#(x)) shuffle#(add(n,x)) -> reverse#(x) shuffle#(add(n,x)) -> shuffle#(reverse(x)) Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/0,c_6/3,c_7/0,c_8/0,c_9/1,c_10/0,c_11/2,c_12/2,c_13/0,c_14/2,c_15/0} Obligation: Innermost basic terms: {app#,concat#,less_leaves#,minus#,quot#,reverse#,shuffle#}/{0,add,cons,false,leaf,nil,s,true} Applied Processor: NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a polynomial interpretation of kind constructor-based(mixed(2)): The following argument positions are considered usable: uargs(c_1) = {1}, uargs(c_12) = {1,2} Following symbols are considered usable: {app,reverse,app#,concat#,less_leaves#,minus#,quot#,reverse#,shuffle#} TcT has computed the following interpretation: p(0) = 0 p(add) = 1 + x1 + x2 p(app) = x1 + x2 p(concat) = 2*x1 + x1*x2 + x1^2 + x2^2 p(cons) = x2 p(false) = 1 p(leaf) = 0 p(less_leaves) = 1 + x1 + x1*x2 + x2 p(minus) = 2 + 2*x1 + 4*x1^2 + 4*x2 + x2^2 p(nil) = 0 p(quot) = 1 + x1*x2 + 4*x2^2 p(reverse) = x1 p(s) = 0 p(shuffle) = 4 + x1 + 2*x1^2 p(true) = 0 p(app#) = 3 + x1 + 7*x1*x2 p(concat#) = x1 + x1*x2 + x1^2 + 4*x2^2 p(less_leaves#) = 2*x1 + x2 p(minus#) = 1 + 4*x1*x2 + 2*x2^2 p(quot#) = x1 + 2*x1*x2 + 2*x2 p(reverse#) = x1 + 4*x1^2 p(shuffle#) = 3 + 4*x1^2 p(c_1) = x1 p(c_2) = 0 p(c_3) = 1 p(c_4) = 1 p(c_5) = 1 p(c_6) = 0 p(c_7) = 1 p(c_8) = 0 p(c_9) = 1 p(c_10) = 0 p(c_11) = 1 p(c_12) = x1 + x2 p(c_13) = 0 p(c_14) = x1 p(c_15) = 1 Following rules are strictly oriented: app#(add(n,x),y) = 4 + n + 7*n*y + x + 7*x*y + 7*y > 3 + x + 7*x*y = c_1(app#(x,y)) Following rules are (at-least) weakly oriented: reverse#(add(n,x)) = 5 + 9*n + 8*n*x + 4*n^2 + 9*x + 4*x^2 >= 3 + 7*n*x + 9*x + 4*x^2 = c_12(app#(reverse(x) ,add(n,nil())) ,reverse#(x)) shuffle#(add(n,x)) = 7 + 8*n + 8*n*x + 4*n^2 + 8*x + 4*x^2 >= x + 4*x^2 = reverse#(x) shuffle#(add(n,x)) = 7 + 8*n + 8*n*x + 4*n^2 + 8*x + 4*x^2 >= 3 + 4*x^2 = shuffle#(reverse(x)) app(add(n,x),y) = 1 + n + x + y >= 1 + n + x + y = add(n,app(x,y)) app(nil(),y) = y >= y = y reverse(add(n,x)) = 1 + n + x >= 1 + n + x = app(reverse(x),add(n,nil())) reverse(nil()) = 0 >= 0 = nil() *** 1.1.1.1.1.1.1.1.2.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: app#(add(n,x),y) -> c_1(app#(x,y)) reverse#(add(n,x)) -> c_12(app#(reverse(x),add(n,nil())),reverse#(x)) shuffle#(add(n,x)) -> reverse#(x) shuffle#(add(n,x)) -> shuffle#(reverse(x)) Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/0,c_6/3,c_7/0,c_8/0,c_9/1,c_10/0,c_11/2,c_12/2,c_13/0,c_14/2,c_15/0} Obligation: Innermost basic terms: {app#,concat#,less_leaves#,minus#,quot#,reverse#,shuffle#}/{0,add,cons,false,leaf,nil,s,true} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.1.1.2.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: app#(add(n,x),y) -> c_1(app#(x,y)) reverse#(add(n,x)) -> c_12(app#(reverse(x),add(n,nil())),reverse#(x)) shuffle#(add(n,x)) -> reverse#(x) shuffle#(add(n,x)) -> shuffle#(reverse(x)) Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/0,c_6/3,c_7/0,c_8/0,c_9/1,c_10/0,c_11/2,c_12/2,c_13/0,c_14/2,c_15/0} Obligation: Innermost basic terms: {app#,concat#,less_leaves#,minus#,quot#,reverse#,shuffle#}/{0,add,cons,false,leaf,nil,s,true} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:app#(add(n,x),y) -> c_1(app#(x,y)) -->_1 app#(add(n,x),y) -> c_1(app#(x,y)):1 2:W:reverse#(add(n,x)) -> c_12(app#(reverse(x),add(n,nil())),reverse#(x)) -->_2 reverse#(add(n,x)) -> c_12(app#(reverse(x),add(n,nil())),reverse#(x)):2 -->_1 app#(add(n,x),y) -> c_1(app#(x,y)):1 3:W:shuffle#(add(n,x)) -> reverse#(x) -->_1 reverse#(add(n,x)) -> c_12(app#(reverse(x),add(n,nil())),reverse#(x)):2 4:W:shuffle#(add(n,x)) -> shuffle#(reverse(x)) -->_1 shuffle#(add(n,x)) -> shuffle#(reverse(x)):4 -->_1 shuffle#(add(n,x)) -> reverse#(x):3 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 4: shuffle#(add(n,x)) -> shuffle#(reverse(x)) 3: shuffle#(add(n,x)) -> reverse#(x) 2: reverse#(add(n,x)) -> c_12(app#(reverse(x) ,add(n,nil())) ,reverse#(x)) 1: app#(add(n,x),y) -> c_1(app#(x ,y)) *** 1.1.1.1.1.1.1.1.2.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/0,c_6/3,c_7/0,c_8/0,c_9/1,c_10/0,c_11/2,c_12/2,c_13/0,c_14/2,c_15/0} Obligation: Innermost basic terms: {app#,concat#,less_leaves#,minus#,quot#,reverse#,shuffle#}/{0,add,cons,false,leaf,nil,s,true} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1). *** 1.1.1.1.1.2 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: concat#(cons(u,v),y) -> c_3(concat#(v,y)) less_leaves#(cons(u,v),cons(w,z)) -> c_6(less_leaves#(concat(u,v),concat(w,z)),concat#(u,v),concat#(w,z)) minus#(s(x),s(y)) -> c_9(minus#(x,y)) quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)) reverse#(add(n,x)) -> c_12(app#(reverse(x),add(n,nil())),reverse#(x)) shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x)) Strict TRS Rules: Weak DP Rules: app#(add(n,x),y) -> c_1(app#(x,y)) Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y concat(cons(u,v),y) -> cons(u,concat(v,y)) concat(leaf(),y) -> y minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/0,c_6/3,c_7/0,c_8/0,c_9/1,c_10/0,c_11/2,c_12/2,c_13/0,c_14/2,c_15/0} Obligation: Innermost basic terms: {app#,concat#,less_leaves#,minus#,quot#,reverse#,shuffle#}/{0,add,cons,false,leaf,nil,s,true} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:concat#(cons(u,v),y) -> c_3(concat#(v,y)) -->_1 concat#(cons(u,v),y) -> c_3(concat#(v,y)):1 2:S:less_leaves#(cons(u,v),cons(w,z)) -> c_6(less_leaves#(concat(u,v),concat(w,z)),concat#(u,v),concat#(w,z)) -->_1 less_leaves#(cons(u,v),cons(w,z)) -> c_6(less_leaves#(concat(u,v),concat(w,z)),concat#(u,v),concat#(w,z)):2 -->_3 concat#(cons(u,v),y) -> c_3(concat#(v,y)):1 -->_2 concat#(cons(u,v),y) -> c_3(concat#(v,y)):1 3:S:minus#(s(x),s(y)) -> c_9(minus#(x,y)) -->_1 minus#(s(x),s(y)) -> c_9(minus#(x,y)):3 4:S:quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)) -->_1 quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)):4 -->_2 minus#(s(x),s(y)) -> c_9(minus#(x,y)):3 5:S:reverse#(add(n,x)) -> c_12(app#(reverse(x),add(n,nil())),reverse#(x)) -->_1 app#(add(n,x),y) -> c_1(app#(x,y)):7 -->_2 reverse#(add(n,x)) -> c_12(app#(reverse(x),add(n,nil())),reverse#(x)):5 6:S:shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x)) -->_1 shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x)):6 -->_2 reverse#(add(n,x)) -> c_12(app#(reverse(x),add(n,nil())),reverse#(x)):5 7:W:app#(add(n,x),y) -> c_1(app#(x,y)) -->_1 app#(add(n,x),y) -> c_1(app#(x,y)):7 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 7: app#(add(n,x),y) -> c_1(app#(x ,y)) *** 1.1.1.1.1.2.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: concat#(cons(u,v),y) -> c_3(concat#(v,y)) less_leaves#(cons(u,v),cons(w,z)) -> c_6(less_leaves#(concat(u,v),concat(w,z)),concat#(u,v),concat#(w,z)) minus#(s(x),s(y)) -> c_9(minus#(x,y)) quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)) reverse#(add(n,x)) -> c_12(app#(reverse(x),add(n,nil())),reverse#(x)) shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y concat(cons(u,v),y) -> cons(u,concat(v,y)) concat(leaf(),y) -> y minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/0,c_6/3,c_7/0,c_8/0,c_9/1,c_10/0,c_11/2,c_12/2,c_13/0,c_14/2,c_15/0} Obligation: Innermost basic terms: {app#,concat#,less_leaves#,minus#,quot#,reverse#,shuffle#}/{0,add,cons,false,leaf,nil,s,true} Applied Processor: SimplifyRHS Proof: Consider the dependency graph 1:S:concat#(cons(u,v),y) -> c_3(concat#(v,y)) -->_1 concat#(cons(u,v),y) -> c_3(concat#(v,y)):1 2:S:less_leaves#(cons(u,v),cons(w,z)) -> c_6(less_leaves#(concat(u,v),concat(w,z)),concat#(u,v),concat#(w,z)) -->_1 less_leaves#(cons(u,v),cons(w,z)) -> c_6(less_leaves#(concat(u,v),concat(w,z)),concat#(u,v),concat#(w,z)):2 -->_3 concat#(cons(u,v),y) -> c_3(concat#(v,y)):1 -->_2 concat#(cons(u,v),y) -> c_3(concat#(v,y)):1 3:S:minus#(s(x),s(y)) -> c_9(minus#(x,y)) -->_1 minus#(s(x),s(y)) -> c_9(minus#(x,y)):3 4:S:quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)) -->_1 quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)):4 -->_2 minus#(s(x),s(y)) -> c_9(minus#(x,y)):3 5:S:reverse#(add(n,x)) -> c_12(app#(reverse(x),add(n,nil())),reverse#(x)) -->_2 reverse#(add(n,x)) -> c_12(app#(reverse(x),add(n,nil())),reverse#(x)):5 6:S:shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x)) -->_1 shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x)):6 -->_2 reverse#(add(n,x)) -> c_12(app#(reverse(x),add(n,nil())),reverse#(x)):5 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: reverse#(add(n,x)) -> c_12(reverse#(x)) *** 1.1.1.1.1.2.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: concat#(cons(u,v),y) -> c_3(concat#(v,y)) less_leaves#(cons(u,v),cons(w,z)) -> c_6(less_leaves#(concat(u,v),concat(w,z)),concat#(u,v),concat#(w,z)) minus#(s(x),s(y)) -> c_9(minus#(x,y)) quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)) reverse#(add(n,x)) -> c_12(reverse#(x)) shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y concat(cons(u,v),y) -> cons(u,concat(v,y)) concat(leaf(),y) -> y minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/0,c_6/3,c_7/0,c_8/0,c_9/1,c_10/0,c_11/2,c_12/1,c_13/0,c_14/2,c_15/0} Obligation: Innermost basic terms: {app#,concat#,less_leaves#,minus#,quot#,reverse#,shuffle#}/{0,add,cons,false,leaf,nil,s,true} Applied Processor: Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd} Proof: We analyse the complexity of following sub-problems (R) and (S). Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component. Problem (R) Strict DP Rules: concat#(cons(u,v),y) -> c_3(concat#(v,y)) Strict TRS Rules: Weak DP Rules: less_leaves#(cons(u,v),cons(w,z)) -> c_6(less_leaves#(concat(u,v),concat(w,z)),concat#(u,v),concat#(w,z)) minus#(s(x),s(y)) -> c_9(minus#(x,y)) quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)) reverse#(add(n,x)) -> c_12(reverse#(x)) shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x)) Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y concat(cons(u,v),y) -> cons(u,concat(v,y)) concat(leaf(),y) -> y minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/0,c_6/3,c_7/0,c_8/0,c_9/1,c_10/0,c_11/2,c_12/1,c_13/0,c_14/2,c_15/0} Obligation: Innermost basic terms: {app#,concat#,less_leaves#,minus#,quot#,reverse#,shuffle#}/{0,add,cons,false,leaf,nil,s,true} Problem (S) Strict DP Rules: less_leaves#(cons(u,v),cons(w,z)) -> c_6(less_leaves#(concat(u,v),concat(w,z)),concat#(u,v),concat#(w,z)) minus#(s(x),s(y)) -> c_9(minus#(x,y)) quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)) reverse#(add(n,x)) -> c_12(reverse#(x)) shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x)) Strict TRS Rules: Weak DP Rules: concat#(cons(u,v),y) -> c_3(concat#(v,y)) Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y concat(cons(u,v),y) -> cons(u,concat(v,y)) concat(leaf(),y) -> y minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/0,c_6/3,c_7/0,c_8/0,c_9/1,c_10/0,c_11/2,c_12/1,c_13/0,c_14/2,c_15/0} Obligation: Innermost basic terms: {app#,concat#,less_leaves#,minus#,quot#,reverse#,shuffle#}/{0,add,cons,false,leaf,nil,s,true} *** 1.1.1.1.1.2.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: concat#(cons(u,v),y) -> c_3(concat#(v,y)) Strict TRS Rules: Weak DP Rules: less_leaves#(cons(u,v),cons(w,z)) -> c_6(less_leaves#(concat(u,v),concat(w,z)),concat#(u,v),concat#(w,z)) minus#(s(x),s(y)) -> c_9(minus#(x,y)) quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)) reverse#(add(n,x)) -> c_12(reverse#(x)) shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x)) Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y concat(cons(u,v),y) -> cons(u,concat(v,y)) concat(leaf(),y) -> y minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/0,c_6/3,c_7/0,c_8/0,c_9/1,c_10/0,c_11/2,c_12/1,c_13/0,c_14/2,c_15/0} Obligation: Innermost basic terms: {app#,concat#,less_leaves#,minus#,quot#,reverse#,shuffle#}/{0,add,cons,false,leaf,nil,s,true} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:concat#(cons(u,v),y) -> c_3(concat#(v,y)) -->_1 concat#(cons(u,v),y) -> c_3(concat#(v,y)):1 2:W:less_leaves#(cons(u,v),cons(w,z)) -> c_6(less_leaves#(concat(u,v),concat(w,z)),concat#(u,v),concat#(w,z)) -->_1 less_leaves#(cons(u,v),cons(w,z)) -> c_6(less_leaves#(concat(u,v),concat(w,z)),concat#(u,v),concat#(w,z)):2 -->_3 concat#(cons(u,v),y) -> c_3(concat#(v,y)):1 -->_2 concat#(cons(u,v),y) -> c_3(concat#(v,y)):1 3:W:minus#(s(x),s(y)) -> c_9(minus#(x,y)) -->_1 minus#(s(x),s(y)) -> c_9(minus#(x,y)):3 4:W:quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)) -->_2 minus#(s(x),s(y)) -> c_9(minus#(x,y)):3 -->_1 quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)):4 5:W:reverse#(add(n,x)) -> c_12(reverse#(x)) -->_1 reverse#(add(n,x)) -> c_12(reverse#(x)):5 6:W:shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x)) -->_2 reverse#(add(n,x)) -> c_12(reverse#(x)):5 -->_1 shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x)):6 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 6: shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)) ,reverse#(x)) 5: reverse#(add(n,x)) -> c_12(reverse#(x)) 4: quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)) ,minus#(x,y)) 3: minus#(s(x),s(y)) -> c_9(minus#(x,y)) *** 1.1.1.1.1.2.1.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: concat#(cons(u,v),y) -> c_3(concat#(v,y)) Strict TRS Rules: Weak DP Rules: less_leaves#(cons(u,v),cons(w,z)) -> c_6(less_leaves#(concat(u,v),concat(w,z)),concat#(u,v),concat#(w,z)) Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y concat(cons(u,v),y) -> cons(u,concat(v,y)) concat(leaf(),y) -> y minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/0,c_6/3,c_7/0,c_8/0,c_9/1,c_10/0,c_11/2,c_12/1,c_13/0,c_14/2,c_15/0} Obligation: Innermost basic terms: {app#,concat#,less_leaves#,minus#,quot#,reverse#,shuffle#}/{0,add,cons,false,leaf,nil,s,true} Applied Processor: UsableRules Proof: We replace rewrite rules by usable rules: concat(cons(u,v),y) -> cons(u,concat(v,y)) concat(leaf(),y) -> y concat#(cons(u,v),y) -> c_3(concat#(v,y)) less_leaves#(cons(u,v),cons(w,z)) -> c_6(less_leaves#(concat(u,v),concat(w,z)),concat#(u,v),concat#(w,z)) *** 1.1.1.1.1.2.1.1.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: concat#(cons(u,v),y) -> c_3(concat#(v,y)) Strict TRS Rules: Weak DP Rules: less_leaves#(cons(u,v),cons(w,z)) -> c_6(less_leaves#(concat(u,v),concat(w,z)),concat#(u,v),concat#(w,z)) Weak TRS Rules: concat(cons(u,v),y) -> cons(u,concat(v,y)) concat(leaf(),y) -> y Signature: {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/0,c_6/3,c_7/0,c_8/0,c_9/1,c_10/0,c_11/2,c_12/1,c_13/0,c_14/2,c_15/0} Obligation: Innermost basic terms: {app#,concat#,less_leaves#,minus#,quot#,reverse#,shuffle#}/{0,add,cons,false,leaf,nil,s,true} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: concat#(cons(u,v),y) -> c_3(concat#(v,y)) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.2.1.1.1.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: concat#(cons(u,v),y) -> c_3(concat#(v,y)) Strict TRS Rules: Weak DP Rules: less_leaves#(cons(u,v),cons(w,z)) -> c_6(less_leaves#(concat(u,v),concat(w,z)),concat#(u,v),concat#(w,z)) Weak TRS Rules: concat(cons(u,v),y) -> cons(u,concat(v,y)) concat(leaf(),y) -> y Signature: {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/0,c_6/3,c_7/0,c_8/0,c_9/1,c_10/0,c_11/2,c_12/1,c_13/0,c_14/2,c_15/0} Obligation: Innermost basic terms: {app#,concat#,less_leaves#,minus#,quot#,reverse#,shuffle#}/{0,add,cons,false,leaf,nil,s,true} Applied Processor: NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a polynomial interpretation of kind constructor-based(mixed(2)): The following argument positions are considered usable: uargs(c_3) = {1}, uargs(c_6) = {1,2,3} Following symbols are considered usable: {concat,app#,concat#,less_leaves#,minus#,quot#,reverse#,shuffle#} TcT has computed the following interpretation: p(0) = 1 p(add) = 1 p(app) = 1 + 2*x1*x2 + x1^2 + x2 + x2^2 p(concat) = x1 + x2 p(cons) = 1 + x1 + x2 p(false) = 0 p(leaf) = 1 p(less_leaves) = 2 + x1 + x1^2 + 4*x2^2 p(minus) = 1 + 2*x1 + 2*x1*x2 + x2 p(nil) = 1 p(quot) = 2 + x1^2 p(reverse) = x1 + 4*x1^2 p(s) = 0 p(shuffle) = 4 + x1 p(true) = 1 p(app#) = x1*x2 p(concat#) = x1 p(less_leaves#) = 4*x1 + 4*x1^2 + 4*x2 + 2*x2^2 p(minus#) = x1 + x1*x2 + x1^2 + 2*x2 p(quot#) = 4 + 2*x1*x2 + x2 + 4*x2^2 p(reverse#) = 1 + 2*x1 + x1^2 p(shuffle#) = 1 + x1 p(c_1) = 0 p(c_2) = 1 p(c_3) = x1 p(c_4) = 1 p(c_5) = 1 p(c_6) = x1 + x2 + x3 p(c_7) = 1 p(c_8) = 1 p(c_9) = x1 p(c_10) = 1 p(c_11) = 1 + x1 + x2 p(c_12) = 0 p(c_13) = 1 p(c_14) = x2 p(c_15) = 1 Following rules are strictly oriented: concat#(cons(u,v),y) = 1 + u + v > v = c_3(concat#(v,y)) Following rules are (at-least) weakly oriented: less_leaves#(cons(u,v) = 14 + 12*u + 8*u*v + 4*u^2 + 12*v + 4*v^2 + 8*w + 4*w*z + 2*w^2 + 8*z + 2*z^2 ,cons(w,z)) >= 5*u + 8*u*v + 4*u^2 + 4*v + 4*v^2 + 5*w + 4*w*z + 2*w^2 + 4*z + 2*z^2 = c_6(less_leaves#(concat(u,v) ,concat(w,z)) ,concat#(u,v) ,concat#(w,z)) concat(cons(u,v),y) = 1 + u + v + y >= 1 + u + v + y = cons(u,concat(v,y)) concat(leaf(),y) = 1 + y >= y = y *** 1.1.1.1.1.2.1.1.1.1.1.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: concat#(cons(u,v),y) -> c_3(concat#(v,y)) less_leaves#(cons(u,v),cons(w,z)) -> c_6(less_leaves#(concat(u,v),concat(w,z)),concat#(u,v),concat#(w,z)) Weak TRS Rules: concat(cons(u,v),y) -> cons(u,concat(v,y)) concat(leaf(),y) -> y Signature: {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/0,c_6/3,c_7/0,c_8/0,c_9/1,c_10/0,c_11/2,c_12/1,c_13/0,c_14/2,c_15/0} Obligation: Innermost basic terms: {app#,concat#,less_leaves#,minus#,quot#,reverse#,shuffle#}/{0,add,cons,false,leaf,nil,s,true} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.2.1.1.1.1.1.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: concat#(cons(u,v),y) -> c_3(concat#(v,y)) less_leaves#(cons(u,v),cons(w,z)) -> c_6(less_leaves#(concat(u,v),concat(w,z)),concat#(u,v),concat#(w,z)) Weak TRS Rules: concat(cons(u,v),y) -> cons(u,concat(v,y)) concat(leaf(),y) -> y Signature: {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/0,c_6/3,c_7/0,c_8/0,c_9/1,c_10/0,c_11/2,c_12/1,c_13/0,c_14/2,c_15/0} Obligation: Innermost basic terms: {app#,concat#,less_leaves#,minus#,quot#,reverse#,shuffle#}/{0,add,cons,false,leaf,nil,s,true} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:concat#(cons(u,v),y) -> c_3(concat#(v,y)) -->_1 concat#(cons(u,v),y) -> c_3(concat#(v,y)):1 2:W:less_leaves#(cons(u,v),cons(w,z)) -> c_6(less_leaves#(concat(u,v),concat(w,z)),concat#(u,v),concat#(w,z)) -->_1 less_leaves#(cons(u,v),cons(w,z)) -> c_6(less_leaves#(concat(u,v),concat(w,z)),concat#(u,v),concat#(w,z)):2 -->_3 concat#(cons(u,v),y) -> c_3(concat#(v,y)):1 -->_2 concat#(cons(u,v),y) -> c_3(concat#(v,y)):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 2: less_leaves#(cons(u,v) ,cons(w,z)) -> c_6(less_leaves#(concat(u,v) ,concat(w,z)) ,concat#(u,v) ,concat#(w,z)) 1: concat#(cons(u,v),y) -> c_3(concat#(v,y)) *** 1.1.1.1.1.2.1.1.1.1.1.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: concat(cons(u,v),y) -> cons(u,concat(v,y)) concat(leaf(),y) -> y Signature: {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/0,c_6/3,c_7/0,c_8/0,c_9/1,c_10/0,c_11/2,c_12/1,c_13/0,c_14/2,c_15/0} Obligation: Innermost basic terms: {app#,concat#,less_leaves#,minus#,quot#,reverse#,shuffle#}/{0,add,cons,false,leaf,nil,s,true} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1). *** 1.1.1.1.1.2.1.1.2 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: less_leaves#(cons(u,v),cons(w,z)) -> c_6(less_leaves#(concat(u,v),concat(w,z)),concat#(u,v),concat#(w,z)) minus#(s(x),s(y)) -> c_9(minus#(x,y)) quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)) reverse#(add(n,x)) -> c_12(reverse#(x)) shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x)) Strict TRS Rules: Weak DP Rules: concat#(cons(u,v),y) -> c_3(concat#(v,y)) Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y concat(cons(u,v),y) -> cons(u,concat(v,y)) concat(leaf(),y) -> y minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/0,c_6/3,c_7/0,c_8/0,c_9/1,c_10/0,c_11/2,c_12/1,c_13/0,c_14/2,c_15/0} Obligation: Innermost basic terms: {app#,concat#,less_leaves#,minus#,quot#,reverse#,shuffle#}/{0,add,cons,false,leaf,nil,s,true} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:less_leaves#(cons(u,v),cons(w,z)) -> c_6(less_leaves#(concat(u,v),concat(w,z)),concat#(u,v),concat#(w,z)) -->_3 concat#(cons(u,v),y) -> c_3(concat#(v,y)):6 -->_2 concat#(cons(u,v),y) -> c_3(concat#(v,y)):6 -->_1 less_leaves#(cons(u,v),cons(w,z)) -> c_6(less_leaves#(concat(u,v),concat(w,z)),concat#(u,v),concat#(w,z)):1 2:S:minus#(s(x),s(y)) -> c_9(minus#(x,y)) -->_1 minus#(s(x),s(y)) -> c_9(minus#(x,y)):2 3:S:quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)) -->_1 quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)):3 -->_2 minus#(s(x),s(y)) -> c_9(minus#(x,y)):2 4:S:reverse#(add(n,x)) -> c_12(reverse#(x)) -->_1 reverse#(add(n,x)) -> c_12(reverse#(x)):4 5:S:shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x)) -->_1 shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x)):5 -->_2 reverse#(add(n,x)) -> c_12(reverse#(x)):4 6:W:concat#(cons(u,v),y) -> c_3(concat#(v,y)) -->_1 concat#(cons(u,v),y) -> c_3(concat#(v,y)):6 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 6: concat#(cons(u,v),y) -> c_3(concat#(v,y)) *** 1.1.1.1.1.2.1.1.2.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: less_leaves#(cons(u,v),cons(w,z)) -> c_6(less_leaves#(concat(u,v),concat(w,z)),concat#(u,v),concat#(w,z)) minus#(s(x),s(y)) -> c_9(minus#(x,y)) quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)) reverse#(add(n,x)) -> c_12(reverse#(x)) shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y concat(cons(u,v),y) -> cons(u,concat(v,y)) concat(leaf(),y) -> y minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/0,c_6/3,c_7/0,c_8/0,c_9/1,c_10/0,c_11/2,c_12/1,c_13/0,c_14/2,c_15/0} Obligation: Innermost basic terms: {app#,concat#,less_leaves#,minus#,quot#,reverse#,shuffle#}/{0,add,cons,false,leaf,nil,s,true} Applied Processor: SimplifyRHS Proof: Consider the dependency graph 1:S:less_leaves#(cons(u,v),cons(w,z)) -> c_6(less_leaves#(concat(u,v),concat(w,z)),concat#(u,v),concat#(w,z)) -->_1 less_leaves#(cons(u,v),cons(w,z)) -> c_6(less_leaves#(concat(u,v),concat(w,z)),concat#(u,v),concat#(w,z)):1 2:S:minus#(s(x),s(y)) -> c_9(minus#(x,y)) -->_1 minus#(s(x),s(y)) -> c_9(minus#(x,y)):2 3:S:quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)) -->_1 quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)):3 -->_2 minus#(s(x),s(y)) -> c_9(minus#(x,y)):2 4:S:reverse#(add(n,x)) -> c_12(reverse#(x)) -->_1 reverse#(add(n,x)) -> c_12(reverse#(x)):4 5:S:shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x)) -->_1 shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x)):5 -->_2 reverse#(add(n,x)) -> c_12(reverse#(x)):4 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: less_leaves#(cons(u,v),cons(w,z)) -> c_6(less_leaves#(concat(u,v),concat(w,z))) *** 1.1.1.1.1.2.1.1.2.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: less_leaves#(cons(u,v),cons(w,z)) -> c_6(less_leaves#(concat(u,v),concat(w,z))) minus#(s(x),s(y)) -> c_9(minus#(x,y)) quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)) reverse#(add(n,x)) -> c_12(reverse#(x)) shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y concat(cons(u,v),y) -> cons(u,concat(v,y)) concat(leaf(),y) -> y minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/1,c_10/0,c_11/2,c_12/1,c_13/0,c_14/2,c_15/0} Obligation: Innermost basic terms: {app#,concat#,less_leaves#,minus#,quot#,reverse#,shuffle#}/{0,add,cons,false,leaf,nil,s,true} Applied Processor: Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd} Proof: We analyse the complexity of following sub-problems (R) and (S). Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component. Problem (R) Strict DP Rules: less_leaves#(cons(u,v),cons(w,z)) -> c_6(less_leaves#(concat(u,v),concat(w,z))) Strict TRS Rules: Weak DP Rules: minus#(s(x),s(y)) -> c_9(minus#(x,y)) quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)) reverse#(add(n,x)) -> c_12(reverse#(x)) shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x)) Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y concat(cons(u,v),y) -> cons(u,concat(v,y)) concat(leaf(),y) -> y minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/1,c_10/0,c_11/2,c_12/1,c_13/0,c_14/2,c_15/0} Obligation: Innermost basic terms: {app#,concat#,less_leaves#,minus#,quot#,reverse#,shuffle#}/{0,add,cons,false,leaf,nil,s,true} Problem (S) Strict DP Rules: minus#(s(x),s(y)) -> c_9(minus#(x,y)) quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)) reverse#(add(n,x)) -> c_12(reverse#(x)) shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x)) Strict TRS Rules: Weak DP Rules: less_leaves#(cons(u,v),cons(w,z)) -> c_6(less_leaves#(concat(u,v),concat(w,z))) Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y concat(cons(u,v),y) -> cons(u,concat(v,y)) concat(leaf(),y) -> y minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/1,c_10/0,c_11/2,c_12/1,c_13/0,c_14/2,c_15/0} Obligation: Innermost basic terms: {app#,concat#,less_leaves#,minus#,quot#,reverse#,shuffle#}/{0,add,cons,false,leaf,nil,s,true} *** 1.1.1.1.1.2.1.1.2.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: less_leaves#(cons(u,v),cons(w,z)) -> c_6(less_leaves#(concat(u,v),concat(w,z))) Strict TRS Rules: Weak DP Rules: minus#(s(x),s(y)) -> c_9(minus#(x,y)) quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)) reverse#(add(n,x)) -> c_12(reverse#(x)) shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x)) Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y concat(cons(u,v),y) -> cons(u,concat(v,y)) concat(leaf(),y) -> y minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/1,c_10/0,c_11/2,c_12/1,c_13/0,c_14/2,c_15/0} Obligation: Innermost basic terms: {app#,concat#,less_leaves#,minus#,quot#,reverse#,shuffle#}/{0,add,cons,false,leaf,nil,s,true} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:less_leaves#(cons(u,v),cons(w,z)) -> c_6(less_leaves#(concat(u,v),concat(w,z))) -->_1 less_leaves#(cons(u,v),cons(w,z)) -> c_6(less_leaves#(concat(u,v),concat(w,z))):1 2:W:minus#(s(x),s(y)) -> c_9(minus#(x,y)) -->_1 minus#(s(x),s(y)) -> c_9(minus#(x,y)):2 3:W:quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)) -->_1 quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)):3 -->_2 minus#(s(x),s(y)) -> c_9(minus#(x,y)):2 4:W:reverse#(add(n,x)) -> c_12(reverse#(x)) -->_1 reverse#(add(n,x)) -> c_12(reverse#(x)):4 5:W:shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x)) -->_2 reverse#(add(n,x)) -> c_12(reverse#(x)):4 -->_1 shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x)):5 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 5: shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)) ,reverse#(x)) 4: reverse#(add(n,x)) -> c_12(reverse#(x)) 3: quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)) ,minus#(x,y)) 2: minus#(s(x),s(y)) -> c_9(minus#(x,y)) *** 1.1.1.1.1.2.1.1.2.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: less_leaves#(cons(u,v),cons(w,z)) -> c_6(less_leaves#(concat(u,v),concat(w,z))) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y concat(cons(u,v),y) -> cons(u,concat(v,y)) concat(leaf(),y) -> y minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/1,c_10/0,c_11/2,c_12/1,c_13/0,c_14/2,c_15/0} Obligation: Innermost basic terms: {app#,concat#,less_leaves#,minus#,quot#,reverse#,shuffle#}/{0,add,cons,false,leaf,nil,s,true} Applied Processor: UsableRules Proof: We replace rewrite rules by usable rules: concat(cons(u,v),y) -> cons(u,concat(v,y)) concat(leaf(),y) -> y less_leaves#(cons(u,v),cons(w,z)) -> c_6(less_leaves#(concat(u,v),concat(w,z))) *** 1.1.1.1.1.2.1.1.2.1.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: less_leaves#(cons(u,v),cons(w,z)) -> c_6(less_leaves#(concat(u,v),concat(w,z))) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: concat(cons(u,v),y) -> cons(u,concat(v,y)) concat(leaf(),y) -> y Signature: {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/1,c_10/0,c_11/2,c_12/1,c_13/0,c_14/2,c_15/0} Obligation: Innermost basic terms: {app#,concat#,less_leaves#,minus#,quot#,reverse#,shuffle#}/{0,add,cons,false,leaf,nil,s,true} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: less_leaves#(cons(u,v) ,cons(w,z)) -> c_6(less_leaves#(concat(u,v) ,concat(w,z))) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.2.1.1.2.1.1.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: less_leaves#(cons(u,v),cons(w,z)) -> c_6(less_leaves#(concat(u,v),concat(w,z))) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: concat(cons(u,v),y) -> cons(u,concat(v,y)) concat(leaf(),y) -> y Signature: {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/1,c_10/0,c_11/2,c_12/1,c_13/0,c_14/2,c_15/0} Obligation: Innermost basic terms: {app#,concat#,less_leaves#,minus#,quot#,reverse#,shuffle#}/{0,add,cons,false,leaf,nil,s,true} Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_6) = {1} Following symbols are considered usable: {concat,app#,concat#,less_leaves#,minus#,quot#,reverse#,shuffle#} TcT has computed the following interpretation: p(0) = [1] p(add) = [2] p(app) = [2] x1 + [1] x2 + [2] p(concat) = [1] x1 + [1] x2 + [0] p(cons) = [1] x1 + [1] x2 + [2] p(false) = [1] p(leaf) = [1] p(less_leaves) = [1] x1 + [0] p(minus) = [1] x1 + [4] p(nil) = [0] p(quot) = [1] x1 + [1] p(reverse) = [1] x1 + [2] p(s) = [0] p(shuffle) = [2] p(true) = [2] p(app#) = [1] p(concat#) = [1] x1 + [0] p(less_leaves#) = [8] x1 + [0] p(minus#) = [8] x2 + [1] p(quot#) = [1] x1 + [1] p(reverse#) = [0] p(shuffle#) = [8] x1 + [2] p(c_1) = [0] p(c_2) = [0] p(c_3) = [8] x1 + [0] p(c_4) = [1] p(c_5) = [0] p(c_6) = [1] x1 + [14] p(c_7) = [4] p(c_8) = [2] p(c_9) = [1] x1 + [0] p(c_10) = [1] p(c_11) = [2] x1 + [1] x2 + [1] p(c_12) = [4] p(c_13) = [0] p(c_14) = [1] x2 + [0] p(c_15) = [2] Following rules are strictly oriented: less_leaves#(cons(u,v) = [8] u + [8] v + [16] ,cons(w,z)) > [8] u + [8] v + [14] = c_6(less_leaves#(concat(u,v) ,concat(w,z))) Following rules are (at-least) weakly oriented: concat(cons(u,v),y) = [1] u + [1] v + [1] y + [2] >= [1] u + [1] v + [1] y + [2] = cons(u,concat(v,y)) concat(leaf(),y) = [1] y + [1] >= [1] y + [0] = y *** 1.1.1.1.1.2.1.1.2.1.1.1.1.1.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: less_leaves#(cons(u,v),cons(w,z)) -> c_6(less_leaves#(concat(u,v),concat(w,z))) Weak TRS Rules: concat(cons(u,v),y) -> cons(u,concat(v,y)) concat(leaf(),y) -> y Signature: {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/1,c_10/0,c_11/2,c_12/1,c_13/0,c_14/2,c_15/0} Obligation: Innermost basic terms: {app#,concat#,less_leaves#,minus#,quot#,reverse#,shuffle#}/{0,add,cons,false,leaf,nil,s,true} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.2.1.1.2.1.1.1.1.1.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: less_leaves#(cons(u,v),cons(w,z)) -> c_6(less_leaves#(concat(u,v),concat(w,z))) Weak TRS Rules: concat(cons(u,v),y) -> cons(u,concat(v,y)) concat(leaf(),y) -> y Signature: {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/1,c_10/0,c_11/2,c_12/1,c_13/0,c_14/2,c_15/0} Obligation: Innermost basic terms: {app#,concat#,less_leaves#,minus#,quot#,reverse#,shuffle#}/{0,add,cons,false,leaf,nil,s,true} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:less_leaves#(cons(u,v),cons(w,z)) -> c_6(less_leaves#(concat(u,v),concat(w,z))) -->_1 less_leaves#(cons(u,v),cons(w,z)) -> c_6(less_leaves#(concat(u,v),concat(w,z))):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: less_leaves#(cons(u,v) ,cons(w,z)) -> c_6(less_leaves#(concat(u,v) ,concat(w,z))) *** 1.1.1.1.1.2.1.1.2.1.1.1.1.1.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: concat(cons(u,v),y) -> cons(u,concat(v,y)) concat(leaf(),y) -> y Signature: {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/1,c_10/0,c_11/2,c_12/1,c_13/0,c_14/2,c_15/0} Obligation: Innermost basic terms: {app#,concat#,less_leaves#,minus#,quot#,reverse#,shuffle#}/{0,add,cons,false,leaf,nil,s,true} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1). *** 1.1.1.1.1.2.1.1.2.1.1.2 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: minus#(s(x),s(y)) -> c_9(minus#(x,y)) quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)) reverse#(add(n,x)) -> c_12(reverse#(x)) shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x)) Strict TRS Rules: Weak DP Rules: less_leaves#(cons(u,v),cons(w,z)) -> c_6(less_leaves#(concat(u,v),concat(w,z))) Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y concat(cons(u,v),y) -> cons(u,concat(v,y)) concat(leaf(),y) -> y minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/1,c_10/0,c_11/2,c_12/1,c_13/0,c_14/2,c_15/0} Obligation: Innermost basic terms: {app#,concat#,less_leaves#,minus#,quot#,reverse#,shuffle#}/{0,add,cons,false,leaf,nil,s,true} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:minus#(s(x),s(y)) -> c_9(minus#(x,y)) -->_1 minus#(s(x),s(y)) -> c_9(minus#(x,y)):1 2:S:quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)) -->_1 quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)):2 -->_2 minus#(s(x),s(y)) -> c_9(minus#(x,y)):1 3:S:reverse#(add(n,x)) -> c_12(reverse#(x)) -->_1 reverse#(add(n,x)) -> c_12(reverse#(x)):3 4:S:shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x)) -->_1 shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x)):4 -->_2 reverse#(add(n,x)) -> c_12(reverse#(x)):3 5:W:less_leaves#(cons(u,v),cons(w,z)) -> c_6(less_leaves#(concat(u,v),concat(w,z))) -->_1 less_leaves#(cons(u,v),cons(w,z)) -> c_6(less_leaves#(concat(u,v),concat(w,z))):5 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 5: less_leaves#(cons(u,v) ,cons(w,z)) -> c_6(less_leaves#(concat(u,v) ,concat(w,z))) *** 1.1.1.1.1.2.1.1.2.1.1.2.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: minus#(s(x),s(y)) -> c_9(minus#(x,y)) quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)) reverse#(add(n,x)) -> c_12(reverse#(x)) shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y concat(cons(u,v),y) -> cons(u,concat(v,y)) concat(leaf(),y) -> y minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/1,c_10/0,c_11/2,c_12/1,c_13/0,c_14/2,c_15/0} Obligation: Innermost basic terms: {app#,concat#,less_leaves#,minus#,quot#,reverse#,shuffle#}/{0,add,cons,false,leaf,nil,s,true} Applied Processor: Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd} Proof: We analyse the complexity of following sub-problems (R) and (S). Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component. Problem (R) Strict DP Rules: minus#(s(x),s(y)) -> c_9(minus#(x,y)) Strict TRS Rules: Weak DP Rules: quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)) reverse#(add(n,x)) -> c_12(reverse#(x)) shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x)) Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y concat(cons(u,v),y) -> cons(u,concat(v,y)) concat(leaf(),y) -> y minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/1,c_10/0,c_11/2,c_12/1,c_13/0,c_14/2,c_15/0} Obligation: Innermost basic terms: {app#,concat#,less_leaves#,minus#,quot#,reverse#,shuffle#}/{0,add,cons,false,leaf,nil,s,true} Problem (S) Strict DP Rules: quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)) reverse#(add(n,x)) -> c_12(reverse#(x)) shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x)) Strict TRS Rules: Weak DP Rules: minus#(s(x),s(y)) -> c_9(minus#(x,y)) Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y concat(cons(u,v),y) -> cons(u,concat(v,y)) concat(leaf(),y) -> y minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/1,c_10/0,c_11/2,c_12/1,c_13/0,c_14/2,c_15/0} Obligation: Innermost basic terms: {app#,concat#,less_leaves#,minus#,quot#,reverse#,shuffle#}/{0,add,cons,false,leaf,nil,s,true} *** 1.1.1.1.1.2.1.1.2.1.1.2.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: minus#(s(x),s(y)) -> c_9(minus#(x,y)) Strict TRS Rules: Weak DP Rules: quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)) reverse#(add(n,x)) -> c_12(reverse#(x)) shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x)) Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y concat(cons(u,v),y) -> cons(u,concat(v,y)) concat(leaf(),y) -> y minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/1,c_10/0,c_11/2,c_12/1,c_13/0,c_14/2,c_15/0} Obligation: Innermost basic terms: {app#,concat#,less_leaves#,minus#,quot#,reverse#,shuffle#}/{0,add,cons,false,leaf,nil,s,true} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:minus#(s(x),s(y)) -> c_9(minus#(x,y)) -->_1 minus#(s(x),s(y)) -> c_9(minus#(x,y)):1 2:W:quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)) -->_1 quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)):2 -->_2 minus#(s(x),s(y)) -> c_9(minus#(x,y)):1 3:W:reverse#(add(n,x)) -> c_12(reverse#(x)) -->_1 reverse#(add(n,x)) -> c_12(reverse#(x)):3 4:W:shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x)) -->_2 reverse#(add(n,x)) -> c_12(reverse#(x)):3 -->_1 shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x)):4 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 4: shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)) ,reverse#(x)) 3: reverse#(add(n,x)) -> c_12(reverse#(x)) *** 1.1.1.1.1.2.1.1.2.1.1.2.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: minus#(s(x),s(y)) -> c_9(minus#(x,y)) Strict TRS Rules: Weak DP Rules: quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)) Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y concat(cons(u,v),y) -> cons(u,concat(v,y)) concat(leaf(),y) -> y minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/1,c_10/0,c_11/2,c_12/1,c_13/0,c_14/2,c_15/0} Obligation: Innermost basic terms: {app#,concat#,less_leaves#,minus#,quot#,reverse#,shuffle#}/{0,add,cons,false,leaf,nil,s,true} Applied Processor: UsableRules Proof: We replace rewrite rules by usable rules: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) minus#(s(x),s(y)) -> c_9(minus#(x,y)) quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)) *** 1.1.1.1.1.2.1.1.2.1.1.2.1.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: minus#(s(x),s(y)) -> c_9(minus#(x,y)) Strict TRS Rules: Weak DP Rules: quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)) Weak TRS Rules: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) Signature: {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/1,c_10/0,c_11/2,c_12/1,c_13/0,c_14/2,c_15/0} Obligation: Innermost basic terms: {app#,concat#,less_leaves#,minus#,quot#,reverse#,shuffle#}/{0,add,cons,false,leaf,nil,s,true} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: minus#(s(x),s(y)) -> c_9(minus#(x,y)) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.2.1.1.2.1.1.2.1.1.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: minus#(s(x),s(y)) -> c_9(minus#(x,y)) Strict TRS Rules: Weak DP Rules: quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)) Weak TRS Rules: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) Signature: {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/1,c_10/0,c_11/2,c_12/1,c_13/0,c_14/2,c_15/0} Obligation: Innermost basic terms: {app#,concat#,less_leaves#,minus#,quot#,reverse#,shuffle#}/{0,add,cons,false,leaf,nil,s,true} Applied Processor: NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a polynomial interpretation of kind constructor-based(mixed(2)): The following argument positions are considered usable: uargs(c_9) = {1}, uargs(c_11) = {1,2} Following symbols are considered usable: {minus,app#,concat#,less_leaves#,minus#,quot#,reverse#,shuffle#} TcT has computed the following interpretation: p(0) = 0 p(add) = x1 p(app) = 4*x1*x2 + x1^2 + 2*x2^2 p(concat) = 1 + x1^2 + x2^2 p(cons) = x2 p(false) = 0 p(leaf) = 0 p(less_leaves) = 4 + x1 + 4*x1^2 + 4*x2^2 p(minus) = x1 p(nil) = 0 p(quot) = 2*x1 + x2 p(reverse) = 2*x1 + x1^2 p(s) = 1 + x1 p(shuffle) = 2*x1 + 2*x1^2 p(true) = 1 p(app#) = 1 + 4*x1 + x1*x2 + 2*x2^2 p(concat#) = x1 p(less_leaves#) = 2 + 4*x1 + 2*x1*x2 + 2*x1^2 + x2 + x2^2 p(minus#) = 4*x1 p(quot#) = 1 + 2*x1^2 p(reverse#) = 2 + x1 + 2*x1^2 p(shuffle#) = x1 + x1^2 p(c_1) = 1 p(c_2) = 1 p(c_3) = 0 p(c_4) = 1 p(c_5) = 1 p(c_6) = 0 p(c_7) = 0 p(c_8) = 0 p(c_9) = x1 p(c_10) = 1 p(c_11) = 1 + x1 + x2 p(c_12) = 1 p(c_13) = 0 p(c_14) = x1 + x2 p(c_15) = 0 Following rules are strictly oriented: minus#(s(x),s(y)) = 4 + 4*x > 4*x = c_9(minus#(x,y)) Following rules are (at-least) weakly oriented: quot#(s(x),s(y)) = 3 + 4*x + 2*x^2 >= 2 + 4*x + 2*x^2 = c_11(quot#(minus(x,y),s(y)) ,minus#(x,y)) minus(x,0()) = x >= x = x minus(s(x),s(y)) = 1 + x >= x = minus(x,y) *** 1.1.1.1.1.2.1.1.2.1.1.2.1.1.1.1.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: minus#(s(x),s(y)) -> c_9(minus#(x,y)) quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)) Weak TRS Rules: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) Signature: {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/1,c_10/0,c_11/2,c_12/1,c_13/0,c_14/2,c_15/0} Obligation: Innermost basic terms: {app#,concat#,less_leaves#,minus#,quot#,reverse#,shuffle#}/{0,add,cons,false,leaf,nil,s,true} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.2.1.1.2.1.1.2.1.1.1.1.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: minus#(s(x),s(y)) -> c_9(minus#(x,y)) quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)) Weak TRS Rules: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) Signature: {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/1,c_10/0,c_11/2,c_12/1,c_13/0,c_14/2,c_15/0} Obligation: Innermost basic terms: {app#,concat#,less_leaves#,minus#,quot#,reverse#,shuffle#}/{0,add,cons,false,leaf,nil,s,true} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:minus#(s(x),s(y)) -> c_9(minus#(x,y)) -->_1 minus#(s(x),s(y)) -> c_9(minus#(x,y)):1 2:W:quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)) -->_1 quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)):2 -->_2 minus#(s(x),s(y)) -> c_9(minus#(x,y)):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 2: quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)) ,minus#(x,y)) 1: minus#(s(x),s(y)) -> c_9(minus#(x,y)) *** 1.1.1.1.1.2.1.1.2.1.1.2.1.1.1.1.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) Signature: {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/1,c_10/0,c_11/2,c_12/1,c_13/0,c_14/2,c_15/0} Obligation: Innermost basic terms: {app#,concat#,less_leaves#,minus#,quot#,reverse#,shuffle#}/{0,add,cons,false,leaf,nil,s,true} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1). *** 1.1.1.1.1.2.1.1.2.1.1.2.1.2 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)) reverse#(add(n,x)) -> c_12(reverse#(x)) shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x)) Strict TRS Rules: Weak DP Rules: minus#(s(x),s(y)) -> c_9(minus#(x,y)) Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y concat(cons(u,v),y) -> cons(u,concat(v,y)) concat(leaf(),y) -> y minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/1,c_10/0,c_11/2,c_12/1,c_13/0,c_14/2,c_15/0} Obligation: Innermost basic terms: {app#,concat#,less_leaves#,minus#,quot#,reverse#,shuffle#}/{0,add,cons,false,leaf,nil,s,true} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)) -->_2 minus#(s(x),s(y)) -> c_9(minus#(x,y)):4 -->_1 quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)):1 2:S:reverse#(add(n,x)) -> c_12(reverse#(x)) -->_1 reverse#(add(n,x)) -> c_12(reverse#(x)):2 3:S:shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x)) -->_1 shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x)):3 -->_2 reverse#(add(n,x)) -> c_12(reverse#(x)):2 4:W:minus#(s(x),s(y)) -> c_9(minus#(x,y)) -->_1 minus#(s(x),s(y)) -> c_9(minus#(x,y)):4 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 4: minus#(s(x),s(y)) -> c_9(minus#(x,y)) *** 1.1.1.1.1.2.1.1.2.1.1.2.1.2.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)) reverse#(add(n,x)) -> c_12(reverse#(x)) shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y concat(cons(u,v),y) -> cons(u,concat(v,y)) concat(leaf(),y) -> y minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/1,c_10/0,c_11/2,c_12/1,c_13/0,c_14/2,c_15/0} Obligation: Innermost basic terms: {app#,concat#,less_leaves#,minus#,quot#,reverse#,shuffle#}/{0,add,cons,false,leaf,nil,s,true} Applied Processor: SimplifyRHS Proof: Consider the dependency graph 1:S:quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)) -->_1 quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)):1 2:S:reverse#(add(n,x)) -> c_12(reverse#(x)) -->_1 reverse#(add(n,x)) -> c_12(reverse#(x)):2 3:S:shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x)) -->_1 shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x)):3 -->_2 reverse#(add(n,x)) -> c_12(reverse#(x)):2 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y))) *** 1.1.1.1.1.2.1.1.2.1.1.2.1.2.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y))) reverse#(add(n,x)) -> c_12(reverse#(x)) shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y concat(cons(u,v),y) -> cons(u,concat(v,y)) concat(leaf(),y) -> y minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/1,c_10/0,c_11/1,c_12/1,c_13/0,c_14/2,c_15/0} Obligation: Innermost basic terms: {app#,concat#,less_leaves#,minus#,quot#,reverse#,shuffle#}/{0,add,cons,false,leaf,nil,s,true} Applied Processor: UsableRules Proof: We replace rewrite rules by usable rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y))) reverse#(add(n,x)) -> c_12(reverse#(x)) shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x)) *** 1.1.1.1.1.2.1.1.2.1.1.2.1.2.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y))) reverse#(add(n,x)) -> c_12(reverse#(x)) shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/1,c_10/0,c_11/1,c_12/1,c_13/0,c_14/2,c_15/0} Obligation: Innermost basic terms: {app#,concat#,less_leaves#,minus#,quot#,reverse#,shuffle#}/{0,add,cons,false,leaf,nil,s,true} Applied Processor: Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd} Proof: We analyse the complexity of following sub-problems (R) and (S). Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component. Problem (R) Strict DP Rules: quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y))) Strict TRS Rules: Weak DP Rules: reverse#(add(n,x)) -> c_12(reverse#(x)) shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x)) Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/1,c_10/0,c_11/1,c_12/1,c_13/0,c_14/2,c_15/0} Obligation: Innermost basic terms: {app#,concat#,less_leaves#,minus#,quot#,reverse#,shuffle#}/{0,add,cons,false,leaf,nil,s,true} Problem (S) Strict DP Rules: reverse#(add(n,x)) -> c_12(reverse#(x)) shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x)) Strict TRS Rules: Weak DP Rules: quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y))) Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/1,c_10/0,c_11/1,c_12/1,c_13/0,c_14/2,c_15/0} Obligation: Innermost basic terms: {app#,concat#,less_leaves#,minus#,quot#,reverse#,shuffle#}/{0,add,cons,false,leaf,nil,s,true} *** 1.1.1.1.1.2.1.1.2.1.1.2.1.2.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y))) Strict TRS Rules: Weak DP Rules: reverse#(add(n,x)) -> c_12(reverse#(x)) shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x)) Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/1,c_10/0,c_11/1,c_12/1,c_13/0,c_14/2,c_15/0} Obligation: Innermost basic terms: {app#,concat#,less_leaves#,minus#,quot#,reverse#,shuffle#}/{0,add,cons,false,leaf,nil,s,true} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y))) -->_1 quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y))):1 2:W:reverse#(add(n,x)) -> c_12(reverse#(x)) -->_1 reverse#(add(n,x)) -> c_12(reverse#(x)):2 3:W:shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x)) -->_2 reverse#(add(n,x)) -> c_12(reverse#(x)):2 -->_1 shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x)):3 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 3: shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)) ,reverse#(x)) 2: reverse#(add(n,x)) -> c_12(reverse#(x)) *** 1.1.1.1.1.2.1.1.2.1.1.2.1.2.1.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y))) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/1,c_10/0,c_11/1,c_12/1,c_13/0,c_14/2,c_15/0} Obligation: Innermost basic terms: {app#,concat#,less_leaves#,minus#,quot#,reverse#,shuffle#}/{0,add,cons,false,leaf,nil,s,true} Applied Processor: UsableRules Proof: We replace rewrite rules by usable rules: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y))) *** 1.1.1.1.1.2.1.1.2.1.1.2.1.2.1.1.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y))) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) Signature: {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/1,c_10/0,c_11/1,c_12/1,c_13/0,c_14/2,c_15/0} Obligation: Innermost basic terms: {app#,concat#,less_leaves#,minus#,quot#,reverse#,shuffle#}/{0,add,cons,false,leaf,nil,s,true} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y))) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.2.1.1.2.1.1.2.1.2.1.1.1.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y))) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) Signature: {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/1,c_10/0,c_11/1,c_12/1,c_13/0,c_14/2,c_15/0} Obligation: Innermost basic terms: {app#,concat#,less_leaves#,minus#,quot#,reverse#,shuffle#}/{0,add,cons,false,leaf,nil,s,true} Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_11) = {1} Following symbols are considered usable: {minus,app#,concat#,less_leaves#,minus#,quot#,reverse#,shuffle#} TcT has computed the following interpretation: p(0) = [0] p(add) = [1] x1 + [1] x2 + [0] p(app) = [0] p(concat) = [0] p(cons) = [1] x1 + [1] x2 + [0] p(false) = [0] p(leaf) = [0] p(less_leaves) = [0] p(minus) = [1] x1 + [0] p(nil) = [0] p(quot) = [0] p(reverse) = [0] p(s) = [1] x1 + [1] p(shuffle) = [0] p(true) = [0] p(app#) = [0] p(concat#) = [0] p(less_leaves#) = [0] p(minus#) = [2] x2 + [0] p(quot#) = [8] x1 + [9] x2 + [7] p(reverse#) = [1] p(shuffle#) = [2] p(c_1) = [0] p(c_2) = [0] p(c_3) = [1] x1 + [2] p(c_4) = [1] p(c_5) = [1] p(c_6) = [8] x1 + [0] p(c_7) = [1] p(c_8) = [0] p(c_9) = [8] x1 + [1] p(c_10) = [0] p(c_11) = [1] x1 + [0] p(c_12) = [1] p(c_13) = [1] p(c_14) = [2] x2 + [1] p(c_15) = [1] Following rules are strictly oriented: quot#(s(x),s(y)) = [8] x + [9] y + [24] > [8] x + [9] y + [16] = c_11(quot#(minus(x,y),s(y))) Following rules are (at-least) weakly oriented: minus(x,0()) = [1] x + [0] >= [1] x + [0] = x minus(s(x),s(y)) = [1] x + [1] >= [1] x + [0] = minus(x,y) *** 1.1.1.1.1.2.1.1.2.1.1.2.1.2.1.1.1.1.1.1.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y))) Weak TRS Rules: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) Signature: {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/1,c_10/0,c_11/1,c_12/1,c_13/0,c_14/2,c_15/0} Obligation: Innermost basic terms: {app#,concat#,less_leaves#,minus#,quot#,reverse#,shuffle#}/{0,add,cons,false,leaf,nil,s,true} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.2.1.1.2.1.1.2.1.2.1.1.1.1.1.1.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y))) Weak TRS Rules: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) Signature: {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/1,c_10/0,c_11/1,c_12/1,c_13/0,c_14/2,c_15/0} Obligation: Innermost basic terms: {app#,concat#,less_leaves#,minus#,quot#,reverse#,shuffle#}/{0,add,cons,false,leaf,nil,s,true} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y))) -->_1 quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y))):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y))) *** 1.1.1.1.1.2.1.1.2.1.1.2.1.2.1.1.1.1.1.1.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) Signature: {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/1,c_10/0,c_11/1,c_12/1,c_13/0,c_14/2,c_15/0} Obligation: Innermost basic terms: {app#,concat#,less_leaves#,minus#,quot#,reverse#,shuffle#}/{0,add,cons,false,leaf,nil,s,true} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1). *** 1.1.1.1.1.2.1.1.2.1.1.2.1.2.1.1.1.2 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: reverse#(add(n,x)) -> c_12(reverse#(x)) shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x)) Strict TRS Rules: Weak DP Rules: quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y))) Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/1,c_10/0,c_11/1,c_12/1,c_13/0,c_14/2,c_15/0} Obligation: Innermost basic terms: {app#,concat#,less_leaves#,minus#,quot#,reverse#,shuffle#}/{0,add,cons,false,leaf,nil,s,true} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:reverse#(add(n,x)) -> c_12(reverse#(x)) -->_1 reverse#(add(n,x)) -> c_12(reverse#(x)):1 2:S:shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x)) -->_1 shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x)):2 -->_2 reverse#(add(n,x)) -> c_12(reverse#(x)):1 3:W:quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y))) -->_1 quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y))):3 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 3: quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y))) *** 1.1.1.1.1.2.1.1.2.1.1.2.1.2.1.1.1.2.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: reverse#(add(n,x)) -> c_12(reverse#(x)) shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/1,c_10/0,c_11/1,c_12/1,c_13/0,c_14/2,c_15/0} Obligation: Innermost basic terms: {app#,concat#,less_leaves#,minus#,quot#,reverse#,shuffle#}/{0,add,cons,false,leaf,nil,s,true} Applied Processor: Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd} Proof: We analyse the complexity of following sub-problems (R) and (S). Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component. Problem (R) Strict DP Rules: reverse#(add(n,x)) -> c_12(reverse#(x)) Strict TRS Rules: Weak DP Rules: shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x)) Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/1,c_10/0,c_11/1,c_12/1,c_13/0,c_14/2,c_15/0} Obligation: Innermost basic terms: {app#,concat#,less_leaves#,minus#,quot#,reverse#,shuffle#}/{0,add,cons,false,leaf,nil,s,true} Problem (S) Strict DP Rules: shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x)) Strict TRS Rules: Weak DP Rules: reverse#(add(n,x)) -> c_12(reverse#(x)) Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/1,c_10/0,c_11/1,c_12/1,c_13/0,c_14/2,c_15/0} Obligation: Innermost basic terms: {app#,concat#,less_leaves#,minus#,quot#,reverse#,shuffle#}/{0,add,cons,false,leaf,nil,s,true} *** 1.1.1.1.1.2.1.1.2.1.1.2.1.2.1.1.1.2.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: reverse#(add(n,x)) -> c_12(reverse#(x)) Strict TRS Rules: Weak DP Rules: shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x)) Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/1,c_10/0,c_11/1,c_12/1,c_13/0,c_14/2,c_15/0} Obligation: Innermost basic terms: {app#,concat#,less_leaves#,minus#,quot#,reverse#,shuffle#}/{0,add,cons,false,leaf,nil,s,true} Applied Processor: UsableRules Proof: We replace rewrite rules by usable rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() reverse#(add(n,x)) -> c_12(reverse#(x)) shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x)) *** 1.1.1.1.1.2.1.1.2.1.1.2.1.2.1.1.1.2.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: reverse#(add(n,x)) -> c_12(reverse#(x)) Strict TRS Rules: Weak DP Rules: shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x)) Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/1,c_10/0,c_11/1,c_12/1,c_13/0,c_14/2,c_15/0} Obligation: Innermost basic terms: {app#,concat#,less_leaves#,minus#,quot#,reverse#,shuffle#}/{0,add,cons,false,leaf,nil,s,true} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: reverse#(add(n,x)) -> c_12(reverse#(x)) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.2.1.1.2.1.1.2.1.2.1.1.1.2.1.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: reverse#(add(n,x)) -> c_12(reverse#(x)) Strict TRS Rules: Weak DP Rules: shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x)) Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/1,c_10/0,c_11/1,c_12/1,c_13/0,c_14/2,c_15/0} Obligation: Innermost basic terms: {app#,concat#,less_leaves#,minus#,quot#,reverse#,shuffle#}/{0,add,cons,false,leaf,nil,s,true} Applied Processor: NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a polynomial interpretation of kind constructor-based(mixed(2)): The following argument positions are considered usable: uargs(c_12) = {1}, uargs(c_14) = {1,2} Following symbols are considered usable: {app,reverse,app#,concat#,less_leaves#,minus#,quot#,reverse#,shuffle#} TcT has computed the following interpretation: p(0) = 0 p(add) = 1 + x2 p(app) = x1 + x2 p(concat) = 1 + x1*x2 + x1^2 + 4*x2 + x2^2 p(cons) = 1 p(false) = 1 p(leaf) = 1 p(less_leaves) = 4*x1 + 4*x1^2 + 4*x2 + x2^2 p(minus) = 1 + 2*x1^2 p(nil) = 0 p(quot) = 4*x1*x2 + x1^2 p(reverse) = x1 p(s) = 0 p(shuffle) = 0 p(true) = 0 p(app#) = 2*x1*x2 + 2*x1^2 + x2^2 p(concat#) = 1 + x1 + x1*x2 + x1^2 + 4*x2 + 4*x2^2 p(less_leaves#) = x1^2 + x2 p(minus#) = 1 + x2 + x2^2 p(quot#) = 2 + x1 p(reverse#) = 1 + 4*x1 p(shuffle#) = 6 + 4*x1 + 4*x1^2 p(c_1) = 1 + x1 p(c_2) = 1 p(c_3) = 0 p(c_4) = 1 p(c_5) = 1 p(c_6) = 1 p(c_7) = 1 p(c_8) = 1 p(c_9) = 0 p(c_10) = 1 p(c_11) = 1 p(c_12) = x1 p(c_13) = 0 p(c_14) = 1 + x1 + x2 p(c_15) = 0 Following rules are strictly oriented: reverse#(add(n,x)) = 5 + 4*x > 1 + 4*x = c_12(reverse#(x)) Following rules are (at-least) weakly oriented: shuffle#(add(n,x)) = 14 + 12*x + 4*x^2 >= 8 + 8*x + 4*x^2 = c_14(shuffle#(reverse(x)) ,reverse#(x)) app(add(n,x),y) = 1 + x + y >= 1 + x + y = add(n,app(x,y)) app(nil(),y) = y >= y = y reverse(add(n,x)) = 1 + x >= 1 + x = app(reverse(x),add(n,nil())) reverse(nil()) = 0 >= 0 = nil() *** 1.1.1.1.1.2.1.1.2.1.1.2.1.2.1.1.1.2.1.1.1.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: reverse#(add(n,x)) -> c_12(reverse#(x)) shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x)) Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/1,c_10/0,c_11/1,c_12/1,c_13/0,c_14/2,c_15/0} Obligation: Innermost basic terms: {app#,concat#,less_leaves#,minus#,quot#,reverse#,shuffle#}/{0,add,cons,false,leaf,nil,s,true} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.2.1.1.2.1.1.2.1.2.1.1.1.2.1.1.1.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: reverse#(add(n,x)) -> c_12(reverse#(x)) shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x)) Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/1,c_10/0,c_11/1,c_12/1,c_13/0,c_14/2,c_15/0} Obligation: Innermost basic terms: {app#,concat#,less_leaves#,minus#,quot#,reverse#,shuffle#}/{0,add,cons,false,leaf,nil,s,true} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:reverse#(add(n,x)) -> c_12(reverse#(x)) -->_1 reverse#(add(n,x)) -> c_12(reverse#(x)):1 2:W:shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x)) -->_1 shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x)):2 -->_2 reverse#(add(n,x)) -> c_12(reverse#(x)):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 2: shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)) ,reverse#(x)) 1: reverse#(add(n,x)) -> c_12(reverse#(x)) *** 1.1.1.1.1.2.1.1.2.1.1.2.1.2.1.1.1.2.1.1.1.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/1,c_10/0,c_11/1,c_12/1,c_13/0,c_14/2,c_15/0} Obligation: Innermost basic terms: {app#,concat#,less_leaves#,minus#,quot#,reverse#,shuffle#}/{0,add,cons,false,leaf,nil,s,true} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1). *** 1.1.1.1.1.2.1.1.2.1.1.2.1.2.1.1.1.2.1.2 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x)) Strict TRS Rules: Weak DP Rules: reverse#(add(n,x)) -> c_12(reverse#(x)) Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/1,c_10/0,c_11/1,c_12/1,c_13/0,c_14/2,c_15/0} Obligation: Innermost basic terms: {app#,concat#,less_leaves#,minus#,quot#,reverse#,shuffle#}/{0,add,cons,false,leaf,nil,s,true} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x)) -->_2 reverse#(add(n,x)) -> c_12(reverse#(x)):2 -->_1 shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x)):1 2:W:reverse#(add(n,x)) -> c_12(reverse#(x)) -->_1 reverse#(add(n,x)) -> c_12(reverse#(x)):2 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 2: reverse#(add(n,x)) -> c_12(reverse#(x)) *** 1.1.1.1.1.2.1.1.2.1.1.2.1.2.1.1.1.2.1.2.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/1,c_10/0,c_11/1,c_12/1,c_13/0,c_14/2,c_15/0} Obligation: Innermost basic terms: {app#,concat#,less_leaves#,minus#,quot#,reverse#,shuffle#}/{0,add,cons,false,leaf,nil,s,true} Applied Processor: SimplifyRHS Proof: Consider the dependency graph 1:S:shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x)) -->_1 shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x)):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x))) *** 1.1.1.1.1.2.1.1.2.1.1.2.1.2.1.1.1.2.1.2.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x))) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/1,c_10/0,c_11/1,c_12/1,c_13/0,c_14/1,c_15/0} Obligation: Innermost basic terms: {app#,concat#,less_leaves#,minus#,quot#,reverse#,shuffle#}/{0,add,cons,false,leaf,nil,s,true} Applied Processor: UsableRules Proof: We replace rewrite rules by usable rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x))) *** 1.1.1.1.1.2.1.1.2.1.1.2.1.2.1.1.1.2.1.2.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x))) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/1,c_10/0,c_11/1,c_12/1,c_13/0,c_14/1,c_15/0} Obligation: Innermost basic terms: {app#,concat#,less_leaves#,minus#,quot#,reverse#,shuffle#}/{0,add,cons,false,leaf,nil,s,true} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x))) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.2.1.1.2.1.1.2.1.2.1.1.1.2.1.2.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x))) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/1,c_10/0,c_11/1,c_12/1,c_13/0,c_14/1,c_15/0} Obligation: Innermost basic terms: {app#,concat#,less_leaves#,minus#,quot#,reverse#,shuffle#}/{0,add,cons,false,leaf,nil,s,true} Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_14) = {1} Following symbols are considered usable: {app,reverse,app#,concat#,less_leaves#,minus#,quot#,reverse#,shuffle#} TcT has computed the following interpretation: p(0) = [4] p(add) = [1] x2 + [1] p(app) = [1] x1 + [1] x2 + [0] p(concat) = [4] x2 + [1] p(cons) = [1] x2 + [2] p(false) = [4] p(leaf) = [0] p(less_leaves) = [1] x1 + [1] x2 + [2] p(minus) = [1] p(nil) = [0] p(quot) = [1] p(reverse) = [1] x1 + [0] p(s) = [4] p(shuffle) = [4] p(true) = [2] p(app#) = [2] x2 + [1] p(concat#) = [2] x1 + [1] p(less_leaves#) = [1] x2 + [0] p(minus#) = [1] p(quot#) = [1] x1 + [1] x2 + [0] p(reverse#) = [4] x1 + [1] p(shuffle#) = [1] x1 + [0] p(c_1) = [1] p(c_2) = [1] p(c_3) = [1] p(c_4) = [1] p(c_5) = [2] p(c_6) = [1] x1 + [0] p(c_7) = [0] p(c_8) = [1] p(c_9) = [0] p(c_10) = [0] p(c_11) = [1] p(c_12) = [0] p(c_13) = [1] p(c_14) = [1] x1 + [0] p(c_15) = [0] Following rules are strictly oriented: shuffle#(add(n,x)) = [1] x + [1] > [1] x + [0] = c_14(shuffle#(reverse(x))) Following rules are (at-least) weakly oriented: app(add(n,x),y) = [1] x + [1] y + [1] >= [1] x + [1] y + [1] = add(n,app(x,y)) app(nil(),y) = [1] y + [0] >= [1] y + [0] = y reverse(add(n,x)) = [1] x + [1] >= [1] x + [1] = app(reverse(x),add(n,nil())) reverse(nil()) = [0] >= [0] = nil() *** 1.1.1.1.1.2.1.1.2.1.1.2.1.2.1.1.1.2.1.2.1.1.1.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x))) Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/1,c_10/0,c_11/1,c_12/1,c_13/0,c_14/1,c_15/0} Obligation: Innermost basic terms: {app#,concat#,less_leaves#,minus#,quot#,reverse#,shuffle#}/{0,add,cons,false,leaf,nil,s,true} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.2.1.1.2.1.1.2.1.2.1.1.1.2.1.2.1.1.1.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x))) Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/1,c_10/0,c_11/1,c_12/1,c_13/0,c_14/1,c_15/0} Obligation: Innermost basic terms: {app#,concat#,less_leaves#,minus#,quot#,reverse#,shuffle#}/{0,add,cons,false,leaf,nil,s,true} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x))) -->_1 shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x))):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x))) *** 1.1.1.1.1.2.1.1.2.1.1.2.1.2.1.1.1.2.1.2.1.1.1.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/1,c_10/0,c_11/1,c_12/1,c_13/0,c_14/1,c_15/0} Obligation: Innermost basic terms: {app#,concat#,less_leaves#,minus#,quot#,reverse#,shuffle#}/{0,add,cons,false,leaf,nil,s,true} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1).